A Characteristic Intersection Property of Generalized Simplices

Valeriu Soltan

Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030, USA vsoltan@qmu.edu

Received: March 3, 2009 Revised manuscript received: April 9, 2010

Following Rockafellar (1970), a generalized *n*-simplex in \mathbb{R}^n is defined as the direct sum of an *m*-simplex and a simplicial (n - m)-cone, $0 \leq m \leq n$. Fourneau (1977) showed that a line-free *n*-dimensional closed convex set $K \subset \mathbb{R}^n$ is a generalized *n*-simplex if and only if all *n*-dimensional intersections $K \cap (v + K), v \in \mathbb{R}^n$, are homothetic to *K*. We extend this characteristic property by proving that for a pair of line-free *n*-dimensional closed convex sets K_1 and K_2 in \mathbb{R}^n the following two conditions are equivalent: 1) all *n*-dimensional intersections $K_1 \cap (v + K_2), v \in \mathbb{R}^n$, belong to a unique homothety class of convex sets, 2) K_1 and K_2 are generalized *n*-simplices whose *n*-dimensional intersections $K_1 \cap (v + K_2), v \in \mathbb{R}^n$, are homothetic to a unique generalized *n*-simplex.

Keywords: Homothety, convex body, intersection, generalized simplex

2000 Mathematics Subject Classification: 52A20

1. Introduction and Main Result

A convex set K in a linear space of any dimension is called a *Choquet simplex* if any nonempty intersection of two homothetic copies of K is either a homothetic copy of K or a singleton:

$$(u + \lambda K) \cap (v + \mu K) = w + \nu K, \quad \lambda, \mu > 0, \nu \ge 0.$$

$$(1)$$

We recall that sets S and T are *homothetic* provided $S = x + \lambda T$ for a suitable vector x and a scalar $\lambda > 0$. Various properties of Choquet simplices, widely used in partially ordered linear spaces and the Choquet representation theory (see, e.g., [7, 15]), initiated a comprehensive study of their structure in the Euclidean space \mathbb{R}^n (see, e.g., [13] for an overview).

Rogers and Shephard [9] proved that a convex body $K \subset \mathbb{R}^n$ is a usual *n*-simplex (i.e., K is the convex hull of n + 1 affinely independent points) if and only if every nonempty intersection of K and a translate of K is either a homothetic copy of K or a singleton:

$$K \cap (v+K) = w + \lambda K, \quad v, w \in \mathbb{R}^n, \ \lambda \ge 0.$$
⁽²⁾

This fact obviously implies that a compact convex set in \mathbb{R}^n is a Choquet simplex if and only if it is a usual simplex. A more general result of Gruber [3, Satz 2] shows

ISSN 0944-6532 / $\$ 2.50 \odot Heldermann Verlag

that a line-free closed convex set $K \subset \mathbb{R}^n$ is a Choquet simplex if and only if it is a simplex or a simplicial cone

Since the relation of homothety is an equivalence relation, the family of convex sets in \mathbb{R}^n is a disjoint union of homothety classes (see, e.g., [14] for a study of vector addition and subtraction of homothety classes of convex sets). So, a convex set $K \subset \mathbb{R}^n$ is a Choquet simplex if and only if each nonempty intersection of two homothetic copies of K either belongs to the homothety class containing K or is a singleton. In these terms, the characteristic intersection property (2) of *n*-simplices was generalized in [11] to the case of two convex bodies as follows. Convex bodies K_1 and K_2 in \mathbb{R}^n are homothetic simplices if and only if they satisfy the following condition (I): every nonempty intersection $K_1 \cap (v+K_2), v \in \mathbb{R}^n$, belongs to a unique homothety class of convex bodies or is a singleton. This characteristic property was used by Schneider [10] to study translation mixtures of convex bodies. As shown in [12], line-free closed convex sets K_1 and K_2 of dimension n in \mathbb{R}^n that satisfy condition (I) above are Choquet simplices, not necessarily homothetic to each other.

To avoid multiple repetitions of the expression "closed convex sets of dimension n in \mathbb{R}^n , distinct from \mathbb{R}^n and possibly unbounded", we will call these sets *convex solids*. If K is a convex solid in \mathbb{R}^n , then the condition "either a homothetic copy or a singleton" in (1) or (2) implies that any *nonempty* intersection $(u+\lambda K) \cap (v+\mu K)$ or $K \cap (v+K)$ of dimension n-1 or less should be a singleton. Fourneau [2] relaxed this condition by considering convex solids $K \subset \mathbb{R}^n$ such that the *n*-dimensional intersections of any two homothetic copies of K are homothetic to K (with no condition on nonempty intersections of dimension n-1 or less):

$$(u+\lambda K)\cap (v+\mu K) = w+\nu K, \quad u,v,w \in \mathbb{R}^n, \ \lambda,\mu,\nu > 0.$$
(3)

As proved in [2], a line-free convex solid $K \subset \mathbb{R}^n$ satisfies condition (3) if and only if K is a generalized simplex introduced by Rockafellar [8, p. 154], that is, K is the direct sum of an *m*-simplex and a simplicial (n - m)-cone:

$$K = \operatorname{conv}\{x_0, x_1, \dots, x_m\} + \sum_{i=m+1}^n [x_0, x_i), \quad 0 \le m \le n,$$

where $x_0, x_1, \ldots, x_n \in \mathbb{R}^n$ are affinely independent points and $[x_0, x_i)$ means the halfline through x_i originated at x_0 . Clearly, usual *n*-simplices and simplicial *n*-cones are particular cases of generalized *n*-simplices. Hinrichsen and Krause [4] showed that any line-free convex polyhedron in \mathbb{R}^n can be partitioned into finitely many generalized simplices.

Figure 1.1: Generalized 2-simplices in the plane.

Similarly to [11, 12], we extend below Fourneau's characteristic intersection property of generalized simplices to the case of a pair of convex solids K_1 and K_2 in \mathbb{R}^n . Recall

that the support cone $C_x(K)$ of a convex solid $K \subset \mathbb{R}^n$ at its boundary point x is the closure of the union of the halflines $[x, z), z \in K \setminus \{x\}$. Our main result is given in the following theorem.

Theorem 1.1. For line-free convex solids K_1 and K_2 in \mathbb{R}^n , conditions 1 - 3) below are equivalent:

- 1) all n-dimensional intersections $(u + \lambda K_1) \cap (v + \mu K_2), u, v \in \mathbb{R}^n, \lambda, \mu > 0$, belong to a unique homothety class of convex solids,
- 2) all n-dimensional intersections $K_1 \cap (v + K_2)$, $v \in \mathbb{R}^n$, belong to a unique homothety class of convex solids,
- 3) both K_1 and K_2 are generalized n-simplices, and there is a generalized n-simplex $K \subset \mathbb{R}^n$ such that all n-dimensional intersections $K_1 \cap (v + K_2), v \in \mathbb{R}^n$, are homothetic to K. Furthermore, K_1 , K_2 , and K satisfy either of the following three conditions:
 - (a) both K_1 and K_2 are homothetic to K,
 - (b) one of K_1, K_2 , say K_1 , is homothetic to K, and K_2 is a translate of a support cone $C_x(K)$, where x is a vertex of K,
 - (c) K_1 and K_2 are translates of support cones $C_x(K)$ and $C_z(K)$, respectively, where x and z are distinct vertices of K.

For n = 2, we have the following description of all convex solids K_1 and K_2 that satisfy Theorem 1.1 (the shaded regions are homothetic to K).

We remark that if at least one of the convex solids K_1 and K_2 in Theorem 1.1 is not assumed to be line-free, then we should not expect them to be even polyhedral. For example, if

$$K_1 = \{(x, y, z) \mid z \ge \sqrt{x^2 + y^2} - 1\}$$
 and $K_2 = \{(x, y, z) \mid z \le 0\},\$

then all 3-dimensional intersections $K_1 \cap (v + K_2)$, $v \in \mathbb{R}^3$, are homothetic copies of the bounded circular cone $K_1 \cap K_2$. The problem to describe all pairs of convex solids $K_1, K_2 \subset \mathbb{R}^n$, not necessarily line-free, that satisfy condition 1) or 2) of Theorem 1.1 remains open.

2. Preliminaries

For the convenience of the reader we provide in this section necessary definitions, notation, and auxiliary properties of convex sets in \mathbb{R}^n . In what follows, θ means the origin (zero vector) of \mathbb{R}^n . Let us recall that a *face* of a convex set $M \subset \mathbb{R}^n$ is a convex subset F of M such that for any points $x, y \in M$ and a scalar $\lambda \in]0, 1[$ the inclusion $(1 - \lambda)x + \lambda y \in F$ implies that $x, y \in F$. Zero-dimensional faces of M are called *extreme* points of M and their union is denoted ext M. An *exposed face* of M is the intersection of M with any hyperplane that supports M. Zero-dimensional exposed faces are called *exposed points* of M and their union is denoted exp M.

A convex set $M \subset \mathbb{R}^n$ is called *line-free* provided it contains no lines. Any closed convex set in \mathbb{R}^n can be expressed as the direct sum of a subspace and a closed line-free convex set. The following well-known results of Klee [5, 6] describe the extremal structure of line-free closed convex sets.

- 1. A closed convex set $M \subset \mathbb{R}^n$ is line-free if and only if it has at least one extreme point (respectively, at least one exposed point).
- 2. Any line-free closed convex set in \mathbb{R}^n is the convex hull of its extreme points and extreme halflines.
- 3. Any line-free closed convex set in \mathbb{R}^n is the closed convex hull of its exposed points and exposed halflines.
- 4. For any line-free closed convex set $M \subset \mathbb{R}^n$, the set $\exp M$ is dense in $\operatorname{ext} M$.

As usual, $\operatorname{bd} K$ and $\operatorname{int} K$ denote, respectively, the boundary and the interior of a convex solid $K \subset \mathbb{R}^n$. Furthermore, $\operatorname{rint} M$ stands for the relative interior of a convex set M in \mathbb{R}^n . We say that a closed halfspace P supports a closed convex set M provided the boundary hyperplane of P supports M and the interior of Pis disjoint from M. By a convex n-polyhedron (in particular, convex n-polytope, n-simplex, or simplicial n-cone) we mean a closed convex polyhedral set of dimension n.

The recession cone rec M of a closed convex set $M \subset \mathbb{R}^n$ is defined by

rec
$$M = \{ y \in \mathbb{R}^n \mid x + \lambda y \in M \text{ for all } x \in M \text{ and } \lambda \ge 0 \}.$$

It is well known that $\operatorname{rec} M \neq \{0\}$ if and only if M is unbounded (see, e.g., [8, Theorem 8.4]). Generally, by a *convex cone* with apex p we mean a convex set $C \subset \mathbb{R}^n$ such that $p + \lambda(x - p) \in C$ for all $\lambda \geq 0$ and $x \in C$.

Lemma 2.1. For any boundary point x of a closed convex set $M \subset \mathbb{R}^n$, the support cone $C_x(M)$ is a closed convex cone with apex x, distinct from \mathbb{R}^n . Furthermore, $C_x(M) = C_x(M \cap B_r(x))$ for any closed ball $B_r(x) \subset \mathbb{R}^n$ with center x and radius r > 0.

Lemma 2.2. If u and v are distinct exposed points of a convex solid $K \subset \mathbb{R}^n$, then none of the cones $C_u(K)$, $u - v + C_v(K)$ lies in the other.

Proof. Assume, for contradiction, that $u - v + C_v(K) \subset C_u(K)$ (the opposite inclusion is considered similarly). Let $P \subset \mathbb{R}^n$ be a closed halfspace with the property $K \cap P = \{u\}$. Clearly, P supports $C_u(K)$ and whence supports $u - v + C_v(K)$. Then

the halfspace v - u + P supports $C_v(K)$. As a result, v - u + P supports K and $v \in K \cap (v - u + P)$. The parallel halfspaces P and v - u + P, both supporting K, should coincide: P = v - u + P. Finally, $v \in K \cap (v - u + P) = K \cap P = \{u\}$, in contradiction with $u \neq v$.

Lemma 2.3. Let $K \subset \mathbb{R}^n$ be a line-free convex solid and $P \subset \mathbb{R}^n$ be a closed halfspace with the property $P \cap \operatorname{rec} K = \{0\}$. Then any translate of P intersects K along a bounded set, and there is a translate of P that supports K.

Lemma 2.4. Let $K \subset \mathbb{R}^n$ be a line-free convex solid and v be an exposed point of K isolated in exp K. Then K is locally conic at v, that is, there is a closed ball $B_r(v) \subset \mathbb{R}^n$ such that $[v, z] \subset \operatorname{bd} K$ for all $z \in B_r(v) \cap \operatorname{bd} K$.

Proof. Assume, for contradiction, the existence of a sequence $z_1, z_2, \ldots \in \operatorname{bd} K$ convergent to v such that $[v, z_i] \not\subset \operatorname{bd} K$ for all $i = 1, 2, \ldots$ Choose a closed halfspace $P \subset \mathbb{R}^n$ with the property $P \cap K = \{v\}$. We can write $P = \{x \in \mathbb{R}^n \mid f(x) \leq \alpha\}$, where f is a linear functional on \mathbb{R}^n and α is a scalar. Then $f(z_i) \to \alpha$ as $i \to \infty$. Let F_i denote the smallest face of K that contains z_i . Clearly, $F_i \subset \operatorname{bd} K$ because of $z_i \in \operatorname{bd} K$. We have $v \notin F_i$, since otherwise $[v, z_i] \subset F_i \subset \operatorname{bd} K$. Being line-free, F_i contains an extreme point u_i , which is an extreme point of K. Furthermore, u_i can be chosen such that $f(u_i) \leq f(z_i)$, since otherwise $F_i \subset \{x \in \mathbb{R}^n \mid f(x) > f(z_i)\}$, in contradiction with $z_i \in F_i$. Due to $P \cap K = \{v\}$, all points u_1, u_2, \ldots are distinct from v and the diameter of $K \cap \{x \in \mathbb{R}^n \mid f(x) \leq f(u_i)\}$ tends to 0 as $i \to \infty$. Hence $\lim_{i\to\infty} u_i = v$. Since the set $\exp K$ is dense in ext K, there is a sequence $w_1, w_2, \ldots \in \exp K \setminus \{v\}$ convergent to v, in contradiction with the assumption. \Box

3. Proof of Theorem 1.1

 $(3) \Rightarrow 1$ If convex solids K_1, K_2 , and K satisfy condition 3) of the theorem, then either K is a simplicial cone, which can be described in suitable coordinates as

$$K = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 \ge 0, \dots, x_n \ge 0 \},$$
(4)

or K is a generalized simplex, which can be described in suitable coordinates as

$$K = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 \ge 0, \dots, x_n \ge 0, \ x_1 + \dots + x_m \le 1 \},$$
(5)

where m is an integer between 1 and n (see [2]).

In case (4), condition 3) implies that both K_1 and K_2 are translates of K: $K_1 = p + K$ and $K_2 = q + K$ for suitable vectors $p = (p_1, \ldots, p_n)$ and $q = (q_1, \ldots, q_n)$ in \mathbb{R}^n . Then for any vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ in \mathbb{R}^n and scalars $\lambda, \mu > 0$, we have

$$(u + \lambda K_1) \cap (v + \mu K_2) = (u + p + K) \cap (v + q + K)$$

= {(x₁,...,x_n) $\in \mathbb{R}^n \mid x_1 \ge \max(u_1 + p_1, v_1 + q_1), ..., x_n \ge \max(u_n + p_n, v_n + q_n)$ }.

Equivalently, $(u + \lambda K_1) \cap (v + \mu K_2) = w + K$, where

$$w = (\max(u_1 + p_1, v_1 + q_1), \dots, \max(u_n + p_n, v_n + q_n)).$$

Dealing with case (5), we consider only the most elaborated condition $\mathcal{B}(c)$ of the theorem, since conditions $\mathcal{B}(a)$ and $\mathcal{B}(b)$ are similar. Then K_1 and K_2 are translates of support cones $C_x(K)$ and $C_z(K)$, where x and z are distinct vertices of K. Let $K_1 = p + C_x(K)$ and $K_2 = q + C_z(K)$ for some vectors $p = (p_1, \ldots, p_n)$ and $q = (q_1, \ldots, q_n)$ in \mathbb{R}^n . Without loss of generality, we may assume that $x = (1, 0, \ldots, 0)$ and $z = (0, 0, \ldots, 0)$. Then

$$K_{1} = \{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{2} \ge p_{2}, \dots, x_{n} \ge p_{n}, \\ x_{1} + \dots + x_{m} \le 1 + p_{1} + \dots + p_{m} \}, \\ K_{2} = \{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{1} \ge q_{1}, \dots, x_{n} \ge q_{n} \}.$$

For any vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ in \mathbb{R}^n and scalars $\lambda, \mu > 0$, the set $(u + \lambda K_1) \cap (v + \mu K_2)$ equals

$$\{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 \ge v_1 + \mu q_1, x_2 \ge \max(u_2 + \lambda p_2, v_2 + \mu q_2), \dots, \\ x_n \ge \max(u_n + \lambda p_n, v_n + \mu q_n), \ x_1 + \dots + x_m \le \xi_m\}.$$

where

$$\xi_m = u_1 + \dots + u_m + \lambda (1 + p_1 + \dots + p_m)$$

The intersection $(u + \lambda K_1) \cap (v + \mu K_2)$ is *n*-dimensional if and only if $\xi_m > \eta_m$, where

$$\eta_m = v_1 + \mu q_1 + \max(u_2 + \lambda p_2, v_2 + \mu q_2) + \dots + \max(u_m + \lambda p_m, v_m + \mu q_m).$$

Hence, if the set $(u + \lambda K_1) \cap (v + \mu K_2)$ is *n*-dimensional, then it can be expressed as $w + \nu K$, with $\nu = \xi_m - \eta_m$ and

$$w = (v_1 + \mu q_1, \max(u_2 + \lambda p_2, v_2 + \mu q_2), \dots, \max(u_n + \lambda p_n, v_n + \mu q_n)).$$

 $(2) \Rightarrow 3)$ Since 1) trivially implies 2), it remains to show that 2) implies 3). Let K_1 and K_2 be convex solids in \mathbb{R}^n that satisfy condition 2) of the theorem. Denote by K a convex solid that generates the homothety class containing all *n*-dimensional intersections $K_1 \cap (v + K_2), v \in \mathbb{R}^n$. The following three lemmas will be of use later.

Lemma 3.1. If there is a vector $v \in \mathbb{R}^n$ such that $int(v + K_2)$ contains two distinct exposed points of K_1 or an exposed line segment of K_1 , then $K_1 \subset int(v + K_2)$.

Proof. Assume the existence of a vector $v \in \mathbb{R}^n$ such that $K_1 \not\subset \operatorname{int}(v + K_2)$ while $\operatorname{int}(v+K_2)$ contains a pair of distinct points $x, z \in \exp K_1$ or an exposed line segment [x, z] of K_1 . Choose a point $u \in K_1 \setminus \operatorname{int}(v + K_2)$. Then there is a scalar $\varepsilon > 0$ so small that the convex solid $v + \varepsilon(x - u) + K_2$ still contains both points x and z in its interior. Clearly, $u \notin v + \varepsilon(x - u) + K_2$. If $x, z \in \exp K_1$, then let P_x and P_z be closed halfspaces in \mathbb{R}^n which satisfy the conditions $K_1 \cap P_x = \{x\}$ and $K_1 \cap P_z = \{z\}$; otherwise let P be a closed halfspace such that $K_1 \cap P = [x, z]$. Put

$$K' = K_1 \cap (v + K_2), \qquad K'' = K_1 \cap (v + \varepsilon(x - u) + K_2).$$

By condition 2), both K' and K'' are homothetic to K. If $x, z \in \exp K_1$, then from

$$K' \cap P_x = K'' \cap P_x = \{x\}, \qquad K' \cap P_z = K'' \cap P_z = \{z\}$$

we conclude that K' = K''. Similarly, if [x, z] is an exposed line segment of K_1 , then the homotheticity of K' and K'' and the relation $K' \cap P = K'' \cap P = [x, z]$ again imply that K' = K''. In both cases, the line segments $[x, u] \cap K'$ and $[x, u] \cap K''$ should be of the same length, which is impossible by the choice of ε . \Box

Given convex solids K and M in \mathbb{R}^n , we say that exposed points $x \in \exp K$ and $z \in \exp M$ correspond to each other provided $C_x(K)$ is a translate of $C_z(M)$.

Lemma 3.2. Any exposed point of K_1 (respectively, of K_2) corresponds to an exposed point of K.

Proof. Let $z \in \exp K_1$ (the case $z \in \exp K_2$ is similar). Choose a vector $v \in \mathbb{R}^n$ such that $z \in \operatorname{int}(v + K_2)$ and let $K' = K_1 \cap (v + K_2)$. Clearly, $z \in \exp K'$ and Lemma 2.1 implies that $C_z(K') = C_z(K_1)$. Since $K' = w + \lambda K$ for suitable $w \in \mathbb{R}^n$ and $\lambda > 0$, we obtain that z corresponds to the exposed point $u = \lambda^{-1}(z - w)$ of K. \Box

We recall that a boundary point x of a convex solid $M \subset \mathbb{R}^n$ is *regular* provided there is a unique hyperplane supporting M at x. Denote by N(M) the family of outward unit normals to the convex solid M at its regular points. Clearly, a convex solid $M \subset \mathbb{R}^n$ is a convex *n*-polyhedron if and only if the set N(M) is finite.

Lemma 3.3. If K is a convex n-polyhedron, then both K_1 and K_2 are convex n-polyhedra and $N(K_1) \cup N(K_2) \subset N(K)$.

Proof. Let x be a regular boundary point of K_1 . Denote by e the outward unit normal to K_1 at x. Choose a point $v \in \mathbb{R}^n$ such that $x \in int(v + K_2)$. Clearly, x is a regular point of the convex solid $K' = K_1 \cap (v + K_2)$ and e is the outward unit normal to K' at x. Since K' is homothetic to K, we have $e \in N(K') = N(K)$. Hence $N(K_1) \subset N(K)$. Similarly, $N(K_2) \subset N(K)$.

If K is a convex n-polyhedron, then N(K) is finite and both sets $N(K_1)$ and $N(K_2)$ are finite. This obviously implies that K_1 and K_2 are convex n-polyhedra.

Before proceeding with the proof of $2 \Rightarrow 3$, we make several remarks.

A) First of all, we eliminate the case when K is bounded, since this case is considered in [11] when both K_1 and K_2 are bounded, and it can be easily deduced from the proof in [12] when at least one of K_1, K_2 is unbounded. Thus we may assume, in what follows, that all three convex solids K_1, K_2 , and K are unbounded.

B) Furthermore, we may suppose that dim(rec K) < n. Indeed, if the cone rec K is n-dimensional, then any nonempty intersection $K' = K_1 \cap (v + K_2), v \in \mathbb{R}^n$, is n-dimensional and, by condition 2), is homothetic to K. In this case, K is a simplicial cone and both K_1 and K_2 are translates of K (see the proof in [12]).

C) Finally, we state that rec $K = \text{rec } K_1 \cap \text{rec } K_2$. Indeed, choose a vector $v \in \mathbb{R}^n$ such that the set $K' = K_1 \cap (v + K_2)$ is *n*-dimensional. Since K and K' are homothetic, we obtain from [8, Corollary 8.3.3] that

$$\operatorname{rec} K = \operatorname{rec} K' = \operatorname{rec} K_1 \cap \operatorname{rec} (v + K_2) = \operatorname{rec} K_1 \cap \operatorname{rec} K_2.$$
(6)

We divide the proof of $2 \Rightarrow 3$ into the following three cases.

I. $\operatorname{rec} K_1 = \operatorname{rec} K_2$.

II. rec $K_1 \subsetneq$ rec K_2 (the case rec $K_2 \subsetneq$ rec K_1 is similar).

III. $\operatorname{rec} K_1 \not\subset \operatorname{rec} K_2$ and $\operatorname{rec} K_2 \not\subset \operatorname{rec} K_1$.

Case I. rec $K_1 = \text{rec } K_2$. By induction on n, we are going to prove that K is a generalized *n*-simplex and both K_1 and K_2 are homothetic to K. Since the case n = 1 trivially holds, we assume that $n \ge 2$ and that 2) implies 3) for all \mathbb{R}^d with $d \le n - 1$. We divide the proof of Case I into Lemmas 3.4–3.7.

Lemma 3.4. If rec $K_1 = \text{rec } K_2$, then any exposed point of K corresponds to an exposed point of K_1 (respectively, of K_2).

Proof. Let x be an exposed point of K and $P \subset \mathbb{R}^n$ be a closed halfspace such that $P \cap K = \{x\}$. If P_0 is a translate of P with the property $\theta \in \operatorname{bd} P_0$, then $P_0 \cap \operatorname{rec} K = \{\theta\}$. Since $\operatorname{rec} K_1 = \operatorname{rec} K$, Lemma 2.3 implies the existence of a translate P_1 of P which supports K_1 . Choose a point $x_1 \in P_1 \cap K_1$, and let $v \in \mathbb{R}^n$ be such that $x_1 \in \operatorname{int}(v + K_2)$. By condition 2), the convex solid $K' = K_1 \cap (v + K_2)$ is homothetic to K. Then $P_1 \cap K' = \{x_1\}$, which shows that x_1 is an exposed point of K' such that $C_{x_1}(K')$ is a translate of $C_x(K)$. Since $C_{x_1}(K_1) = C_{x_1}(K')$, we conclude that x corresponds to $x_1 \in \exp K_1$.

Lemma 3.5. If rec $K_1 = \text{rec } K_2$, then K has finitely many exposed points.

Proof. Let x and z be distinct exposed points of K. By Lemma 3.4, there are points $x_1 \in \exp K_1$ and $z_2 \in \exp K_2$ such that x corresponds to x_1 and z corresponds to z_2 . Consider the intersection $K' = K_1 \cap (x_1 - z_2 + K_2)$. Clearly, x_1 is an exposed point of K'.

We claim that dim K' < n. Indeed, assume for a moment that dim K' = n. Since K' is homothetic to K, the point $x_1 \in \exp K'$ corresponds to a point $v \in \exp K$. Because $x \neq z$, the point v is distinct from one of x and z. Let $v \neq x$. Then

$$C_v(K) = v - x_1 + C_{x_1}(K') \subset v - x_1 + C_{x_1}(K_1) = v - x + C_x(K),$$

in contradiction with Lemma 2.2. Hence dim K' < n.

Choose a hyperplane H that contains K' such that K_1 and $x_1 - z_2 + K_2$ lie in distinct closed halfspaces determined by H. Then both hyperplanes which are parallel to Hand contain the points x and z, respectively, support K from opposite sides. Let h be a halfline that lies in rec K (rec $K \neq \{0\}$ because K is unbounded by A) above), and let l be the line that contains h. Clearly, l is parallel to H. Choose a subspace G of dimension n-1 complementary to l. For any point $x \in \exp K$, denote by x' the point of intersection of G and the line through x parallel to l. Put $X = \{x' \mid x \in \exp K\}$. Since $x + h \subset K$ for any point $x \in \exp K$, the set X is in one-to-one correspondence with $\exp K$.

Choose any points $u', v' \in X$, and let u, v be the points in $\exp K$ corresponding to them. By the above, there is a pair of distinct parallel hyperplanes M_u and M_v both supporting K and containing u and v, respectively. Since l is parallel to both M_u

and M_v , the intersections $G \cap M_u$ and $G \cap M_v$ are parallel (n-2)-dimensional planes in G such that $u' \in G \cap M_u$, $v' \in G \cap M_v$, and X lies between $G \cap M_u$ and $G \cap M_v$. As proved in [1], X has 2^{n-1} or fewer elements. Hence $|\exp K| = |X| \leq 2^{n-1}$. \Box

Lemma 3.6. If rec $K_1 \subset$ rec K_2 and K has finitely many exposed points, then K is a convex polyhedron.

Proof. Due to Lemma 3.5, it is sufficient to show that K has finitely many exposed halflines. Assume, for contradiction, that K has infinitely many exposed halflines. Since the endpoints of exposed halflines of K are extreme points of K and since the set ext K is finite (because exp K is dense in ext K and finite), there is an extreme point x of K such that infinitely many exposed halflines of K, say h_1, h_2, \ldots , have x as a common endpoint. By a compactness argument, we may assume that the sequence h_1, h_2, \ldots converges to a halfline $h \subset K$ with endpoint x. Furthermore, because the halflines $h_i - x$, $i = 1, 2, \ldots$, lie in rec K and because the cone rec K is closed, the halfline h - x also lies in rec K.

From (6) it follows that h - x lies in rec $K_1 \cap \text{rec } K_2 = \text{rec } K_1$. Since K_2 is line-free, the opposite halfline x - h does not lie in rec K_2 . Hence there is a vector $v \in \mathbb{R}^n$ such that $x \notin v + K_2$ and h intersects $\text{int}(v + K_2)$. By a continuity argument, there is an integer m such that the halfline h_i intersects $\text{int}(v + K_2)$ for all $i \ge m$. Denote by z_i the point of intersection of h_i and bd K, $i \ge m$, and let z be the point of intersection of h and bd K. Clearly, z_m, z_{m+1}, \ldots are distinct extreme points of the convex solid $K' = K_1 \cap (v + K_2)$ and $z_i \to z$ when $i \to \infty$. Since K is homothetic to K', the convex solid K has infinitely many extreme points, contradicting Lemma 3.5. Hence K is a convex polyhedron. \Box

Lemma 3.7. If rec $K_1 = \text{rec } K_2$, then K is a generalized n-simplex and both K_1 and K_2 are homothetic to K.

Proof. By Lemmas 3.3, 3.5, and 3.6, K_1 , K_2 , and K are convex *n*-polyhedra with $N(K_1) \cup N(K_2) \subset N(K)$. We state that $N(K_1) = N(K_2) = N(K)$. Indeed, let $e \in N(K)$ and F be the facet of K with the outward unit normal e. Since F is line-free (as a face of the line-free convex polyhedron K), it has a vertex, x. Clearly, F lies in a facet of the convex polyhedral cone $C_x(K)$. By Lemma 3.4, there is a vertex z of K_1 such that $C_z(K_1)$ is a translate of $C_x(K)$. Hence K_1 has a facet with the outward unit normal e. Thus $N(K) \subset N(K_1)$. Similarly, $N(K) \subset N(K_2)$.

Next we state that any facets $F_1 \subset K_1$ and $F_2 \subset K_2$ with the same outward unit normal, f, are homothetic generalized (n-1)-simplices. Indeed, denote by H the hyperplane that contains F_1 and consider a vector $v \in \mathbb{R}^n$ such that $v + F_2 \subset H$ and rint $F_1 \cap \operatorname{rint}(v+F_2) \neq \emptyset$. Then $\operatorname{int} K_1 \cap \operatorname{int}(v+K_2) \neq \emptyset$, implying that $K_1 \cap (v+K_2)$ is homothetic to K. Hence $F_1 \cap (v+F_2)$ is homothetic to the facet F of K with the outward unit normal f. If G is the (n-1)-dimensional subspace parallel to H, then rec $K_1 = \operatorname{rec} K_2 = \operatorname{rec} K$ implies

$$\operatorname{rec} F_i = G \cap \operatorname{rec} K_i = G \cap \operatorname{rec} K = \operatorname{rec} F, \quad i = 1, 2.$$

By the inductive assumption, F is a generalized (n-1)-simplex and both F_1 and F_2 are homothetic to F.

The argument above shows that any facet of K is homothetic to each of the respective facets of K_1 and K_2 . This obviously implies that all three convex polyhedra K_1 , K_2 , and K are homothetic. Finally, from [2] it follows that K is a generalized n-simplex.

Case II. rec $K_1 \subsetneq$ rec K_2 . By induction on n, we are going to prove that K is a generalized *n*-simplex distinct from a cone, K_1 is homothetic to K, and K_2 is a simplicial *n*-cone which is a translate of a support cone $C_x(K)$ for a suitable vertex xof K. Since the case n = 1 trivially holds, we assume that $n \ge 2$ and that 2) implies 3) for all \mathbb{R}^d with $d \le n - 1$. We divide the proof of Case II into Lemmas 3.8–3.10.

Lemma 3.8. If rec $K_2 \not\subset \text{rec } K_1$, then K_2 is a convex cone.

Proof. Assume, for contradiction, that K_2 is not a cone. Then there is an exposed point q of K_2 such that $C_q(K_2) \neq K_2$. From rec $K_2 \not\subset \operatorname{rec} K_1$ we conclude that no translate of K_2 entirely lies in K_1 . If the interior of a translate $u + K_1$ contains q, then, by Lemma 3.1, q is the only exposed point of K_2 that lies in $\operatorname{int}(u + K_1)$. Lemma 2.4 implies that K_2 is locally conic at q. Hence there is a non-trivial exposed line segment [q, t] of K_2 that lies in an exposed halfline h of the cone $C_q(K_2)$ such that $h \not\subset K_2$. Choose an arbitrary point $v \in \operatorname{int} K_1$ and consider the convex solid $K'_2 = v - q + K_2$. By the above, K'_2 is locally conic at v and [v, w] = v - q + [q, t]is an exposed line segment of K'_2 . Let H be a hyperplane in \mathbb{R}^n with the property $H \cap K'_2 = [v, w]$.

For any scalar $\varepsilon \geq 0$, put

$$K_2'(\varepsilon) = \varepsilon(v - w) + K_2', \qquad L(\varepsilon) = \varepsilon(v - w) + [v, w],$$
$$v(\varepsilon) = \varepsilon(v - w) + v, \qquad w(\varepsilon) = \varepsilon(v - w) + w.$$

Then $L(\varepsilon)$ is an exposed line segment of $K'_2(\varepsilon)$ with endpoints $v(\varepsilon)$ and $w(\varepsilon)$ such that $K'_2(\varepsilon) \cap H = L(\varepsilon)$.

We claim that the line segment L(0) = [v, w] does not lie in K_1 . Indeed, assume for a moment that $L(0) \subset K_1$. Since $v(0) = v \in \operatorname{int} K_1$, one can choose $\varepsilon > 0$ so small that $L(\varepsilon) \subset \operatorname{int} K_1$. By Lemma 3.1, we should have $K'_2 \subset \operatorname{int} K_1$, which is impossible due to $\operatorname{rec} K'_2 = \operatorname{rec} K_2 \not\subset \operatorname{rec} K_1$.

By a continuity argument, there is a scalar $\varepsilon_0 > 0$ such that $v(\varepsilon_0) \in \operatorname{bd} K_1$ and $L(\varepsilon_0)$ intersects int K_1 . As above, $L(\varepsilon_0) \not\subset K_1$; whence $w(\varepsilon_0) \notin K_1$. Continuously increasing $\varepsilon (\geq \varepsilon_0)$, we find a scalar ε_1 such that $w(\varepsilon_1) \in \operatorname{bd} K_1$ and $L(\varepsilon_1)$ intersects int K_1 . Further increasing $\varepsilon (\geq \varepsilon_1)$, we find a scalar ε_2 such that $K_1 \cap L(\varepsilon_2) = w(\varepsilon_2)$. As a result, the line through v and w intersects $\operatorname{bd} K_1$ at two points, v^* and w^* , such that $v^* = v(\varepsilon_0) = w(\varepsilon_2)$ and $w^* = w(\varepsilon_1)$.

Now consider the intersections

$$K'(\varepsilon) = K_1 \cap K'_2(\varepsilon), \quad 0 \le \varepsilon < \varepsilon_2.$$

By condition 2), every $K'(\varepsilon)$ is a convex solid homothetic to K. Clearly, $T(\varepsilon) =$

 $H \cap K'(\varepsilon)$ is an exposed line segment of $K'(\varepsilon)$ and

$$T(\varepsilon) = \begin{cases} [v(\varepsilon), w^*] & \text{if } 0 \le \varepsilon \le \varepsilon_0, \\ [v^*, w^*] & \text{if } \varepsilon_0 \le \varepsilon \le \varepsilon_1, \\ [v^*, w(\varepsilon)] & \text{if } \varepsilon_1 \le \varepsilon < \varepsilon_2. \end{cases}$$

Because $K'(\varepsilon)$ is homothetic to K for all $0 \leq \varepsilon < \varepsilon_2$, the homothety factor of $K'(\varepsilon)$ is proportional to the length of $T(\varepsilon)$. Hence the homothety factor of $K'(\varepsilon)$ increases when ε increases from 0 to ε_0 ; it remains constant when ε increases from ε_0 to ε_1 ; and it decreases when ε increases from ε_1 to ε_2 .

Choose a halfline m with the endpoint 0 that lies in rec $K_2 \setminus \operatorname{rec} K_1$ and put

$$M(\varepsilon) = \begin{cases} K_1 \cap (v(\varepsilon) + m) & \text{if } 0 \le \varepsilon \le \varepsilon_0, \\ K_1 \cap (v^* + m) & \text{if } \varepsilon_0 \le \varepsilon < \varepsilon_2. \end{cases}$$

Since $m \not\subset \operatorname{rec} K_1$, each $M(\varepsilon)$ is a chord of $K'(\varepsilon)$ in the direction m and its position is uniquely determined by $T(\varepsilon)$. Moreover, $M(\varepsilon)$ and $T(\varepsilon)$ have a common endpoint: it is $v(\varepsilon)$ if $0 \le \varepsilon \le \varepsilon_0$, and it is v^* if $\varepsilon_0 \le \varepsilon < \varepsilon_2$. Since $v(0) = v \in \operatorname{int} K_1$, the length |M(0)| of M(0) is positive. From the definition of $M(\varepsilon)$ it follows that $|M(\varepsilon)|$ should be proportional to $|T(\varepsilon)|$. This is not the case because $|M(\varepsilon)| \to |M(\varepsilon_0)|$ when ε increases from 0 to ε_0 , and then $|M(\varepsilon)|$ remains constant when ε increases from ε_0 to ε_2 (contrary to the decrease of $|T(\varepsilon)|$ when ε increases from ε_1 to ε_2). The obtained contradiction shows that K_2 is a convex cone.

Lemma 3.9. If rec $K_1 \subsetneq$ rec K_2 , then K_1 is a convex n-polyhedron distinct from a cone, K is homothetic to K_1 , and K_2 is a convex polyhedral n-cone that is a translate of a support cone $C_x(K_1)$, where x is a vertex of K_1 .

Proof. By Lemma 3.8, K_2 is a convex cone. Denote by q_2 the apex of K_2 . We claim the existence of a point $q_1 \in \exp K_1$ such that K_2 is a translate of $C_{q_1}(K_1)$. Indeed, choose a point $v \in \mathbb{R}^n$ such that $v+q_2 \in \operatorname{int} K_1$ and let $K' = K_1 \cap (v+K_2)$. Obviously, $v + q_2$ is an exposed point of the convex solid K' that corresponds to q_2 . Choose a closed halfspace P_2 such that $P_2 \cap K_2 = \{q_2\}$. Because rec $K_1 \subset \operatorname{rec} K_2$, there is a translate P_1 of P_2 such that P_1 supports K_1 (see Lemma 2.3). Choose any points $q_1 \in P_1 \cap K_1$ and $x \in \operatorname{int} K_2$, and consider the intersection $K'' = K_1 \cap (q_1 - x + K_2)$. Clearly, $C_{q_1}(K'') = C_{q_1}(K_1)$. Since K' and K'' are homothetic, the points $q_1 \in \exp K_1$ and $q_2 \in \exp K_2$ correspond to each other. Hence K_2 is a translate of $C_{q_1}(K_1)$. Furthermore, Lemma 2.4 implies that K_1 is locally conic at q_1 .

The facts proved above imply that K_1 is not a cone, since otherwise it should be a cone with apex q_1 , resulting in rec $K_1 = \operatorname{rec} K_2$. Hence K_1 has exposed points distinct from q_1 .

We claim that K and K_1 are homothetic. Indeed, choose any distinct points $x, z \in \exp K_1$. Since K_2 is a cone, there is a translate $v + K_2$ that contains both x and z. By Lemma 3.1, $K_1 \subset v + K_2$, and condition 2) implies that K is homothetic to $K_1 \cap (v + K_2) = K_1$.

Next we state that K_2 is a convex polyhedral *n*-cone with apex q_2 . Indeed, assume, for contradiction, that the cone K_2 is not polyhedral. Then K_2 has infinitely many exposed halflines with common apex q_2 . By a compactness argument, we can choose a sequence of such halflines h_1, h_2, \ldots that converge to a boundary halfline h of K_2 . Choose a vector $w \in \mathbb{R}^n$ such that $w + q_2 \notin K_1$ and the halfline w + h intersects int K_1 (this is possible since rec $K_1 \subset \operatorname{rec} K_2$). Then there is a positive integer m so large that the halflines $w + h_m$ and $w + h_{m+1}$ also intersect int K_1 .

Now consider the intersection $K_0'' = K_1 \cap (w + K_2)$. By the above, the sets $(w + h_m) \cap K_0''$ and $(w + h_{m+1}) \cap K_0''$ are disjoint 1-dimensional exposed faces of K_0'' . On the other hand, $C_{q_1}(K_1)$ is a translate of K_2 and K_1 is locally conic at q_1 . Furthermore, $(q_1 - q_2 + h_m) \cap K_1$ and $(q_1 - q_2 + h_{m+1}) \cap K_1$ are 1-dimensional exposed faces of K_1 that have q_1 as a unique common point. This is in contradiction with the fact that K_0'' and K_1 are homothetic. Hence $K_2 = C_{q_1}(K_1)$ is a convex polyhedral *n*-cone.

Our next claim is that each exposed point of K_1 lies on an exposed halfline of $C_{q_1}(K_1)$. Indeed, assume, for contradiction, the existence of a point $x \in \exp K_1$ that does not lie on an exposed halfline of $C_{q_1}(K_1)$. Choose a point $z \in K_1 \setminus [x, q_1]$ such that $x \in z - q_1 + C_{q_1}(K_1)$, and let $K'_0 = K_1 \cap (z - q_2 + K_2)$. Clearly, K'_0 is a convex solid. By condition 2), K'_0 is homothetic to K, and whence K'_0 is homothetic to K_1 . Let P and Q be closed halfspaces that satisfy the conditions $P \cap K_1 = \{q_1\}$ and $Q \cap K_1 = \{x\}$. Put $P' = z - q_1 + P$. Clearly, $P' \cap K'_0 = \{z\}$. Since K_1 and K'_0 are homothetic, the line segments $[x, q_1]$ and [x, z] should be collinear, which is impossible by the choice of z. The obtained contradiction shows that each exposed point of K_1 lies on an exposed halfline of $C_{q_1}(K_1)$.

Since all exposed points of K_1 lie on exposed halflines of $C_{q_1}(K_1)$, and since $K_2 = C_{q_1}(K_1)$ is a convex polyhedral *n*-cone, K_1 has finitely many exposed points. Because K and K_1 are homothetic, Lemma 3.6 implies that K_1 has finitely many exposed halflines, which shows that K_1 is a convex *n*-polyhedron.

Lemma 3.10. If rec $K_1 \subsetneq$ rec K_2 , then K_1 is a generalized n-simplex distinct from a cone and K_2 is a simplicial n-cone.

Proof. By Lemma 3.9, K_1 is a convex *n*-polyhedron distinct from a cone and K_2 is a convex polyhedral *n*-cone with $N(K_2) \subset N(K_1)$. Furthermore, if q_2 is the apex of K_2 , then there is a vertex q_1 of K_1 such that K_2 is a translate of the support cone $C_{q_1}(K_1)$. Let F_1 be a facet of K_1 that contains q_1 and is distinct from a cone (such a facet exists since otherwise K_1 would be a convex cone with apex q_1). Denote by *e* the outward unit normal to K_1 at F_1 . Let F_2 be the facet of K_2 that has the same outward unit normal *e*. Clearly, F_2 is a (n-1)-cone with apex q_2 . This implies the inclusion rec $F_1 \subsetneq \operatorname{rec} F_2$, since otherwise F_1 would also be a cone with apex q_1 .

We are going to show that F_2 is a simplicial (n-1)-cone and F_1 is a generalized (n-1)simplex. Indeed, denote by H the hyperplane containing F_1 . Consider the family of translates $v+K_2, v \in \mathbb{R}^n$, whose facets $v+F_2$ lie in H such that rint $F_1 \cap \operatorname{rint}(v+F_2) \neq \emptyset$. Clearly, int $K_1 \cap \operatorname{int}(v+K_2) \neq \emptyset$ for any such a translate $v+K_2$. By condition 2), the convex solids $K_1 \cap (v+K_2)$, with rint $F_1 \cap \operatorname{rint}(v+F_2) \neq \emptyset$, are homothetic to K. Hence the respective (n-1)-dimensional intersections $F_1 \cap (v+F_2)$, are homothetic to the facet of K that is parallel to H. By the inductive assumption, F_1 is a generalized (n-1)-simplex and F_2 is a simplicial (n-1)-cone.

We claim that K_2 itself is a simplicial *n*-cone with apex q_2 . Since F_2 is a simplicial (n-1)-cone, it is sufficient to show that K_2 has exactly one extreme halfline with apex q_2 that does not lie in F_2 . Assume for a moment that K_2 has two such halflines, say h_1 and h_2 . Choose a vector $v \in \mathbb{R}^n$ such that $v + q_2 \notin K_1$ and both halflines $h'_1 = v + h_1$ and $h'_2 = v + h_2$ intersect the relative interior of F_1 (this is possible since rec $K_1 \subset \text{rec } K_2$). Clearly, $h'_1 \cap K_1$ and $h'_2 \cap K_1$ are disjoint exposed halflines of the convex *n*-polyhedron $K' = K_1 \cap (v + K_2)$. At the same time, K' should be homothetic to K_1 , which has exposed halflines parallel to h'_1 and h'_2 and having a common endpoint. The obtained contradiction shows that K_2 is a simplicial *n*-cone.

It remains to prove that K_1 is a generalized *n*-simplex. Denote by *h* the exposed halfline of $v + K_2$ that does not lie in *H*. Since $C_{q_1}(K_1)$ is a translate of K_2 , the convex solid K_1 has exactly one 1-dimensional face, *m*, parallel to *h* and containing q_1 . If *m* is a halfline with endpoint q_1 , then the obvious equality $K_1 = \operatorname{conv}(F_1 \cup m)$ implies that K_1 is a generalized *n*-simplex. Assume now that *m* is a line segment, say $[q_1, r_1]$. Then rec $K_1 = \operatorname{rec} F_1$. Since r_1 is the only vertex of K_1 that does not lie in F_1 (because every vertex of K_1 lies on an edge of the cone $C_{q_1}(K_1)$), the cone $G = r_1 + \operatorname{rec} F_1$ is a face of K_1 and

$$K_1 = \operatorname{conv}(F_1 \cup G) = \operatorname{cl}(\operatorname{conv}(F_1 \cup m)).$$

Hence K_1 is a generalized *n*-simplex.

Case III. rec $K_1 \not\subset \operatorname{rec} K_2$ and rec $K_2 \not\subset \operatorname{rec} K_1$. By induction on n, we are going to prove that K is a generalized n-simplex distinct from a cone and K_1 and K_2 are translates of support cones $C_x(K)$ and $C_z(K)$, respectively, where x and z are distinct vertices of K. Since the case n = 1 trivially holds, we assume that $n \geq 2$ and that 2 implies 3 for all \mathbb{R}^d with $d \leq n - 1$.

By Lemma 3.8, both K_1 and K_2 are convex cones. Without loss of generality, we may assume that θ is their common apex. Then rec $K_i = K_i$, i = 1, 2, which implies that $K_1 \not\subset K_2$ and $K_2 \not\subset K_1$. We state that $K_1 \cap K_2$ cannot be *n*-dimensional. Indeed, if dim $(K_1 \cap K_2) = n$, then each nonempty intersection $K_1 \cap (v + K_2)$, $v \in \mathbb{R}^n$, is *n*-dimensional and whence is homothetic to K. In this case, K is a simplicial *n*-cone and both K_1 and K_2 are translates of K (see [11] for the proof). We divide the proof of *Case III* into Lemmas 3.11–3.14.

Lemma 3.11. If $K_1 \not\subset K_2$ and $K_2 \not\subset K_1$, then $0 < \dim(K_1 \cap (-K_2)) < n$.

Proof. Assume for a moment that the convex cone $K_1 \cap (-K_2)$ is *n*-dimensional. Then $\operatorname{int}(K_1 \cap (-K_2))$ contains distinct unit vectors v_1 and v_2 . Put $K' = K_1 \cap (v_1 + K_2)$ and $K'' = K_1 \cap (v_2 + K_2)$. If P_1 and P_2 are closed halfspaces such that $P_1 \cap K_1 = P_2 \cap K_2 = \{0\}$, then

$$P_1 \cap K' = \{0\}, \qquad (v_1 + P_2) \cap K' = \{v_1\}, P_2 \cap K'' = \{0\}, \qquad (v_2 + P_1) \cap K'' = \{v_2\}.$$

By condition 2), both K' and K'' are convex solids homothetic to K. This implies that the line segments $[v_1, \theta]$ and $[v_2, \theta]$ should be collinear, which is impossible by the choice of v_1 and v_2 . Hence dim $(K_1 \cap (-K_2)) < n$.

Now assume that $K_1 \cap (-K_2) = \{0\}$. Then there is a hyperplane $G \subset \mathbb{R}^n$ separating K_1 and $-K_2$ such that $K_1 \cap G = (-K_2) \cap G = \{0\}$. Equivalently, both K_1 and K_2 lie in the same closed half-space determined by G such that $K_1 \cap G = K_2 \cap G = \{0\}$. Choose a point $v \in \text{int } K_1$ and consider the set $K'_0 = K_1 \cap (v + K_2)$. Obviously, the support cone $C_v(K'_0)$ equals $v + K_2$. Similarly, given a point $w \in \text{int } K_2$, the support cone $C_0(K''_0)$ of the intersection $K''_0 = K_1 \cap (K_2 - w)$ equals K_1 . Since the convex solids K'_0 and K''_0 are homothetic, we easily obtain that v and θ should correspond to each other, and $C_v(K'_0)$ should be a translate of $C_0(K''_0)$. The last is impossible since K_1 is not a translate of K_2 . The obtained contradiction shows that $K_1 \cap (-K_2) \neq \{0\}$.

Choose an extreme halfline h_1 of the closed convex cone $K_1 \cap (-K_2)$. By Lemma 3.11, $h_1 \subset \operatorname{bd} K_1 \cap \operatorname{bd} (-K_2)$. Put $h_2 = -h_1$, and let S_i be the set of points $x \in \operatorname{bd} K_i$ such that $x + h_i$ intersects int K_i , i = 1, 2. Clearly, S_i is an open part of $\operatorname{bd} K_i$. Put $T_i = \operatorname{cl} S_i$, i = 1, 2.

Lemma 3.12. If $K_1 \not\subset K_2$ and $K_2 \not\subset K_1$, then T_i is an (n-1)-dimensional face of K_i , i = 1, 2.

Proof. Indeed, assume for a moment that S_1 does not lie in a hyperplane. Then there are regular points v, w of K_1 that lie in S_1 such that the outward unit normals e_v and e_w to K_1 at these points are distinct. Denote by e_1 the unit vector in the direction of h_1 . Due to the choice of S_1 , both sets

$$K' = K_1 \cap (e_1 + v + K_2), \qquad K'' = K_1 \cap (e_1 + w + K_2)$$

are *n*-dimensional. By condition 2), K' and K'' are homothetic. Clearly, the points $e_1 + v \in \exp K'$ and $e_1 + w \in \exp K''$ correspond to each other. As a result, the line segment $[v, e_1 + v] \subset K'$ should correspond to $[w, e_1 + w] \subset K''$ and some neighborhoods of K' and K'' at v and w, respectively, should be homothetic, which is impossible since $e_v \neq e_w$. The obtained contradiction implies that S_1 lies in a hyperplane through θ . Similarly, S_2 lies in a hyperplane trough θ . Hence the sets T_1 and T_2 are (n-1)-dimensional faces of K_1 and K_2 , respectively.

Lemma 3.13. If $K_1 \not\subset K_2$ and $K_2 \not\subset K_1$, then $K_i = \operatorname{conv}(h_i \cup T_i), i = 1, 2$.

Proof. Since K_1 is a closed convex cone with apex θ , the set T_1 is also a closed convex cone with apex θ . Because T_1 is the projection of K_1 on the hyperplane that contains T_1 in the direction of h_1 , the closed convex cone $C_1 = \operatorname{conv}(h_1 \cup T_1)$ lies in K_1 .

Assume, for contradiction, that $K_1 \not\subset C_1$. Since K_1 is the convex hull of its extreme halflines with common apex θ , there is an extreme halfline m of K_1 that does not lie in C_1 . Choose a point $z \in m \setminus \{\theta\}$. Clearly, there is a point $x \in S_1$ so close to z that $x \notin C_1$, a contradiction to the choice of C_1 . Hence $K_1 = C_1$. Similarly, $K_2 = \operatorname{conv}(h_2 \cup T_2)$. **Lemma 3.14.** If $K_1 \not\subset K_2$ and $K_2 \not\subset K_1$, then both K_1 and K_2 are simplicial ncones, and K is a generalized n-simplex.

Proof. Denote by N the hyperplane containing the facet T_1 of K_1 . Choose a point $v \in \operatorname{int} K_1$. Then the set $K_1 \cap (v + K_2)$ is n-dimensional and $Q = T_1 \cap (v + K_2)$ is an (n-1)-dimensional set that lies in $\operatorname{rint} T_1$. Since $0 \in N$, we have $w + Q = N \cap (v + w + K_2)$ for any vector $w \in N$, and the set $T_1 \cap (w + Q)$ is (n-1)-dimensional if and only if $K_1 \cap (v + w + K_2)$ is n-dimensional

If the set $K_1 \cap (v+w+K_2)$ is *n*-dimensional, then, by condition 2), it is homothetic to K; hence all (n-1)-dimensional intersections $T_1 \cap (w+Q)$, $w \in N$, are homothetic to Q. By the inductive assumption, T_1 is a simplicial (n-1)-cone and Q is a generalized (n-1)-simplex. Then $K_1 = \operatorname{conv}(h_1 \cup T_1)$ is a simplicial *n*-cone, and $K = \operatorname{cl}(\operatorname{conv}(v \cup Q))$ is a generalized *n*-simplex. Similarly, K_2 is a simplicial *n*-cone.

Acknowledgements. The author thanks the referee for many helpful comments on an earlier draft of the paper.

References

- L. Danzer, B. Grünbaum: Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee, Math. Z. 79 (1962) 95–99.
- [2] R. Fourneau: Nonclosed simplices and quasi-simplices, Mathematika 24 (1977) 71–85.
- [3] P. M. Gruber: Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard. II, Math. Ann. 184 (1970) 223–238.
- [4] D. Hinrichsen, U. Krause: Choice of techniques in joint production models, Oper. Res.-Verf. 34 (1979) 155–171.
- [5] V. Klee: Extremal structure of convex sets, Arch. Math. 8 (1957) 234–240.
- [6] V. Klee: Extremal structure of convex sets. II, Math. Z. 69 (1958) 90–104.
- [7] R. R. Phelps: Lectures on Choquet's Theorem, Springer, Berlin (2001).
- [8] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).
- C. A. Rogers, G. C. Shephard: The difference body of a convex body, Arch. Math. 8 (1957) 220–233.
- [10] R. Schneider: Mixed polytopes, Discrete Comput. Geom. 29 (2003) 575–593.
- [11] V. Soltan: A characterization of homothetic simplices, Discrete Comput. Geom. 22 (1999) 193–200.
- [12] V. Soltan: The characteristic intersection property of line-free Choquet simplices in E^d , Discrete Comput. Geom. 29 (2003) 561–573.
- [13] V. Soltan: Choquet simplexes in finite dimension a survey, Expo. Math. 22 (2004) 301–315.
- [14] V. Soltan: Addition and subtraction of homothety classes of convex sets, Beitr. Algebra Geom. 47 (2006) 351–361.
- [15] G. Winkler: Choquet Order and Simplices with Applications in Probabilistic Models, Springer, Berlin (1985).