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Following Rockafellar (1970), a generalized n-simplex in Rn is defined as the direct sum of an
m-simplex and a simplicial (n − m)-cone, 0 ≤ m ≤ n. Fourneau (1977) showed that a line-free
n-dimensional closed convex set K ⊂ Rn is a generalized n-simplex if and only if all n-dimensional
intersections K ∩ (v +K), v ∈ Rn, are homothetic to K. We extend this characteristic property by
proving that for a pair of line-free n-dimensional closed convex sets K1 and K2 in Rn the following
two conditions are equivalent: 1) all n-dimensional intersections K1 ∩ (v + K2), v ∈ Rn, belong
to a unique homothety class of convex sets, 2) K1 and K2 are generalized n-simplices whose n-
dimensional intersections K1 ∩ (v+K2), v ∈ Rn, are homothetic to a unique generalized n-simplex.
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1. Introduction and Main Result

A convex set K in a linear space of any dimension is called a Choquet simplex if any
nonempty intersection of two homothetic copies of K is either a homothetic copy of
K or a singleton:

(u+ λK) ∩ (v + µK) = w + νK, λ, µ > 0, ν ≥ 0. (1)

We recall that sets S and T are homothetic provided S = x + λT for a suitable
vector x and a scalar λ > 0. Various properties of Choquet simplices, widely used
in partially ordered linear spaces and the Choquet representation theory (see, e.g.,
[7, 15]), initiated a comprehensive study of their structure in the Euclidean space Rn

(see, e.g., [13] for an overview).

Rogers and Shephard [9] proved that a convex body K ⊂ Rn is a usual n-simplex
(i.e., K is the convex hull of n + 1 affinely independent points) if and only if every
nonempty intersection of K and a translate of K is either a homothetic copy of K or
a singleton:

K ∩ (v +K) = w + λK, v, w ∈ Rn, λ ≥ 0. (2)

This fact obviously implies that a compact convex set in Rn is a Choquet simplex if
and only if it is a usual simplex. A more general result of Gruber [3, Satz 2] shows
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that a line-free closed convex set K ⊂ Rn is a Choquet simplex if and only if it is a
simplex or a simplicial cone

Since the relation of homothety is an equivalence relation, the family of convex sets
in Rn is a disjoint union of homothety classes (see, e.g., [14] for a study of vector
addition and subtraction of homothety classes of convex sets). So, a convex set
K ⊂ Rn is a Choquet simplex if and only if each nonempty intersection of two
homothetic copies of K either belongs to the homothety class containing K or is a
singleton. In these terms, the characteristic intersection property (2) of n-simplices
was generalized in [11] to the case of two convex bodies as follows. Convex bodies
K1 and K2 in Rn are homothetic simplices if and only if they satisfy the following
condition (I): every nonempty intersectionK1∩(v+K2), v ∈ Rn, belongs to a unique
homothety class of convex bodies or is a singleton. This characteristic property was
used by Schneider [10] to study translation mixtures of convex bodies. As shown
in [12], line-free closed convex sets K1 and K2 of dimension n in Rn that satisfy
condition (I) above are Choquet simplices, not necessarily homothetic to each other.

To avoid multiple repetitions of the expression “closed convex sets of dimension n in
Rn, distinct from Rn and possibly unbounded�, we will call these sets convex solids. If
K is a convex solid in Rn, then the condition “either a homothetic copy or a singleton�
in (1) or (2) implies that any nonempty intersection (u+λK)∩(v+µK) orK∩(v+K)
of dimension n− 1 or less should be a singleton. Fourneau [2] relaxed this condition
by considering convex solids K ⊂ Rn such that the n-dimensional intersections of
any two homothetic copies ofK are homothetic toK (with no condition on nonempty
intersections of dimension n− 1 or less):

(u+ λK) ∩ (v + µK) = w + νK, u, v, w ∈ Rn, λ, µ, ν > 0. (3)

As proved in [2], a line-free convex solid K ⊂ Rn satisfies condition (3) if and only
if K is a generalized simplex introduced by Rockafellar [8, p. 154], that is, K is the
direct sum of an m-simplex and a simplicial (n−m)-cone:

K = conv{x0, x1, . . . , xm}+
n

∑

i=m+1

[x0, xi), 0 ≤ m ≤ n,

where x0, x1, . . . , xn ∈ Rn are affinely independent points and [x0, xi) means the
halfline through xi originated at x0. Clearly, usual n-simplices and simplicial n-cones
are particular cases of generalized n-simplices. Hinrichsen and Krause [4] showed
that any line-free convex polyhedron in Rn can be partitioned into finitely many
generalized simplices.
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Figure 1.1: Generalized 2-simplices in the plane.

Similarly to [11, 12], we extend below Fourneau’s characteristic intersection property
of generalized simplices to the case of a pair of convex solids K1 and K2 in Rn. Recall
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that the support cone Cx(K) of a convex solid K ⊂ Rn at its boundary point x is
the closure of the union of the halflines [x, z), z ∈ K \ {x}. Our main result is given
in the following theorem.

Theorem 1.1. For line-free convex solids K1 and K2 in Rn, conditions 1 )– 3 ) below
are equivalent:

1 ) all n-dimensional intersections (u + λK1) ∩ (v + µK2), u, v ∈ Rn, λ, µ > 0,
belong to a unique homothety class of convex solids,

2 ) all n-dimensional intersections K1 ∩ (v + K2), v ∈ Rn, belong to a unique

homothety class of convex solids,

3 ) both K1 and K2 are generalized n-simplices, and there is a generalized n-simplex

K ⊂ Rn such that all n-dimensional intersections K1 ∩ (v +K2), v ∈ Rn, are

homothetic to K. Furthermore, K1, K2, and K satisfy either of the following

three conditions:

(a) both K1 and K2 are homothetic to K,

(b) one of K1, K2, say K1, is homothetic to K, and K2 is a translate of a

support cone Cx(K), where x is a vertex of K,

(c) K1 and K2 are translates of support cones Cx(K) and Cz(K), respectively,
where x and z are distinct vertices of K.

For n = 2, we have the following description of all convex solids K1 and K2 that
satisfy Theorem 1.1 (the shaded regions are homothetic to K).
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We remark that if at least one of the convex solids K1 and K2 in Theorem 1.1 is not
assumed to be line-free, then we should not expect them to be even polyhedral. For
example, if

K1 = {(x, y, z) | z ≥
√

x2 + y2 − 1} and K2 = {(x, y, z) | z ≤ 0},

then all 3-dimensional intersections K1 ∩ (v +K2), v ∈ R3, are homothetic copies of
the bounded circular cone K1∩K2. The problem to describe all pairs of convex solids
K1, K2 ⊂ Rn, not necessarily line-free, that satisfy condition 1 ) or 2 ) of Theorem 1.1
remains open.
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2. Preliminaries

For the convenience of the reader we provide in this section necessary definitions,
notation, and auxiliary properties of convex sets in Rn. In what follows, 0 means
the origin (zero vector) of Rn. Let us recall that a face of a convex set M ⊂ Rn is a
convex subset F of M such that for any points x, y ∈ M and a scalar λ ∈ ]0, 1[ the
inclusion (1− λ)x + λy ∈ F implies that x, y ∈ F . Zero-dimensional faces of M are
called extreme points of M and their union is denoted extM . An exposed face of
M is the intersection of M with any hyperplane that supports M . Zero-dimensional
exposed faces are called exposed points of M and their union is denoted expM .

A convex set M ⊂ Rn is called line-free provided it contains no lines. Any closed
convex set in Rn can be expressed as the direct sum of a subspace and a closed line-
free convex set. The following well-known results of Klee [5, 6] describe the extremal
structure of line-free closed convex sets.

1. A closed convex set M ⊂ Rn is line-free if and only if it has at least one extreme
point (respectively, at least one exposed point).

2. Any line-free closed convex set in Rn is the convex hull of its extreme points and
extreme halflines.

3. Any line-free closed convex set in Rn is the closed convex hull of its exposed
points and exposed halflines.

4. For any line-free closed convex set M ⊂ Rn, the set expM is dense in extM .

As usual, bdK and intK denote, respectively, the boundary and the interior of
a convex solid K ⊂ Rn. Furthermore, rintM stands for the relative interior of a
convex set M in Rn. We say that a closed halfspace P supports a closed convex
set M provided the boundary hyperplane of P supports M and the interior of P
is disjoint from M . By a convex n-polyhedron (in particular, convex n-polytope,
n-simplex, or simplicial n-cone) we mean a closed convex polyhedral set of dimension
n.

The recession cone recM of a closed convex set M ⊂ Rn is defined by

recM = {y ∈ Rn | x+ λy ∈ M for all x ∈ M and λ ≥ 0}.

It is well known that recM 6= {0 } if and only if M is unbounded (see, e.g., [8,
Theorem 8.4]). Generally, by a convex cone with apex p we mean a convex set
C ⊂ Rn such that p+ λ(x− p) ∈ C for all λ ≥ 0 and x ∈ C.

Lemma 2.1. For any boundary point x of a closed convex set M ⊂ Rn, the support

cone Cx(M) is a closed convex cone with apex x, distinct from Rn. Furthermore,

Cx(M) = Cx(M ∩ Br(x)) for any closed ball Br(x) ⊂ Rn with center x and radius

r > 0.

Lemma 2.2. If u and v are distinct exposed points of a convex solid K ⊂ Rn, then

none of the cones Cu(K), u− v + Cv(K) lies in the other.

Proof. Assume, for contradiction, that u − v + Cv(K) ⊂ Cu(K) (the opposite in-
clusion is considered similarly). Let P ⊂ Rn be a closed halfspace with the property
K ∩P = {u}. Clearly, P supports Cu(K) and whence supports u− v+Cv(K). Then
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the halfspace v − u + P supports Cv(K). As a result, v − u + P supports K and
v ∈ K ∩ (v − u+ P ). The parallel halfspaces P and v − u+ P , both supporting K,
should coincide: P = v − u + P . Finally, v ∈ K ∩ (v − u + P ) = K ∩ P = {u}, in
contradiction with u 6= v.

Lemma 2.3. Let K ⊂ Rn be a line-free convex solid and P ⊂ Rn be a closed halfspace

with the property P ∩ recK = {0 }. Then any translate of P intersects K along a

bounded set, and there is a translate of P that supports K.

Lemma 2.4. Let K ⊂ Rn be a line-free convex solid and v be an exposed point of

K isolated in expK. Then K is locally conic at v, that is, there is a closed ball

Br(v) ⊂ Rn such that [v, z] ⊂ bdK for all z ∈ Br(v) ∩ bdK.

Proof. Assume, for contradiction, the existence of a sequence z1, z2, . . . ∈ bdK
convergent to v such that [v, zi] 6⊂ bdK for all i = 1, 2, . . . Choose a closed halfspace
P ⊂ Rn with the property P ∩K = {v}. We can write P = {x ∈ Rn | f(x) ≤ α},
where f is a linear functional on Rn and α is a scalar. Then f(zi) → α as i → ∞.
Let Fi denote the smallest face of K that contains zi. Clearly, Fi ⊂ bdK because of
zi ∈ bdK. We have v /∈ Fi, since otherwise [v, zi] ⊂ Fi ⊂ bdK. Being line-free, Fi

contains an extreme point ui, which is an extreme point of K. Furthermore, ui can
be chosen such that f(ui) ≤ f(zi), since otherwise Fi ⊂ {x ∈ Rn | f(x) > f(zi)}, in
contradiction with zi ∈ Fi. Due to P ∩ K = {v}, all points u1, u2, . . . are distinct
from v and the diameter of K ∩ {x ∈ Rn | f(x) ≤ f(ui)} tends to 0 as i → ∞.
Hence limi→∞ ui = v. Since the set expK is dense in extK, there is a sequence
w1, w2, . . . ∈ expK \ {v} convergent to v, in contradiction with the assumption.

3. Proof of Theorem 1.1

3 ) ⇒ 1 ) If convex solids K1, K2, and K satisfy condition 3 ) of the theorem, then
either K is a simplicial cone, which can be described in suitable coordinates as

K = {(x1, . . . , xn) ∈ Rn | x1 ≥ 0, . . . , xn ≥ 0}, (4)

or K is a generalized simplex, which can be described in suitable coordinates as

K = {(x1, . . . , xn) ∈ Rn | x1 ≥ 0, . . . , xn ≥ 0, x1 + · · ·+ xm ≤ 1}, (5)

where m is an integer between 1 and n (see [2]).

In case (4), condition 3 ) implies that bothK1 andK2 are translates ofK: K1 = p+K
and K2 = q+K for suitable vectors p = (p1, . . . , pn) and q = (q1, . . . , qn) in Rn. Then
for any vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn and scalars λ, µ > 0, we
have

(u+ λK1) ∩ (v + µK2) = (u+ p+K) ∩ (v + q +K)

= {(x1, . . . , xn) ∈ Rn | x1 ≥ max(u1 + p1, v1 + q1), . . . ,

xn ≥ max(un + pn, vn + qn)}.

Equivalently, (u+ λK1) ∩ (v + µK2) = w +K, where

w = (max(u1 + p1, v1 + q1), . . . ,max(un + pn, vn + qn)).
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Dealing with case (5), we consider only the most elaborated condition 3 )(c) of the
theorem, since conditions 3 )(a) and 3 )(b) are similar. ThenK1 andK2 are translates
of support cones Cx(K) and Cz(K), where x and z are distinct vertices of K. Let
K1 = p + Cx(K) and K2 = q + Cz(K) for some vectors p = (p1, . . . , pn) and q =
(q1, . . . , qn) in Rn. Without loss of generality, we may assume that x = (1, 0, . . . , 0)
and z = (0, 0, . . . , 0). Then

K1 = {(x1, . . . , xn) ∈ Rn | x2 ≥ p2, . . . , xn ≥ pn,

x1 + · · ·+ xm ≤ 1 + p1 + · · ·+ pm},

K2 = {(x1, . . . , xn) ∈ Rn | x1 ≥ q1, . . . , xn ≥ qn}.

For any vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn and scalars λ, µ > 0, the
set (u+ λK1) ∩ (v + µK2) equals

{(x1, . . . , xn) ∈ Rn | x1 ≥ v1 + µq1, x2 ≥ max(u2 + λp2, v2 + µq2), . . . ,

xn ≥ max(un + λpn, vn + µqn), x1 + · · ·+ xm ≤ ξm}.

where
ξm = u1 + · · ·+ um + λ(1 + p1 + · · ·+ pm).

The intersection (u+λK1)∩ (v+µK2) is n-dimensional if and only if ξm > ηm, where

ηm = v1 + µq1 +max(u2 + λp2, v2 + µq2) + · · ·+max(um + λpm, vm + µqm).

Hence, if the set (u+ λK1)∩ (v+ µK2) is n-dimensional, then it can be expressed as
w + νK, with ν = ξm − ηm and

w = (v1 + µq1,max(u2 + λp2, v2 + µq2), . . . ,max(un + λpn, vn + µqn)).

2 ) ⇒ 3 ) Since 1 ) trivially implies 2 ), it remains to show that 2 ) implies 3 ). Let
K1 and K2 be convex solids in Rn that satisfy condition 2 ) of the theorem. Denote
by K a convex solid that generates the homothety class containing all n-dimensional
intersections K1 ∩ (v+K2), v ∈ Rn. The following three lemmas will be of use later.

Lemma 3.1. If there is a vector v ∈ Rn such that int(v +K2) contains two distinct

exposed points of K1 or an exposed line segment of K1, then K1 ⊂ int(v +K2).

Proof. Assume the existence of a vector v ∈ Rn such that K1 6⊂ int(v +K2) while
int(v+K2) contains a pair of distinct points x, z ∈ expK1 or an exposed line segment
[x, z] of K1. Choose a point u ∈ K1 \ int(v + K2). Then there is a scalar ε > 0 so
small that the convex solid v+ ε(x− u)+K2 still contains both points x and z in its
interior. Clearly, u /∈ v+ε(x−u)+K2. If x, z ∈ expK1, then let Px and Pz be closed
halfspaces in Rn which satisfy the conditions K1 ∩ Px = {x} and K1 ∩ Pz = {z};
otherwise let P be a closed halfspace such that K1 ∩ P = [x, z]. Put

K ′ = K1 ∩ (v +K2), K ′′ = K1 ∩ (v + ε(x− u) +K2).

By condition 2 ), both K ′ and K ′′ are homothetic to K. If x, z ∈ expK1, then from

K ′ ∩ Px = K ′′ ∩ Px = {x}, K ′ ∩ Pz = K ′′ ∩ Pz = {z}
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we conclude that K ′ = K ′′. Similarly, if [x, z] is an exposed line segment of K1, then
the homotheticity of K ′ and K ′′ and the relation K ′ ∩ P = K ′′ ∩ P = [x, z] again
imply that K ′ = K ′′. In both cases, the line segments [x, u] ∩ K ′ and [x, u] ∩ K ′′

should be of the same length, which is impossible by the choice of ε.

Given convex solids K and M in Rn, we say that exposed points x ∈ expK and
z ∈ expM correspond to each other provided Cx(K) is a translate of Cz(M).

Lemma 3.2. Any exposed point of K1 (respectively, of K2) corresponds to an exposed

point of K.

Proof. Let z ∈ expK1 (the case z ∈ expK2 is similar). Choose a vector v ∈ Rn such
that z ∈ int(v+K2) and let K ′ = K1 ∩ (v+K2). Clearly, z ∈ expK ′ and Lemma 2.1
implies that Cz(K

′) = Cz(K1). Since K ′ = w + λK for suitable w ∈ Rn and λ > 0,
we obtain that z corresponds to the exposed point u = λ−1(z − w) of K.

We recall that a boundary point x of a convex solid M ⊂ Rn is regular provided
there is a unique hyperplane supporting M at x. Denote by N(M) the family of
outward unit normals to the convex solid M at its regular points. Clearly, a convex
solid M ⊂ Rn is a convex n-polyhedron if and only if the set N(M) is finite.

Lemma 3.3. If K is a convex n-polyhedron, then both K1 and K2 are convex n-
polyhedra and N(K1) ∪N(K2) ⊂ N(K).

Proof. Let x be a regular boundary point of K1. Denote by e the outward unit
normal to K1 at x. Choose a point v ∈ Rn such that x ∈ int(v + K2). Clearly, x
is a regular point of the convex solid K ′ = K1 ∩ (v +K2) and e is the outward unit
normal to K ′ at x. Since K ′ is homothetic to K, we have e ∈ N(K ′) = N(K). Hence
N(K1) ⊂ N(K). Similarly, N(K2) ⊂ N(K).

If K is a convex n-polyhedron, then N(K) is finite and both sets N(K1) and N(K2)
are finite. This obviously implies that K1 and K2 are convex n-polyhedra.

Before proceeding with the proof of 2 ) ⇒ 3 ), we make several remarks.

A) First of all, we eliminate the case when K is bounded, since this case is considered
in [11] when both K1 and K2 are bounded, and it can be easily deduced from the
proof in [12] when at least one of K1, K2 is unbounded. Thus we may assume, in
what follows, that all three convex solids K1, K2, and K are unbounded.

B) Furthermore, we may suppose that dim(recK) < n. Indeed, if the cone recK is
n-dimensional, then any nonempty intersection K ′ = K1 ∩ (v + K2), v ∈ Rn, is n-
dimensional and, by condition 2 ), is homothetic to K. In this case, K is a simplicial
cone and both K1 and K2 are translates of K (see the proof in [12]).

C) Finally, we state that recK = recK1∩recK2. Indeed, choose a vector v ∈ Rn such
that the set K ′ = K1 ∩ (v +K2) is n-dimensional. Since K and K ′ are homothetic,
we obtain from [8, Corollary 8.3.3] that

recK = recK ′ = recK1 ∩ rec(v +K2) = recK1 ∩ recK2. (6)
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We divide the proof of 2 ) ⇒ 3 ) into the following three cases.

I. recK1 = recK2.

II. recK1 ( recK2 (the case recK2 ( recK1 is similar).

III. recK1 6⊂ recK2 and recK2 6⊂ recK1.

Case I. recK1 = recK2. By induction on n, we are going to prove that K is a
generalized n-simplex and both K1 and K2 are homothetic to K. Since the case
n = 1 trivially holds, we assume that n ≥ 2 and that 2 ) implies 3 ) for all Rd with
d ≤ n− 1. We divide the proof of Case I into Lemmas 3.4–3.7.

Lemma 3.4. If recK1 = recK2, then any exposed point of K corresponds to an

exposed point of K1 (respectively, of K2).

Proof. Let x be an exposed point of K and P ⊂ Rn be a closed halfspace such
that P ∩ K = {x}. If P0 is a translate of P with the property 0 ∈ bdP0, then
P0 ∩ recK = {0 }. Since recK1 = recK, Lemma 2.3 implies the existence of a
translate P1 of P which supports K1. Choose a point x1 ∈ P1∩K1, and let v ∈ Rn be
such that x1 ∈ int(v +K2). By condition 2 ), the convex solid K ′ = K1 ∩ (v +K2) is
homothetic to K. Then P1 ∩K ′ = {x1}, which shows that x1 is an exposed point of
K ′ such that Cx1

(K ′) is a translate of Cx(K). Since Cx1
(K1) = Cx1

(K ′), we conclude
that x corresponds to x1 ∈ expK1.

Lemma 3.5. If recK1 = recK2, then K has finitely many exposed points.

Proof. Let x and z be distinct exposed points of K. By Lemma 3.4, there are points
x1 ∈ expK1 and z2 ∈ expK2 such that x corresponds to x1 and z corresponds to z2.
Consider the intersection K ′ = K1 ∩ (x1 − z2 +K2). Clearly, x1 is an exposed point
of K ′.

We claim that dimK ′ < n. Indeed, assume for a moment that dimK ′ = n. Since K ′

is homothetic to K, the point x1 ∈ expK ′ corresponds to a point v ∈ expK. Because
x 6= z, the point v is distinct from one of x and z. Let v 6= x. Then

Cv(K) = v − x1 + Cx1
(K ′) ⊂ v − x1 + Cx1

(K1) = v − x+ Cx(K),

in contradiction with Lemma 2.2. Hence dimK ′ < n.

Choose a hyperplane H that contains K ′ such that K1 and x1−z2+K2 lie in distinct
closed halfspaces determined by H. Then both hyperplanes which are parallel to H
and contain the points x and z, respectively, support K from opposite sides. Let h be
a halfline that lies in recK (recK 6= {0 } because K is unbounded by A) above), and
let l be the line that contains h. Clearly, l is parallel to H. Choose a subspace G of
dimension n−1 complementary to l. For any point x ∈ expK, denote by x′ the point
of intersection of G and the line through x parallel to l. Put X = {x′ | x ∈ expK}.
Since x+ h ⊂ K for any point x ∈ expK, the set X is in one-to-one correspondence
with expK.

Choose any points u′, v′ ∈ X, and let u, v be the points in expK corresponding to
them. By the above, there is a pair of distinct parallel hyperplanes Mu and Mv both
supporting K and containing u and v, respectively. Since l is parallel to both Mu
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and Mv, the intersections G∩Mu and G∩Mv are parallel (n− 2)-dimensional planes
in G such that u′ ∈ G ∩Mu, v

′ ∈ G ∩Mv, and X lies between G ∩Mu and G ∩Mv.
As proved in [1], X has 2n−1 or fewer elements. Hence | expK| = |X| ≤ 2n−1.

Lemma 3.6. If recK1 ⊂ recK2 and K has finitely many exposed points, then K is

a convex polyhedron.

Proof. Due to Lemma 3.5, it is sufficient to show that K has finitely many exposed
halflines. Assume, for contradiction, that K has infinitely many exposed halflines.
Since the endpoints of exposed halflines of K are extreme points of K and since the
set extK is finite (because expK is dense in extK and finite), there is an extreme
point x ofK such that infinitely many exposed halflines ofK, say h1, h2, . . ., have x as
a common endpoint. By a compactness argument, we may assume that the sequence
h1, h2, . . . converges to a halfline h ⊂ K with endpoint x. Furthermore, because the
halflines hi − x, i = 1, 2, . . ., lie in recK and because the cone recK is closed, the
halfline h− x also lies in recK.

From (6) it follows that h− x lies in recK1 ∩ recK2 = recK1. Since K2 is line-free,
the opposite halfline x−h does not lie in recK2. Hence there is a vector v ∈ Rn such
that x 6∈ v +K2 and h intersects int(v +K2). By a continuity argument, there is an
integer m such that the halfline hi intersects int(v +K2) for all i ≥ m. Denote by zi
the point of intersection of hi and bdK, i ≥ m, and let z be the point of intersection
of h and bdK. Clearly, zm, zm+1, . . . are distinct extreme points of the convex solid
K ′ = K1 ∩ (v + K2) and zi → z when i → ∞. Since K is homothetic to K ′, the
convex solid K has infinitely many extreme points, contradicting Lemma 3.5. Hence
K is a convex polyhedron.

Lemma 3.7. If recK1 = recK2, then K is a generalized n-simplex and both K1 and

K2 are homothetic to K.

Proof. By Lemmas 3.3, 3.5, and 3.6, K1, K2, and K are convex n-polyhedra with
N(K1) ∪ N(K2) ⊂ N(K). We state that N(K1) = N(K2) = N(K). Indeed, let
e ∈ N(K) and F be the facet of K with the outward unit normal e. Since F is
line-free (as a face of the line-free convex polyhedron K), it has a vertex, x. Clearly,
F lies in a facet of the convex polyhedral cone Cx(K). By Lemma 3.4, there is a
vertex z of K1 such that Cz(K1) is a translate of Cx(K). Hence K1 has a facet with
the outward unit normal e. Thus N(K) ⊂ N(K1). Similarly, N(K) ⊂ N(K2).

Next we state that any facets F1 ⊂ K1 and F2 ⊂ K2 with the same outward unit
normal, f , are homothetic generalized (n − 1)-simplices. Indeed, denote by H the
hyperplane that contains F1 and consider a vector v ∈ Rn such that v+ F2 ⊂ H and
rintF1∩rint(v+F2) 6= ?. Then intK1∩ int(v+K2) 6= ?, implying that K1∩(v+K2)
is homothetic to K. Hence F1 ∩ (v + F2) is homothetic to the facet F of K with the
outward unit normal f . If G is the (n− 1)-dimensional subspace parallel to H, then
recK1 = recK2 = recK implies

recFi = G ∩ recKi = G ∩ recK = recF, i = 1, 2.

By the inductive assumption, F is a generalized (n− 1)-simplex and both F1 and F2

are homothetic to F .
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The argument above shows that any facet ofK is homothetic to each of the respective
facets of K1 and K2. This obviously implies that all three convex polyhedra K1,
K2, and K are homothetic. Finally, from [2] it follows that K is a generalized n-
simplex.

Case II. recK1 ( recK2. By induction on n, we are going to prove that K is
a generalized n-simplex distinct from a cone, K1 is homothetic to K, and K2 is a
simplicial n-cone which is a translate of a support cone Cx(K) for a suitable vertex x
of K. Since the case n = 1 trivially holds, we assume that n ≥ 2 and that 2 ) implies
3 ) for all Rd with d ≤ n− 1. We divide the proof of Case II into Lemmas 3.8–3.10.

Lemma 3.8. If recK2 6⊂ recK1, then K2 is a convex cone.

Proof. Assume, for contradiction, that K2 is not a cone. Then there is an exposed
point q of K2 such that Cq(K2) 6= K2. From recK2 6⊂ recK1 we conclude that no
translate of K2 entirely lies in K1. If the interior of a translate u + K1 contains
q, then, by Lemma 3.1, q is the only exposed point of K2 that lies in int(u + K1).
Lemma 2.4 implies that K2 is locally conic at q. Hence there is a non-trivial exposed
line segment [q, t] of K2 that lies in an exposed halfline h of the cone Cq(K2) such
that h 6⊂ K2. Choose an arbitrary point v ∈ intK1 and consider the convex solid
K ′

2 = v − q +K2. By the above, K ′

2 is locally conic at v and [v, w] = v − q + [q, t]
is an exposed line segment of K ′

2. Let H be a hyperplane in Rn with the property
H ∩K ′

2 = [v, w].

For any scalar ε ≥ 0, put

K ′

2(ε) = ε(v − w) +K ′

2, L(ε) = ε(v − w) + [v, w],

v(ε) = ε(v − w) + v, w(ε) = ε(v − w) + w.

Then L(ε) is an exposed line segment of K ′

2(ε) with endpoints v(ε) and w(ε) such
that K ′

2(ε) ∩H = L(ε).

We claim that the line segment L(0) = [v, w] does not lie in K1. Indeed, assume for
a moment that L(0) ⊂ K1. Since v(0) = v ∈ intK1, one can choose ε > 0 so small
that L(ε) ⊂ intK1. By Lemma 3.1, we should have K ′

2 ⊂ intK1, which is impossible
due to recK ′

2 = recK2 6⊂ recK1.

By a continuity argument, there is a scalar ε0 > 0 such that v(ε0) ∈ bdK1 and
L(ε0) intersects intK1. As above, L(ε0) 6⊂ K1; whence w(ε0) /∈ K1. Continuously
increasing ε (≥ ε0), we find a scalar ε1 such that w(ε1) ∈ bdK1 and L(ε1) intersects
intK1. Further increasing ε (≥ ε1), we find a scalar ε2 such that K1 ∩L(ε2) = w(ε2).
As a result, the line through v and w intersects bdK1 at two points, v∗ and w∗, such
that v∗ = v(ε0) = w(ε2) and w∗ = w(ε1).

Now consider the intersections

K ′(ε) = K1 ∩K ′

2(ε), 0 ≤ ε < ε2.

By condition 2 ), every K ′(ε) is a convex solid homothetic to K. Clearly, T (ε) =
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H ∩K ′(ε) is an exposed line segment of K ′(ε) and

T (ε) =











[v(ε), w∗] if 0 ≤ ε ≤ ε0,

[v∗, w∗] if ε0 ≤ ε ≤ ε1,

[v∗, w(ε)] if ε1 ≤ ε < ε2.

Because K ′(ε) is homothetic to K for all 0 ≤ ε < ε2, the homothety factor of K ′(ε)
is proportional to the length of T (ε). Hence the homothety factor of K ′(ε) increases
when ε increases from 0 to ε0; it remains constant when ε increases from ε0 to ε1;
and it decreases when ε increases from ε1 to ε2.

Choose a halfline m with the endpoint 0 that lies in recK2 \ recK1 and put

M(ε) =

{

K1 ∩ (v(ε) +m) if 0 ≤ ε ≤ ε0,

K1 ∩ (v∗ +m) if ε0 ≤ ε < ε2.

Since m 6⊂ recK1, each M(ε) is a chord of K ′(ε) in the direction m and its position
is uniquely determined by T (ε). Moreover, M(ε) and T (ε) have a common endpoint:
it is v(ε) if 0 ≤ ε ≤ ε0, and it is v∗ if ε0 ≤ ε < ε2. Since v(0) = v ∈ intK1, the length
|M(0)| of M(0) is positive. From the definition of M(ε) it follows that |M(ε)| should
be proportional to |T (ε)|. This is not the case because |M(ε)| → |M(ε0)| when ε
increases from 0 to ε0, and then |M(ε)| remains constant when ε increases from ε0 to
ε2 (contrary to the decrease of |T (ε)| when ε increases from ε1 to ε2). The obtained
contradiction shows that K2 is a convex cone.

Lemma 3.9. If recK1 ( recK2, then K1 is a convex n-polyhedron distinct from a

cone, K is homothetic to K1, and K2 is a convex polyhedral n-cone that is a translate

of a support cone Cx(K1), where x is a vertex of K1.

Proof. By Lemma 3.8, K2 is a convex cone. Denote by q2 the apex of K2. We claim
the existence of a point q1 ∈ expK1 such that K2 is a translate of Cq1(K1). Indeed,
choose a point v ∈ Rn such that v+q2 ∈ intK1 and letK ′ = K1∩(v+K2). Obviously,
v + q2 is an exposed point of the convex solid K ′ that corresponds to q2. Choose a
closed halfspace P2 such that P2 ∩ K2 = {q2}. Because recK1 ⊂ recK2, there is a
translate P1 of P2 such that P1 supports K1 (see Lemma 2.3). Choose any points
q1 ∈ P1 ∩K1 and x ∈ intK2, and consider the intersection K ′′ = K1 ∩ (q1 − x+K2).
Clearly, Cq1(K

′′) = Cq1(K1). Since K
′ and K ′′ are homothetic, the points q1 ∈ expK1

and q2 ∈ expK2 correspond to each other. Hence K2 is a translate of Cq1(K1).
Furthermore, Lemma 2.4 implies that K1 is locally conic at q1.

The facts proved above imply that K1 is not a cone, since otherwise it should be a
cone with apex q1, resulting in recK1 = recK2. Hence K1 has exposed points distinct
from q1.

We claim that K and K1 are homothetic. Indeed, choose any distinct points x, z ∈
expK1. Since K2 is a cone, there is a translate v + K2 that contains both x and
z. By Lemma 3.1, K1 ⊂ v +K2, and condition 2 ) implies that K is homothetic to
K1 ∩ (v +K2) = K1.



540 V. Soltan / A Characteristic Intersection Property of Generalized Simplices

Next we state that K2 is a convex polyhedral n-cone with apex q2. Indeed, assume,
for contradiction, that the cone K2 is not polyhedral. Then K2 has infinitely many
exposed halflines with common apex q2. By a compactness argument, we can choose
a sequence of such halflines h1, h2, . . . that converge to a boundary halfline h of K2.
Choose a vector w ∈ Rn such that w + q2 /∈ K1 and the halfline w + h intersects
intK1 (this is possible since recK1 ⊂ recK2). Then there is a positive integer m so
large that the halflines w + hm and w + hm+1 also intersect intK1.

Now consider the intersection K ′′

0 = K1∩(w+K2). By the above, the sets (w+hm)∩
K ′′

0 and (w + hm+1) ∩ K ′′

0 are disjoint 1-dimensional exposed faces of K ′′

0 . On the
other hand, Cq1(K1) is a translate of K2 and K1 is locally conic at q1. Furthermore,
(q1 − q2 + hm)∩K1 and (q1 − q2 + hm+1)∩K1 are 1-dimensional exposed faces of K1

that have q1 as a unique common point. This is in contradiction with the fact that
K ′′

0 and K1 are homothetic. Hence K2 = Cq1(K1) is a convex polyhedral n-cone.

Our next claim is that each exposed point ofK1 lies on an exposed halfline of Cq1(K1).
Indeed, assume, for contradiction, the existence of a point x ∈ expK1 that does not
lie on an exposed halfline of Cq1(K1). Choose a point z ∈ K1 \ [x, q1] such that
x ∈ z − q1 + Cq1(K1), and let K ′

0 = K1 ∩ (z − q2 + K2). Clearly, K ′

0 is a convex
solid. By condition 2 ), K ′

0 is homothetic to K, and whence K ′

0 is homothetic to
K1. Let P and Q be closed halfspaces that satisfy the conditions P ∩ K1 = {q1}
and Q ∩ K1 = {x}. Put P ′ = z − q1 + P . Clearly, P ′ ∩ K ′

0 = {z}. Since K1 and
K ′

0 are homothetic, the line segments [x, q1] and [x, z] should be collinear, which is
impossible by the choice of z. The obtained contradiction shows that each exposed
point of K1 lies on an exposed halfline of Cq1(K1).

Since all exposed points of K1 lie on exposed halflines of Cq1(K1), and since K2 =
Cq1(K1) is a convex polyhedral n-cone, K1 has finitely many exposed points. Because
K and K1 are homothetic, Lemma 3.6 implies that K1 has finitely many exposed
halflines, which shows that K1 is a convex n-polyhedron.

Lemma 3.10. If recK1 ( recK2, then K1 is a generalized n-simplex distinct from

a cone and K2 is a simplicial n-cone.

Proof. By Lemma 3.9, K1 is a convex n-polyhedron distinct from a cone and K2 is
a convex polyhedral n-cone with N(K2) ⊂ N(K1). Furthermore, if q2 is the apex of
K2, then there is a vertex q1 of K1 such that K2 is a translate of the support cone
Cq1(K1). Let F1 be a facet of K1 that contains q1 and is distinct from a cone (such
a facet exists since otherwise K1 would be a convex cone with apex q1). Denote by e
the outward unit normal to K1 at F1. Let F2 be the facet of K2 that has the same
outward unit normal e. Clearly, F2 is a (n− 1)-cone with apex q2. This implies the
inclusion recF1 ( recF2, since otherwise F1 would also be a cone with apex q1.

We are going to show that F2 is a simplicial (n−1)-cone and F1 is a generalized (n−1)-
simplex. Indeed, denote by H the hyperplane containing F1. Consider the family of
translates v+K2, v ∈ Rn, whose facets v+F2 lie in H such that rintF1∩rint(v+F2) 6=
?. Clearly, intK1∩ int(v+K2) 6= ? for any such a translate v+K2. By condition 2 ),
the convex solids K1∩ (v+K2), with rintF1∩ rint(v+F2) 6= ?, are homothetic to K.
Hence the respective (n−1)-dimensional intersections F1∩(v+F2), are homothetic to
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the facet of K that is parallel to H. By the inductive assumption, F1 is a generalized
(n− 1)-simplex and F2 is a simplicial (n− 1)-cone.

We claim that K2 itself is a simplicial n-cone with apex q2. Since F2 is a simplicial
(n − 1)-cone, it is sufficient to show that K2 has exactly one extreme halfline with
apex q2 that does not lie in F2. Assume for a moment that K2 has two such halflines,
say h1 and h2. Choose a vector v ∈ Rn such that v + q2 /∈ K1 and both halflines
h′

1 = v + h1 and h′

2 = v + h2 intersect the relative interior of F1 (this is possible
since recK1 ⊂ recK2). Clearly, h′

1 ∩ K1 and h′

2 ∩ K1 are disjoint exposed halflines
of the convex n-polyhedron K ′ = K1 ∩ (v + K2). At the same time, K ′ should be
homothetic to K1, which has exposed halflines parallel to h′

1 and h′

2 and having a
common endpoint. The obtained contradiction shows that K2 is a simplicial n-cone.

It remains to prove that K1 is a generalized n-simplex. Denote by h the exposed
halfline of v + K2 that does not lie in H. Since Cq1(K1) is a translate of K2, the
convex solid K1 has exactly one 1-dimensional face, m, parallel to h and containing
q1. If m is a halfline with endpoint q1, then the obvious equality K1 = conv(F1 ∪m)
implies that K1 is a generalized n-simplex. Assume now that m is a line segment,
say [q1, r1]. Then recK1 = recF1. Since r1 is the only vertex of K1 that does not
lie in F1 (because every vertex of K1 lies on an edge of the cone Cq1(K1)), the cone
G = r1 + recF1 is a face of K1 and

K1 = conv(F1 ∪G) = cl(conv(F1 ∪m)).

Hence K1 is a generalized n-simplex.

Case III. recK1 6⊂ recK2 and recK2 6⊂ recK1. By induction on n, we are going
to prove that K is a generalized n-simplex distinct from a cone and K1 and K2 are
translates of support cones Cx(K) and Cz(K), respectively, where x and z are distinct
vertices of K. Since the case n = 1 trivially holds, we assume that n ≥ 2 and that
2 ) implies 3 ) for all Rd with d ≤ n− 1.

By Lemma 3.8, both K1 and K2 are convex cones. Without loss of generality, we may
assume that 0 is their common apex. Then recKi = Ki, i = 1, 2, which implies that
K1 6⊂ K2 and K2 6⊂ K1. We state that K1 ∩ K2 cannot be n-dimensional. Indeed,
if dim(K1 ∩ K2) = n, then each nonempty intersection K1 ∩ (v + K2), v ∈ Rn, is
n-dimensional and whence is homothetic to K. In this case, K is a simplicial n-cone
and both K1 and K2 are translates of K (see [11] for the proof). We divide the proof
of Case III into Lemmas 3.11–3.14.

Lemma 3.11. If K1 6⊂ K2 and K2 6⊂ K1, then 0 < dim(K1 ∩ (−K2)) < n.

Proof. Assume for a moment that the convex cone K1 ∩ (−K2) is n-dimensional.
Then int(K1∩(−K2)) contains distinct unit vectors v1 and v2. PutK

′ = K1∩(v1+K2)
and K ′′ = K1 ∩ (v2 +K2). If P1 and P2 are closed halfspaces such that P1 ∩K1 =
P2 ∩K2 = {0 }, then

P1 ∩K ′ = {0 }, (v1 + P2) ∩K ′ = {v1},

P2 ∩K ′′ = {0 }, (v2 + P1) ∩K ′′ = {v2}.
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By condition 2 ), both K ′ and K ′′ are convex solids homothetic to K. This implies
that the line segments [v1, 0 ] and [v2, 0 ] should be collinear, which is impossible by
the choice of v1 and v2. Hence dim(K1 ∩ (−K2)) < n.

Now assume that K1 ∩ (−K2) = {0 }. Then there is a hyperplane G ⊂ Rn separating
K1 and −K2 such that K1 ∩G = (−K2) ∩G = {0 }. Equivalently, both K1 and K2

lie in the same closed half-space determined by G such that K1∩G = K2∩G = {0 }.
Choose a point v ∈ intK1 and consider the set K ′

0 = K1 ∩ (v + K2). Obviously,
the support cone Cv(K

′

0) equals v + K2. Similarly, given a point w ∈ intK2, the
support cone C0 (K

′′

0 ) of the intersection K ′′

0 = K1 ∩ (K2 − w) equals K1. Since
the convex solids K ′

0 and K ′′

0 are homothetic, we easily obtain that v and 0 should
correspond to each other, and Cv(K

′

0) should be a translate of C0 (K
′′

0 ). The last is
impossible since K1 is not a translate of K2. The obtained contradiction shows that
K1 ∩ (−K2) 6= {0 }.

Choose an extreme halfline h1 of the closed convex cone K1∩(−K2). By Lemma 3.11,
h1 ⊂ bdK1 ∩ bd(−K2). Put h2 = −h1, and let Si be the set of points x ∈ bdKi

such that x+ hi intersects intKi, i = 1, 2. Clearly, Si is an open part of bdKi. Put
Ti = clSi, i = 1, 2.

Lemma 3.12. If K1 6⊂ K2 and K2 6⊂ K1, then Ti is an (n− 1)-dimensional face of

Ki, i = 1, 2.

Proof. Indeed, assume for a moment that S1 does not lie in a hyperplane. Then
there are regular points v, w of K1 that lie in S1 such that the outward unit normals
ev and ew to K1 at these points are distinct. Denote by e1 the unit vector in the
direction of h1. Due to the choice of S1, both sets

K ′ = K1 ∩ (e1 + v +K2), K ′′ = K1 ∩ (e1 + w +K2)

are n-dimensional. By condition 2 ), K ′ and K ′′ are homothetic. Clearly, the points
e1 + v ∈ expK ′ and e1 + w ∈ expK ′′ correspond to each other. As a result, the
line segment [v, e1 + v] ⊂ K ′ should correspond to [w, e1 + w] ⊂ K ′′ and some
neighborhoods of K ′ and K ′′ at v and w, respectively, should be homothetic, which
is impossible since ev 6= ew. The obtained contradiction implies that S1 lies in a
hyperplane through 0 . Similarly, S2 lies in a hyperplane trough 0 . Hence the sets T1

and T2 are (n− 1)-dimensional faces of K1 and K2, respectively.

Lemma 3.13. If K1 6⊂ K2 and K2 6⊂ K1, then Ki = conv(hi ∪ Ti), i = 1, 2.

Proof. Since K1 is a closed convex cone with apex 0 , the set T1 is also a closed
convex cone with apex 0 . Because T1 is the projection of K1 on the hyperplane that
contains T1 in the direction of h1, the closed convex cone C1 = conv(h1 ∪ T1) lies in
K1.

Assume, for contradiction, that K1 6⊂ C1. Since K1 is the convex hull of its extreme
halflines with common apex 0 , there is an extreme halfline m of K1 that does not
lie in C1. Choose a point z ∈ m \ {0 }. Clearly, there is a point x ∈ S1 so close
to z that x /∈ C1, a contradiction to the choice of C1. Hence K1 = C1. Similarly,
K2 = conv(h2 ∪ T2).
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Lemma 3.14. If K1 6⊂ K2 and K2 6⊂ K1, then both K1 and K2 are simplicial n-
cones, and K is a generalized n-simplex.

Proof. Denote by N the hyperplane containing the facet T1 of K1. Choose a point
v ∈ intK1. Then the set K1 ∩ (v + K2) is n-dimensional and Q = T1 ∩ (v + K2)
is an (n − 1)-dimensional set that lies in rintT1. Since 0 ∈ N , we have w + Q =
N ∩(v+w+K2) for any vector w ∈ N , and the set T1∩(w+Q) is (n−1)-dimensional
if and only if K1 ∩ (v + w +K2) is n-dimensional

If the set K1∩(v+w+K2) is n-dimensional, then, by condition 2 ), it is homothetic to
K; hence all (n−1)-dimensional intersections T1∩(w+Q), w ∈ N , are homothetic to
Q. By the inductive assumption, T1 is a simplicial (n−1)-cone and Q is a generalized
(n−1)-simplex. Then K1 = conv(h1∪T1) is a simplicial n-cone, and K = cl(conv(v∪
Q)) is a generalized n-simplex. Similarly, K2 is a simplicial n-cone.

Acknowledgements. The author thanks the referee for many helpful comments on an

earlier draft of the paper.

References
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