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Departamento de Matemática Aplicada, E.T.S.I. Informática,
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Departamento de Matemática Aplicada,
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E.T.S.I. Industriales, Universidad Nacional de Educación a Distancia,
Calle Juan del Rosal, 12, Ciudad Universitaria, 28040 Madrid, Spain

vnovo@ind.uned.es

Received: March 30, 2009
Revised manuscript received: July 1, 2009
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1. Introduction and preliminaries

Lin and Fukushima [11] introduced the following concept of strong convexity of order
k for a scalar function, where k ≥ 1 is a real number. We suppose that C is a
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nonempty convex set of the n-dimensional Euclidean space R
n endowed with the

Euclidean norm ‖ · ‖.

Definition 1.1. A function f : C → R is said to be strongly convex of order k, if
there exists a constant c > 0 such that for all x, y ∈ C and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)‖x− y‖k. (1)

Lin and Fukushima [11] applied this concept to obtain some exact penalty results for
nonlinear programs and mathematical programs with equilibrium constraints. For
k = 2, the function f is usually called strongly convex (see Rockafellar and Wets
[14, Definition 12.58] or Vial [15, 16]). It is clear that strong convexity of any order
implies convexity, but the reciprocal implication is not true in general (the function
f : R → R with f(x) = x is a counterexample).

Given a pointed, solid and convex cone D ⊂ R
p, we consider that R

p is partially
ordered by the relation: z ≤D z′ ⇔ z′ − z ∈ D.

Recall that a convex cone D is pointed if D ∩−D = {0} and it is solid if its interior
is nonempty. A function f : C → R

p is called D-convex on C if for all x, y ∈ C and
t ∈ [0, 1],

f(tx+ (1− t)y) ≤D tf(x) + (1− t)f(y).

When p = 1, we will usually omit the cone R+ in the expression “R+-convex�.

As usual we denote by B(x0, δ) the open ball centered at x0 and radius δ > 0, by
intM the interior of the set M ⊂ R

n and by coM the convex hull of M . We denote
by D+ the (positive) polar cone to D, that is, D+ = {λ ∈ R

p : 〈λ, v〉 ≥ 0, ∀v ∈ D},
where 〈·, ·〉 denotes the usual scalar product in R

p. To shorten the notation, we will
write λv instead of 〈λ, v〉 in some parts of this paper.

In this work, we introduce the concept of strong D-convexity of order k, that extends
Definition 1.1 to vector-valued functions. With this new concept, if D is the nonneg-
ative orthant R

p
+ (Pareto case) and the components of f are (f1, . . . , fp), then f is

strongly R
p
+-convex of order k if and only if for each i = 1, . . . , p, fi is strongly convex

of order k. Although this case has been studied by Gupta et al. [6] and Bhatia [1],
these authors only use the scalar version of strong convexity, since they consider the
notion by components, not globally.

The paper is organized as follows. In Section 2, we introduce the concept of strongly
D-convex vector-valued function of order k, we prove several properties of these func-
tions, and we provide two characterizations of strong D-convexity for Lipschitz func-
tions. One of them is stated through a new higher order strong monotonicity notion
for the Clarke generalized Jacobian, introduced in this paper. Similar characteri-
zations are also given for a Fréchet differentiable function. Moreover, an additional
sufficient condition is stated for twice Fréchet differentiable functions, which is a char-
acterization for the case k = 2. In Sections 3 and 4, we study links between strong
convexity of order k and global strict minimizers of order k. To be precise, in Section
3, we establish a characterization of strict minimizer of order k, and we prove that a
local strict minimizer of order k for a strongly D-convex function is also a global strict
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minimizer of order k. Then, in Section 4, we establish sufficient optimality conditions
for this class of minimizers in a multiobjective optimization problem involving locally
Lipschitz or differentiable strong cone-convex functions.

2. Higher order strong cone-convexity

We extend the definition of strong convexity of order k due to Lin and Fukushima
[11], to a vector-valued map as follows.

Definition 2.1. Let C be a convex subset of Rn. It is said that f : Rn → R
p is

strongly D-convex of order k on C, denoted f ∈ SCo(k, C), if there exists e ∈ intD
such that for all x, y ∈ C and t ∈ [0, 1],

f(tx+ (1− t)y) ≤D tf(x) + (1− t)f(y)− t(1− t)‖x− y‖ke. (2)

Sometimes, when (2) is satisfied we will say that f is strongly D-convex of order k
on C with constant e.

This definition does not depend on the norm and it is a natural extension of the scalar
strong convexity of order k to a vector-valued map, because for a scalar function,
taking D = R+ and e = c we obtain Definition 1.1.

When λ ∈ D+ we will write λf instead of λ ◦ f . Some immediate properties are the
following. Let f ∈ SCo(k, C), then:

(i) f is D-convex on C,

(ii) αf, λf ∈ SCo(k, C) for all α > 0, λ ∈ D+ \ {0},

(iii) f + g ∈ SCo(k, C) for all D-convex function g.

Other property about the composition is the following.

Proposition 2.2. Let K ⊂ R
q be a solid convex cone, C be a convex set of Rn and

let e ∈ intD. Assume that the function ψ : Rp → R
q satisfies the following conditions

(3):

ψ is increasing, i.e., y ≤D z ⇒ ψ(y) ≤K ψ(z), (3a)

ψ is K-convex on R
p, (3b)

ψ(y + αe) ≤K ψ(y) + αψ(e) ∀y ∈ R
p, ∀α ∈ R, (3c)

ψ(e) ∈ intK. (3d)

If f is strongly D-convex of order k on C with constant e, then ψ ◦ f is strongly

K-convex of order k on C with constant ψ(e).

Proof. By assumption, for all x, y ∈ C and t ∈ [0, 1], inequality (2) holds. Applying
ψ to this inequality and using properties (3a) and (3c), we obtain

ψ(f(tx+ (1− t)y)) ≤K ψ(tf(x) + (1− t)f(y))− t(1− t)‖x− y‖kψ(e).

As ψ is K-convex, it follows that

ψ(f(tx+ (1− t)y)) ≤K tψ(f(x)) + (1− t)ψ(f(y))− t(1− t)‖x− y‖kψ(e),

and the proof is finished.
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Some examples of functions ψ satisfying conditions (3), which are very used in opti-
mization, are the following:

(a) Case q = 1, K = R+.

1. The functionals ψ = λ ∈ D+ \ {0}.

2. The Gerstewitz function [5] ϕe : R
p → R is given by

ϕe(y) = inf{t ∈ R : y ∈ te−D}.

Property (3c) is proved, for example, in [7, Lemma 4.4].

3. If ψ1, . . . , ψr are functionals fromR
p to R satisfying properties (3), then

∑r
i=1αiψi

with αi > 0 also satisfies (3). If, in addition, for some constant c > 0, ψi(e) = c
for all i, then max1≤i≤r ψi satisfies properties (3) too.

(b) Case q > 1.

1. A linear function ψ : Rp → R
q that is positive, i.e., ψ(D) ⊂ K, and ψ(e) ∈ intK

satisfies (3). In particular, the function ψ(y) = λ(y)e′, where λ ∈ D+ \ {0} and
e′ ∈ intK.

2. If ψ1, . . . , ψq are functionals from R
p to R satisfying properties (3) for K = R+,

then ψ = (ψ1, . . . , ψq) : R
p → R

q satisfies (3) with K = R
q
+.

Recall that given a subset C of Rn, a function f : Rn → R
p is said to be Lipschitz on

C if, for some L > 0, one has ‖f(x) − f(x′)‖ ≤ L‖x − x′‖ ∀x, x′ ∈ C. The function
is said to be Lipschitz near x if f satisfies a Lipschitz condition on a neighborhood
of x, and f is locally Lipschitz on C if f is Lipschitz near x, for each x ∈ C.

Cone-convex functions have interesting Lipschitz properties. In particular, if f is
D-convex on C and the closure of D is pointed, then f is locally Lipschitz on the
relative interior of C (see Luc [12, Corollary 5.1]). In the sequel, we assume that the

cone D is closed.

Rademacher’s theorem (see [4]) asserts that f is Fréchet differentiable almost ev-
erywhere on a neighborhood of a point x when f is Lipschitz near x. Taking into
account this fact, Clarke introduced the concept of generalized Jacobian as follows
(see [3]). We denote by Jf(x) the usual Jacobian matrix of partial derivatives when
f is Fréchet differentiable at x.

Definition 2.3. Let f : Rn → R
p be locally Lipschitz, the generalized Jacobian of f

at x0 is

∂f(x0) = co
{
lim
n→∞

Jf(xn) : xn → x0, Jf(xn) exists
}
.

Below we will use the following lemma whose proof is easy and left to the reader.

Lemma 2.4. Let f : Rn → R
p be a strongly D-convex function of order k on C with

constant e ∈ intD. If f is Fréchet differentiable at x0 ∈ C, then

f(x) ≥D f(x0) + Jf(x0)(x− x0) + ‖x− x0‖
ke ∀x ∈ C.

The following result is a characterization of strongD-convexity of order k for Lipschitz
functions.
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Theorem 2.5. Let C ⊂ R
n be an open convex set and let f : C → R

p be locally

Lipschitz. Then f ∈ SCo(k, C) if and only if there exists e ∈ intD such that

f(x) ≥D f(y) + A(x− y) + ‖x− y‖ke ∀x, y ∈ C, ∀A ∈ ∂f(y). (4)

Proof. Suppose that f ∈ SCo(k, C) with constant e ∈ intD, let Ω be the set of
points x ∈ C such that Jf(x) exists, and let A ∈ ∂f(y), with y ∈ C. Then, there are
two possible situations:

(i) A = limn→∞ Jf(yn), with yn → y and yn ∈ Ω, and

(ii) A =
∑r

i=1 αiAi, with αi > 0,
∑r

i=1 αi = 1 and for each i = 1, . . . , r, Ai =
limn→∞ Jf(yi,n), with yi,n → y as n→ ∞ and yi,n ∈ Ω.

Case (i). Since yn ∈ Ω ⊂ C, by Lemma 2.4 we have that

Jf(yn)(x− yn) ≤D f(x)− f(yn)− ‖x− yn‖
ke ∀x ∈ C, ∀n ∈ N,

and taking the limit when n→ ∞

A(x− y) ≤D f(x)− f(y)− ‖x− y‖ke ∀x ∈ C.

Case (ii). As a consequence of (i), for each i = 1, . . . , r, we have that

Ai(x− y) ≤D f(x)− f(y)− ‖x− y‖ke ∀x ∈ C.

Multiplying by αi and adding up, one has
(∑r

i=1 αiAi)(x− y) ≤D (
∑r

i=1 αi)(f(x)− f(y)− ‖x− y‖ke),

and the conclusion follows because A =
∑r

i=1 αiAi and
∑r

i=1 αi = 1.

For the reciprocal implication, let x, y ∈ C, t ∈ (0, 1) and z = tx+ (1− t)y. Then by
assumption

f(x)− f(z) ≥D A(x− z) + ‖x− z‖ke ∀A ∈ ∂f(z),

f(y)− f(z) ≥D A(y − z) + ‖y − z‖ke ∀A ∈ ∂f(z).

Multiplying the first inequality by t, the second one by 1− t and adding up, one has

tf(x) + (1− t)f(y)− f(z) ≥D (t‖x− z‖k + (1− t)‖y − z‖k)e.

Since x− z = (1− t)(x− y) and y − z = t(y − x) it follows that

tf(x) + (1− t)f(y)− f(z) ≥D (t(1− t)k + (1− t)tk)‖x− y‖ke

= t(1− t)((1− t)k−1 + tk−1)‖x− y‖ke.

Using that for all t ∈ (0, 1),

tk−1 + (1− t)k−1 ≥ ϕ(k) :=

{
1 if 0 < k ≤ 2

(1/2)k−2 if k > 2

(see, for example, the proof of Theorem 4.2 in [11] or Theorem 3.1 in [1]), we obtain

tf(x) + (1− t)f(y)− f(z) ≥D t(1− t)‖x− y‖kϕ(k)e,
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and so
f(tx+ (1− t)y) ≤D tf(x) + (1− t)f(y)− t(1− t)‖x− y‖kce,

where c = ϕ(k) > 0 is independent of x, y and t. As ce ∈ intD, f is strongly
D-convex of order k on C.

Theorem 2.5 reduces to [1, Theorem 3.1] when p = 1.

The following result is a characterization of strong D-convexity of order k for differ-
entiable functions.

Theorem 2.6. Let f : Rn → R
p be Fréchet differentiable at each point of the convex

set C ⊂ R
n. Then f ∈ SCo(k, C) if and only if there exists e ∈ intD such that

f(y) ≥D f(x) + Jf(x)(y − x) + ‖y − x‖ke ∀x, y ∈ C.

Proof. (⇒) It follows from Lemma 2.4.

(⇐) The proof of this part is similar to that of Theorem 2.5 with A = Jf(x), and so
we omit it.

For p = 1, Theorem 2.6 improves Theorem 4.2 in [11], since we do not require f to
be a C1 function.

In the next example, an application of the previous theorem is given.

Example 2.7. Let f : Rn → R be defined by f(x) = ‖x‖k, with k ≥ 2. We are
going to prove that this function is strongly convex of order k on R

n. For this aim,
let us apply Theorem 2.6. We have to find a constant c > 0 such that f(a) ≥
f(b) + Jf(b)(a− b) + c‖a− b‖k ∀a, b ∈ R

n, i.e.,

‖a‖k ≥ ‖b‖k + k‖b‖k−2〈b, a− b〉+ c‖a− b‖k. (5)

If b = 0, this inequality is satisfied for all c ∈ (0, 1]. If a = b, (5) is satisfied for all

c > 0. So we can suppose a 6= b and b 6= 0. Now, dividing by ‖b‖k and setting t = ‖a‖
‖b‖

,
it results

tk ≥ 1 + k

(
1

‖b‖2
〈a, b〉 −

1

‖b‖2
〈b, b〉

)
+ c

(
‖a− b‖2

‖b‖2

)k/2

. (6)

As 〈a, b〉 = ‖a‖‖b‖ cos(â, b), we may write 〈a, b〉/‖b‖2 = wt, where w = cos(â, b) ∈
[−1, 1], and as ‖a−b‖2 = ‖a‖2+‖b‖2−2〈a, b〉, we have that ‖a−b‖2/‖b‖2 = t2+1−2wt.
Therefore (6) becomes

tk ≥ 1 + k(wt− 1) + c(t2 + 1− 2wt)k/2.

We have to prove that the function

g(w, t) =
tk − kwt+ k − 1

(t2 + 1− 2wt)k/2

has a lower bound c > 0 for t ≥ 0 and w ∈ [−1, 1]. If k = 2 the function g(w, t)
is constant, i.e., g(w, t) = 1 for all (w, t) ∈ [−1, 1] × [0,+∞). This means that, for
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k = 2, (5) is satisfied with equality for all a, b ∈ R
n choosing c = 1. In consequence,

we can suppose that k > 2.

If t = 0, g(w, 0) = k − 1 > 0.

For each fixed t > 0, the function w → g(w, t) is increasing for w ∈ [−1, 1], because
the derivative

dg(w, t)

dw
=

−k(k − 2)t2

(t2 + 1− 2wt)
k

2
+1

(
w −

tk − t2 + k − 2

(k − 2)t

)

is positive since its root is w0(t) =
tk−t2+k−2

(k−2)t
> 1 for all t 6= 1. If t = 1,

g(w, 1) =
−kw + k

(2− 2w)k/2
=

k(1− w)

2k/2(1− w)k/2
=

k

2k/2
1

(1− w)k/2−1

is increasing for w < 1 ((w, t) = (1, 1) corresponds to a = b and we know that the
inequality (5) is true for these values).

To prove w0(t) > 1 we write w0(t) as w0(t) =
1

k−2

(
tk−1 − t+ k−2

t

)
. Its derivative is

given by

w′
0(t) =

d

dt
w0(t) =

1

k − 2

[
(k − 1)tk−2 −

(
1 +

k − 2

t2

)]
.

This function satisfies

w′
0(t) < 0 for t ∈ (0, 1), w′

0(1) = 0 and w′
0(t) > 0 for t ∈ (1,+∞).

Therefore w0(t) > w0(1) = 1 for all t 6= 1 (let us observe that the equation (k −
1)tk−2 = 1 + k−2

t2
has a single root t = 1 for t > 0).

Now, using that w → g(w, t) is increasing on [−1, 1] we have

g(w, t) ≥ g(−1, t) =
tk + kt+ k − 1

(t2 + 1 + 2t)k/2
=
tk + kt+ k − 1

(t+ 1)k
∀w ∈ [−1, 1].

The real function ϕ(t) = tk+kt+k−1
(t+1)k

, t ≥ 0, is lower bounded by a positive constant c
because:

(i) limt→+∞ ϕ(t) = 1, and so there exists R > 0 such that ϕ(t) > 1/2 for all t > R.

(ii) ϕ(t) is continuous and positive on [0, R], and by the Weierstrass Theorem there
exists m > 0 such that ϕ(t) ≥ m ∀t ∈ [0, R].

Therefore ϕ(t) ≥ c ∀t ≥ 0 where c = min{m, 1/2} > 0.

It is well-known that there is a strong relation between convexity and monotonicity
(see [14]). Now we extend the notion of monotonicity and give a characterization of
strong convexity of order k via this notion.

We denote the set of all p× n real matrices by Lp×n.
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Definition 2.8. A set-valued map T : Rn
⇉ Lp×n is said to be strongly monotone

of order k on C ⊂ R
n if there exists e ∈ intD such that

(B − A)(y − x) ≥D ‖y − x‖ke ∀x, y ∈ C,A ∈ T (x), B ∈ T (y). (7)

This definition extends the notion of strong monotonicity for a set-valued map T
from R

n to R
n (see, for example, [14, Definition 12.53], where only the case k = 2 is

considered) and it reduces to [11, Definition 4.1] when T is single-valued and p = 1.

Theorem 2.9. Let C be an open convex set of R
n and f : C → R

p be a locally

Lipschitz function. Then f ∈ SCo(k, C) if and only if the set-valued map ∂f : Rn
⇉

Lp×n is strongly monotone of order k on C.

Proof. Suppose that f ∈ SCo(k, C). By Theorem 2.5 there exists e ∈ intD such
that (4) holds. In consequence, for all x, y ∈ C, A ∈ ∂f(x) and B ∈ ∂f(y) we have

f(x)− f(y) ≥D B(x− y) + ‖y − x‖ke,

f(y)− f(x) ≥D A(y − x) + ‖y − x‖ke.

Adding up these inequalities, it results

0 ≥D B(x− y) + A(y − x) + 2‖y − x‖ke,

which proves that ∂f is strongly monotone of order k on C with constant 2e ∈ intD.

Reciprocally, assume that ∂f is strongly monotone of order k on C, i.e., (7) holds
with T = ∂f . We are going to apply Proposition 2.6.5 in Clarke [3] which establishes
that for a, b ∈ C, f(b)− f(a) ∈ co ∂f([a, b])(b− a), where [a, b] = co{a, b}, i.e., there
exist q ≥ 0, zj ∈ [a, b], αj > 0, Aj ∈ ∂f(zj), j = 0, 1, . . . , q such that

∑q
j=0 αj = 1

and f(b)− f(a) =
∑q

j=0 αjAj(b− a).

Given x, y ∈ C, consider m ∈ N, ti =
i

m+1
, xi = x + ti(y − x), i = 0, 1, . . . ,m + 1.

By Proposition 2.6.5 in [3] there exist ni ≥ 0, zij ∈ [xi, xi+1], αij > 0, Aij ∈ ∂f(zij),
j = 0, 1, . . . , ni such that

∑ni

j=0 αij = 1 and

f(xi+1)− f(xi) = Ai(xi+1 − xi) = (ti+1 − ti)Ai(y − x),

where Ai =
∑ni

j=0 αijAij, zij = x+ rij(y − x) with ti ≤ rij ≤ ti+1 and i = 0, 1, . . . ,m.
It follows for all A ∈ ∂f(x),

f(y)− f(x) =
m∑

i=0

(f(xi+1)− f(xi)) =
m∑

i=0

(ti+1 − ti)Ai(y − x)

= A(y − x) +
m∑

i=0

(ti+1 − ti)(Ai − A)(y − x). (8)

By hypothesis, (Aij −A)(zij − x) ≥D ‖zij − x‖ke = rkij‖y− x‖ke. Therefore, for each



C. Gutiérrez, B. Jiménez, V. Novo / Strong Convexity and Strict Minimizers ... 93

i = 1, 2, . . . ,m

(Ai − A)(y − x) =

ni∑

j=0

αij(Aij − A)(y − x) =

ni∑

j=0

αij(Aij − A)r−1
ij (zij − x)

≥D

ni∑

j=0

αijr
−1
ij r

k
ij‖y − x‖ke =

(
ni∑

j=0

αijr
k−1
ij

)
‖y − x‖ke

≥D

(
ni∑

j=0

αijt
k−1
i

)
‖y − x‖ke = tk−1

i ‖y − x‖ke.

We have excluded i = 0 because some r0j could be 0.

In view of (8), since t0 = 0,

f(y)− f(x)

≥D A(y − x) + (t1 − t0)(A0 − A)(y − x) +

(
m∑

i=1

(ti+1 − ti)t
k−1
i

)
‖y − x‖ke

= A(y − x) +
1

m+ 1
(A0 − A)(y − x) +

(
m∑

i=0

(ti+1 − ti)t
k−1
i

)
‖y − x‖ke.

Let us observe that A0 belongs to the set co ∂f([x, x1]), which is bounded because the
set-valued map z 7→ ∂f(z) is upper semicontinuous at x by [3, Proposition 2.6.2] and
∂f(x) is a nonempty convex compact set. Therefore, taking the limit as m → +∞,
we obtain

f(y)− f(x) ≥D A(y − x) +

(∫ 1

0

tk−1dt

)
‖y − x‖ke = A(y − x) +

1

k
‖y − x‖ke.

By Theorem 2.5, taking into account that (1/k)e ∈ intD, we see that f ∈ SCo(k, C),
and the proof is finished.

Theorem 2.9 is also new, to our knowledge, for scalar functions (i.e., p = 1), and in
this case, it generalizes Theorem 4.3 in Lin and Fukushima [11], where it is assumed
that f : Rn → R is continuously differentiable.

Next we state a similar result for differentiable functions.

Theorem 2.10. Let f : Rn → R
p be continuously differentiable at each point of the

convex set C ⊂ R
n. Then f ∈ SCo(k, C) if and only if the map Jf : Rn → Lp×n is

strongly monotone of order k on C.

Proof. The proof of “only if� part is similar to that of Theorem 2.9 using Theorem
2.6 instead of Theorem 2.5.

Thus, suppose the map Jf : Rn → Lp×n is strongly monotone of order k on C, i.e.,
there exists e ∈ intD such that (Jf(y)− Jf(x))(y − x) ≥D ‖y − x‖ke ∀x, y ∈ C.
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Consider x, y ∈ C and t ∈ [0, 1]. By assumption

(Jf(x+ t(y − x))− Jf(x))(t(y − x))− tk‖y − x‖ke ∈ D ∀t ∈ [0, 1].

Hence

ψ(t) := (Jf(x+ t(y − x))− Jf(x))(y − x)− tk−1‖y − x‖ke ∈ D ∀t ∈ [0, 1].

Moreover, if ϕ(t) := f(x+t(y−x))−Jf(x)(t(y−x))− 1
k
tk‖y−x‖ke one has that ϕ′(t) =

ψ(t). As D is a closed convex cone,
∫ 1

0
ψ(t)dt = limm→+∞

∑m
i=0(ti+1 − ti)ψ(ti) ∈ D,

with ti = i/(m+ 1), i = 0, 1, . . . ,m+ 1. Therefore

∫ 1

0

ψ(t)dt = ϕ(1)− ϕ(0) = f(y)− Jf(x)(y − x)−
1

k
‖y − x‖ke− f(x) ∈ D,

and by Theorem 2.6 the conclusion is obtained.

This theorem generalizes Theorem 4.3 in [11], where the scalar case is considered.

We finish this section with a sufficient condition for a twice differentiable function
to be strongly cone-convex of order k. Such a condition is a characterization for
the case k = 2 and it is based on the notion of strongly positive definite map of
order k introduced in Definition 2.11. We denote by J2f(x) the second order Fréchet
derivative of f at x, which is considered as a bilinear function from R

n × R
n to R

p.
The set of all bilinear functions from R

n × R
n to R

p is denoted by B(Rn × R
n,Rp).

Definition 2.11. A map H : Rn → B(Rn × R
n,Rp) is strongly positive definite of

order k on C if there exists e ∈ intD such that

H(z)(y − x, y − x) ≥D ‖y − x‖ke ∀x, y ∈ C, ∀z ∈ [x, y].

Theorem 2.12. Let f : Rn → R
p be twice continuously Fréchet differentiable at each

point of the convex set C ⊂ R
n. Consider the following statements:

(a) f ∈ SCo(k, C).

(b) The map J2f : Rn → B(Rn ×R
n,Rp) is strongly positive definite of order k on

C.

Then

(i) (b) ⇒ (a).

(ii) If k = 2, then (a) ⇔ (b).

Proof. (i) Suppose that (b) holds. Given x, y ∈ C, define the function ψ : [0, 1] → R
p

by

ψ(t) = Jf(x+ t(y − x))(y − x)− Jf(x)(y − x)− t‖y − x‖ke.

Its derivative is

ψ′(t) = J2f(x+ t(y − x))(y − x, y − x)− ‖y − x‖ke.
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By hypothesis, ψ′(t) ≥D 0 ∀t ∈ [0, 1], and therefore ψ(1) − ψ(0) =
∫ 1

0
ψ′(t)dt ≥D 0,

i.e., Jf(y)(y− x)− Jf(x)(y− x)−‖y− x‖ke ≥D 0. By Theorem 2.10 the conclusion
follows.

(ii) We only have to prove (a) ⇒ (b). Suppose that (a) holds with k = 2. By
Theorem 2.6 there exists e ∈ intD such that

f(y) ≥D f(x) + Jf(x)(y − x) + ‖y − x‖2e ∀x, y ∈ C.

Given x, y ∈ C and z ∈ [x, y), for all t > 0 small enough we have z+tv ∈ C where v =
y−x. By applying the above inequality, one has f(z+tv)−f(z)−tJf(z)v ≥D t2‖v‖2e.
Dividing by 1

2
t2 and taking the limit as t → 0+ we obtain J2f(z)(v, v) ≥D 2‖v‖2e,

which is the desired conclusion. If z = y, we choose v = x− y and the conclusion is
the same J2f(z)(v, v) ≥D 2‖v‖2e, i.e., J2f(z)(y − x, y − x) ≥D 2‖y − x‖2e because
J2f(z)(−v,−v) = J2f(z)(v, v).

Example 2.13. As an application of this theorem, if f(x) = 〈x,Ax〉 + 〈b, x〉 + c
is a quadratic function, where A is a symmetric n × n matrix, b ∈ R

n and c ∈ R,
then f ∈ SCo(2,Rn) if and only if A is positive definite, because J2f(z) = A for all
z ∈ R

n, and the function v → 〈v, Av〉 is continuous and positive on the compact set
S1 := {v ∈ R

n : ‖v‖ = 1}, so there exists α > 0 such that 〈v, Av〉 ≥ α for all v ∈ S1,
and therefore 〈v, Av〉 ≥ α‖v‖2 ∀v ∈ R

n.

Example 2.14. The function f : R → R defined by f(x) = x4 is strongly convex of
order 4 on R (according to Example 2.7), but it is not strongly convex of order 2 on
R by Theorem 2.12(ii) since f ′′(0) = 0. This simple example shows the necessity of
studying strong convexity of order k, with k 6= 2.

3. Strong convexity and strict minimizers

Given a function f : Rn → R
p and a nonempty set C ⊂ R

n we are interested in strict
minimizers to the following multiobjective optimization problem:

D −Min{f(x) : x ∈ C}. (9)

We consider the notion of strict minimizer of order k according to Definition 3.1 due
to Jiménez [8] (see, also, [9] and [10]).

Definition 3.1. (a) We say that a point x0 ∈ C is a local strict minimizer of order
k for f on C, denoted x0 ∈ LStr(k, f, C), if there exist a constant α > 0 and a
neighborhood U of x0 such that

(f(x) +D) ∩B(f(x0), α‖x− x0‖
k) = ∅ ∀x ∈ C ∩ U \ {x0}. (10)

(b) We say that a point x0 ∈ C is a local strict (resp. weak) minimizer for f on C,
denoted x0 ∈ LStr(f, C) (resp. x0 ∈ LWMin(f, C)), if there exists a neighborhood U
of x0 such that

f(x)− f(x0) /∈ −D (resp. f(x)− f(x0) /∈ − intD) ∀x ∈ C ∩ U \ {x0}. (11)
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It is clear that we have global notions of strict minimizer of order k, strict minimizer
and weak minimizer on C, if U is replaced by the whole space R

n. In these cases we
write x0 ∈ GStr(k, f, C), x0 ∈ GStr(f, C) and x0 ∈ GWMin(f, C), respectively. Also
it is clear that any local (resp. global) strict minimizer of order k is a local (resp.
global) strict minimizer.

Next, we state a characterization of strict minimizer of order k.

Proposition 3.2. (i) A point x0 ∈ C is a local strict minimizer of order k for f on

C if and only if there exist a neighborhood U of x0 and e ∈ intD, such that

f(x)− f(x0)− ‖x− x0‖
ke /∈ − intD ∀x ∈ C ∩ U \ {x0}, (12)

which is equivalent to

f(x) 6< f(x0) + ‖x− x0‖
ke ∀x ∈ C ∩ U \ {x0},

where the relation a 6< b means that a− b /∈ − intD.

(ii) A point x0 ∈ C is a global strict minimizer of order k for f on C if and only if

there exists e ∈ intD such that

f(x)− f(x0)− ‖x− x0‖
ke /∈ − intD ∀x ∈ C \ {x0}.

Proof. We only prove part (i) because the proof of part (ii) is similar. Suppose that
x0 ∈ LStr(k, f, C), then condition (10) is true, and this is equivalent to

f(x)− f(x0)

‖x− x0‖k
∈ (B(0, α)−D)c ∀x ∈ C ∩ U \ {x0}, (13)

where M c denotes the complement of the set M . It is clear that, given α > 0 and
e ∈ intD, there exists β > 0 such that βe ∈ B(0, α), and, consequently βe− intD ⊂
B(0, α)−D. So, from (13) it follows that

f(x)− f(x0)

‖x− x0‖k
∈ (βe− intD)c ∀x ∈ C ∩ U \ {x0},

that is
f(x)− f(x0)− ‖x− x0‖

kβe /∈ − intD ∀x ∈ C ∩ U \ {x0},

and we have the conclusion, because βe ∈ intD.

Now, for the reciprocal implication, suppose that condition (12) holds with e ∈ intD.
Then there exists α > 0 such that B(0, α) ⊂ e− intD. From (12) it follows that

f(x)− f(x0)

‖x− x0‖k
− e /∈ − intD ∀x ∈ C ∩ U \ {x0}. (14)

Suppose that (10) is not satisfied, then for some x ∈ C ∩ U \ {x0},

f(x)− f(x0)

‖x− x0‖k
∈ B(0, α)−D ⊂ e− intD −D ⊂ e− intD,

which contradicts (14).
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This proposition extends Proposition 2.11 by Gupta et al. [6] who consider the Pareto
case and local strict minimizers.

It is well-known that a local minimizer of a convex (scalar) function is also a global
minimizer. Next, we extend this classical result to a vector optimization problem.
First we show that, for a D-convex function, a local strict (resp. weak) minimizer is
also a global strict (resp. weak) minimizer and, second, we prove that for a strongly
D-convex function of order k, a local strict minimizer of order k is also a global strict
minimizer of order k. For a Pareto problem (i.e., D = R

p
+), our results reduce to

several ones obtained by Bhatia [1].

Proposition 3.3. Consider problem (9) and assume that C is convex and f is D-

convex on C.

(i) If x0 ∈ LStr(f, C), then x0 ∈ GStr(f, C).

(ii) If x0 ∈ LWMin(f, C), then x0 ∈ GWMin(f, C).

Proof. We only prove part (i) because the proof of part (ii) follows in a similar way
(see also [12, Proposition 5.20] and [13]).

By hypothesis condition (11) is satisfied. Suppose that the conclusion is false. Then
there exists x̄ ∈ C \ {x0} such that

f(x̄)− f(x0) ∈ −D. (15)

As U is a neighborhood of x0 and C is convex, there exists t0 > 0 such that xt =
tx̄+ (1− t)x0 ∈ C ∩ U \ {x0} ∀t ∈ (0, t0]. As f is D-convex, we have

f(xt) ≤D tf(x̄) + (1− t)f(x0) = f(x0) + t(f(x̄)− f(x0)).

From here and using (15) we derive

f(xt)− f(x0) ≤D t(f(x̄)− f(x0)) ≤D 0 ∀t ∈ (0, t0],

which contradicts (11).

Theorem 3.4. Consider problem (9) and assume that C is a closed and convex set

and f ∈ SCo(k, C) is continuous on C. If x0 ∈ LStr(k, f, C), then x0 ∈ GStr(k, f, C).

Proof. By hypothesis, we can suppose that (10) holds for U = B(x0, r) with r > 0.
Suppose that the conclusion is false. Then ∀n ∈ N ∃xn ∈ C \ {x0} such that

(f(xn) +D) ∩B(f(x0),
1
n
‖xn − x0‖

k) 6= ∅.

Hence, there exists dn ∈ D such that

bn :=
f(xn) + dn − f(x0)

‖xn − x0‖k
∈ B(0, 1/n). (16)

We have two cases.
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Case (i). The sequence (xn) is bounded. Then we can suppose that xn → x ∈ C
since C is closed. From (16) it follows that

yn := f(xn) + dn − f(x0) = ‖xn − x0‖
kbn → 0.

From here, as f is continuous, we have that f(xn) − f(x0) = yn − dn → f(x) −
f(x0) ∈ −D, which is a contradiction if x 6= x0 by Proposition 3.3 (since a local strict
minimizer of order k is a local strict minimizer).

If x = x0, as xn → x0, ∃n0 ∈ N such that ∀n ≥ n0, 1/n < α and xn ∈ B(x0, r) \ {x0}.
Using (16) we have

f(xn)− f(x0) = ‖xn − x0‖
kbn − dn ∈ B(0, 1

n
‖xn − x0‖

k)−D

⊂ B(0, α‖xn − x0‖
k)−D,

which contradicts (10).

Case (ii). The sequence (xn) is unbounded. Then we can suppose that ‖xn − x0‖ →
+∞ and vn := r

2
· xn−x0

‖xn−x0‖
→ v for some v ∈ R

n. Let us observe that ‖v‖ = r/2 and

so v ∈ B(0, r).

As f ∈ SCo(k, C), there exists e ∈ intD such that (2) holds, and so we deduce that

f(x0 + t(xn − x0)) ≤D f(x0) + t(f(xn)− f(x0))− t(1− t)‖xn − x0‖
ke.

From here

f(x0 + t(xn − x0))− f(x0)

t
≤D (f(xn)− f(x0))− (1− t)‖xn − x0‖

ke

= − dn + ‖xn − x0‖
kbn − (1− t)‖xn − x0‖

ke.

Hence

f(x0 + t(xn − x0))− f(x0)

t‖xn − x0‖
≤D

−dn
‖xn − x0‖

+ ‖xn − x0‖
k−1(bn − (1− t)e)

≤D ‖xn − x0‖
k−1(bn − (1− t)e).

As the above inequality is true for all t ∈ (0, 1) we can apply it to the sequence
tn = r

2
· 1
‖xn−x0‖

→ 0. Then, we have tn(xn − x0) =
r
2
· xn−x0

‖xn−x0‖
= vn → v. Therefore

f(x0 + tn(xn − x0))− f(x0)

r/2
≤D ‖xn − x0‖

k−1(bn − (1− tn)e).

Now, limn→∞(bn − (1− tn)e) = −e ∈ − intD, and so bn − (1− tn)e ∈ − intD for all
n large enough. Let x′n := x0+ tn(xn−x0) = x0+ vn ∈ C ∩B(x0, r) (x

′
n ∈ C because

tn → 0 and x′n is a convex linear combination of points of C). For all n large enough,
one has

f(x′n)− f(x0)

r/2
∈ ‖xn − x0‖

k−1(bn − (1− tn)e)−D ⊂ − intD −D ⊂ − intD.

Hence, f(x′n) − f(x0) ∈ − intD which is a clear contradiction, because if x0 is a
strict minimizer of order k of f on C ∩B(x0, r) then x0 is a weak minimizer of f on
C ∩B(x0, r).
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Let us observe with respect to the hypotheses of Theorem 3.4 that f is continuous
on the relative interior of C because f is D-convex, and so f is continuous on C if
and only if f is continuous on the relative boundary of C.

Theorem 3.4 extends Theorem 4.1 in Bhatia [1], who uses the Pareto order.

Theorem 3.4 is also true for a constrained vector optimization problem if the con-
straint function is cone-convex on C. Let g : Rn → R

m and let K ⊂ R
m be a convex

cone. Consider the constrained optimization problem

D −Min{f(x) : x ∈ S}, (17)

where S = {x ∈ C : g(x) ∈ −K}.

Corollary 3.5. Consider problem (17) and assume that C is a closed and convex

set, f ∈ SCo(k, C) is continuous on C, K is closed and g is continuous on C. If g is

K-convex on C and x0 ∈ LStr(k, f, S), then x0 ∈ GStr(k, f, S).

Proof. If we see that S is a convex set, the corollary is an immediate consequence
of Theorem 3.4 since S is closed. In fact, if x, x̄ ∈ S, then g(x), g(x̄) ∈ −K and since
g is K-convex on C we have that for xt = tx+ (1− t)x̄,

g(xt) ≤K tg(x̄) + (1− t)g(x) ∈ (−K) + (−K) ⊂ −K

because K is a convex cone. Consequently xt ∈ S, for each t ∈ [0, 1].

4. Optimality conditions

In this section we obtain optimality conditions for a point to be a strict minimizer
of order k. For this aim we will use higher order strong cone-convexity assump-
tions. From our study it is clear that this kind of convexity is appropriate to obtain
optimality conditions for higher order strict minimizers.

Lemma 4.1. If for some λ ∈ D+\{0}, x0 ∈ GStr(k, λf, C), then x0 ∈ GStr(k, f, C).

Proof. By assumption there exists c > 0 such that λf(x) ≥ λf(x0) + c‖x − x0‖
k

∀x ∈ C. As intD is a nonempty cone, there exists e0 ∈ intD satisfying λ(e0) < c.
Suppose that x0 /∈ GStr(k, f, C). Then by Proposition 3.2, for e0 there exists x̄ ∈ C
such that f(x̄)− f(x0)− ‖x̄− x0‖

ke0 ∈ − intD. As λ ∈ D+ \ {0} it follows that

λf(x̄) < λf(x0) + ‖x̄− x0‖
kλ(e0) < λf(x0) + c‖x̄− x0‖

k,

which is a contradiction.

In Proposition 4.2 and Theorems 4.5 and 4.6, we assume the function f : Rn → R
p is

strongly D-convex of order k on an open convex set C. According to [12, Corollary
5.1], f is locally Lipschitz on C, and so the generalized Jacobian ∂f(x) exists for all
x ∈ C.

Proposition 4.2. Let C ⊂ R
n be an open convex set, let f ∈ SCo(k, C) and let

x0 ∈ C. If 0 ∈ λ∂f(x0) for some λ ∈ D+ \ {0} then x0 ∈ GStr(k, f, C).
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Proof. By Theorem 2.5, there exists e ∈ intD such that

f(x) ≥D f(x0) + A(x− x0) + ‖x− x0‖
ke ∀x ∈ C, ∀A ∈ ∂f(x0). (18)

As 0 ∈ λ∂f(x0), for some Ā ∈ ∂f(x0) one has 0 = λĀ. Taking this into account,
using the inequality (18) with A = Ā, and by applying λ to both sides it results

λf(x) ≥ λf(x0) + λĀ(x− x0) + ‖x− x0‖
kλ(e) = λf(x0) + ‖x− x0‖

kλ(e)

∀x ∈ C. By Lemma 4.1, the conclusion follows since λ(e) > 0.

Now we study problem (17) with explicit constraint.

Definition 4.3. It is said that a locally Lipschitz function g : R
n → R

m is ∂-
quasiconvex by scalarization on C if ∀µ ∈ K+, ∀x, y ∈ C one has

(µg)(y) ≤ (µg)(x) ⇒ 〈η, y − x〉 ≤ 0 ∀η ∈ ∂(µg)(x).

If m = 1 we say simply g is ∂-quasiconvex on C instead of g is ∂-quasiconvex by
scalarization on C. In this case, this notion has been considered, for example, in [2,
Definition 2.2].

The notion of ∂-quasiconvexity by scalarization is more general than the notion of
cone-convexity as the following result shows.

Proposition 4.4. If g is K-convex on an open convex set C, then g is ∂-quasiconvex
by scalarization on C.

Proof. Suppose that x, y ∈ C, µ ∈ K+ and (µg)(y) ≤ (µg)(x). As µg is convex, it
is regular in the Clarke sense (see [3]) and so

(µg)◦(x, y − x) = (µg)′(x, y − x) = lim
t→0+

(µg)(x+ t(y − x))− (µg)(x)

t
, (19)

where (µg)◦ is the Clarke generalized derivative and (µg)′ is the usual one-sided
directional derivative. Since µg is convex

(µg)(x+ t(y − x)) ≤ t(µg)(y) + (1− t)(µg)(x) = (µg)(x) + t[(µg)(y)− (µg)(x)],

and so t−1[(µg)(x+t(y−x))−(µg)(x)] ≤ (µg)(y)−(µg)(x). In view of this inequality,
from (19) it follows that

(µg)◦(x, y − x) ≤ (µg)(y)− (µg)(x) ≤ 0.

As (µg)◦(x, y − x) = maxη∈∂(µg)(x)〈η, y − x〉, we derive that 〈η, y − x〉 ≤ 0 ∀η ∈
∂(µg)(x), which completes the proof.

Theorem 4.5. Consider problem (17). Suppose that x0 ∈ S, C is an open convex

set, f : Rn → R
p is strongly D-convex of order k on C, and g : Rn → R

m is ∂-
quasiconvex by scalarization on C. If there exist λ ∈ D+ \ {0} and µ ∈ K+ such

that

0 ∈ λ∂f(x0) + µ∂g(x0) and (µg)(x0) = 0,

then x0 ∈ GStr(k, f, S).
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Proof. As f ∈ SCo(k, C), by Theorem 2.5 there exists e ∈ intD such that (18)
holds. By applying λ to both sides of (18) it results

λf(x) ≥ λf(x0) + λA(x− x0) + ‖x− x0‖
kλ(e) ∀x ∈ C, ∀A ∈ ∂f(x0). (20)

If x ∈ S, then g(x) ≤K 0, and so (µg)(x) ≤ 0 = (µg)(x0). As g is ∂-quasiconvex by
scalarization on C, it follows that

0 ≥ 〈η, x− x0〉 ∀η ∈ ∂(µg)(x0). (21)

By hypothesis, there exist Ā ∈ ∂f(x0) and B̄ ∈ ∂g(x0) satisfying

λĀ+ µB̄ = 0. (22)

As µ∂g(x0) = ∂(µg)(x0) by [3, Theorem 2.6.6], from (21) one has

0 ≥ µB̄(x− x0) ∀x ∈ S. (23)

Adding up (20) with A = Ā and (23), we obtain

λf(x) ≥ λf(x0) + (λĀ+ µB̄)(x− x0) + ‖x− x0‖
kλ(e) ∀x ∈ S.

Using (22) it results

λf(x) ≥ λf(x0) + c‖x− x0‖
k ∀x ∈ S, (24)

where c = λ(e) > 0. Equation (24) says that x0 ∈ GStr(k, λf, S). From Lemma 4.1
the conclusion follows.

In the case K = R
m
+ we can weaken the hypothesis obtaining the following result,

whose proof is similar to that of Theorem 4.5 and so it is omitted. We denote
I(x0) = {j ∈ {1, . . . ,m} : gj(x0) = 0}.

Theorem 4.6. Consider problem (17) with K = R
m
+ . Suppose that x0 ∈ S, C

is an open convex set, f : R
n → R

p is strongly D-convex of order k on C, and

gj : Rn → R, j ∈ I(x0), are ∂-quasiconvex on C. If there exist λ ∈ D+ \ {0} and

µj ≥ 0, j ∈ {1, . . . ,m}, such that

0 ∈ λ∂f(x0) +
m∑

j=1

µj∂gj(x0) and µjgj(x0) = 0, j = 1, . . . ,m,

then x0 ∈ GStr(k, f, S).

Bathia [1, Definition 3.3] uses the following notion (for scalar functions). A locally
Lipschitz function g : Rn → R is said to be strongly quasiconvex of order k on C if
there exists c > 0 such that for all x, y ∈ C,

g(y) ≤ g(x) ⇒ 〈η, y − x〉+ c‖y − x‖k ≤ 0 ∀η ∈ ∂g(x).

It is clear that if g is strongly quasiconvex of order k then g is ∂-quasiconvex. Taking
this into account Theorem 4.6 generalizes Theorem 4.4 in [1].
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In the above results (Proposition 4.2 and Theorems 4.5 and 4.6), the involved func-
tions are locally Lipschitz. If we suppose the functions are differentiable, we obtain
the following results whose proofs are omitted because are similar (we apply Theorem
2.6 instead of Theorem 2.5).

In the sequel, we assume the functions f : Rn → R
p and g : Rn → R

m are Fréchet
differentiable and C ⊂ R

n is a convex set.

Proposition 4.7. Let f ∈ SCo(k, C) and x0 ∈ C. If λJf(x0) = 0 for some λ ∈
D+ \ {0} then x0 ∈ GStr(k, f, C).

Definition 4.8. It is said that g : Rn → R
m is quasiconvex by scalarization on C if

∀µ ∈ K+, ∀x, y ∈ C one has

(µg)(y) ≤ (µg)(x) ⇒ 〈∇(µg)(x), y − x〉 ≤ 0,

i.e., if µg is quasiconvex on C in the ordinary sense (here ∇(µg)(x) is the gradient of
µg at x). If m = 1 we say simply g is quasiconvex on C.

Theorem 4.9. Consider problem (17). Suppose that x0 ∈ S, f ∈ SCo(k, C) and g
is quasiconvex by scalarization on C. If there exist λ ∈ D+ \ {0} and µ ∈ K+ such

that

λJf(x0) + µJg(x0) = 0 and (µg)(x0) = 0,

then x0 ∈ GStr(k, f, S).

Theorem 4.10. Consider problem (17) with K = R
m
+ . Suppose that x0 ∈ S, f ∈

SCo(k, C) and gj : Rn → R, j ∈ I(x0), are quasiconvex on C. If there exist λ ∈
D+ \ {0} and µj ≥ 0, j ∈ {1, . . . ,m}, such that

λJf(x0) +
m∑

j=1

µj∇gj(x0) = 0 and µjgj(x0) = 0, j = 1, . . . ,m,

then x0 ∈ GStr(k, f, S).

Theorem 4.10 generalizes and improves Theorem 2.13 in Gupta et al. [6], who consider
the Pareto case (D = R

p
+), f and g are continuously differentiable and strongly convex

of order k and λ ∈ intRp
+.
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