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1. Introduction

The concept of asymptotic directions, called also recession directions, was introduced
at the beginning of the last century by Steinitz [20] in order to study unbounded
convex sets. It is an indispensable tool in globally characterizing the behavior of
convex sets and convex functions, and in establishing global optimality conditions of
convex problems. Later on, this concept was generalized by Debreu in his famous
book [5] on value theory in which economic models may have no convex structure.
Since then a great number of researchers are involved in development and use of
asymptotic directions to various fields such as optimization, economics, mechanics,
engineering, finance etc. (see [1]–[4], [6]–[21]).

It is well-known that unbounded polyhedral convex sets are completely controlled by
their asymptotic directions, that is, any element of an unbounded polyhedral set can
be reached by following an asymptotic direction starting from a bounded region. This
is a representation theorem which says that a polyhedral convex set is the sum of its
asymptotic cone and a bounded polyhedron (see Theorem 19.1, [18]). When a set is
not polyhedral, such a representation is no longer true. For instance, the graph of the
function log(x) with x ≥ 1 in the plane has the positive abscises as asymptotic cone,
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although the distance from an element (x, log(x)) of the graph to the asymptotic
cone grows up to infinity as x goes to infinity. In order to manage such gaps between
an asymptotic ray and those elements of the set that generate it, we set up our aim
to develop new asymptotic directions, called second-order asymptotic directions, and
apply them to some problems of optimization theory.

The paper is structured as follows. In the next section we recall the concept of
first-order asymptotic directions and some elementary properties. Then we introduce
a new concept of asymptotic directions: second-order asymptotic directions, and
establish calculus rules on them. In the remaining sections we are concerned with
applications. In Section 3, we construct second-order asymptotic functions and derive
necessary and sufficient conditions for existence of global minima of a function on an
unbounded region. In Section 4 we deal with existence of efficient points in vector
optimization. Our conditions are expressed in terms of the second-order asymptotic
directions and fairly deepen the existing first-order criteria. In the last application
(Section 5) we study a question on the closedness of the sum of two closed sets which
is very important in the study of existence and stability of optimization problems (see
Chapter 2, Section 2.3 of [4]). The result of this section refines a well-known theorem
by Dieudonné [7] in which only first-order asymptotic directions are employed. The
applications presented in the three last sections show the importance that second-
order asymptotic directions play in optimization. Applications to other areas are also
conceivable and need further attention.

2. Asymptotic directions

Given a nonempty set A ⊆ R
k, we say that a vector u is a first-order asymptotic

direction (or asymptotic direction for short) of A if there are a sequence of elements
an of A and positive numbers tn converging to 0 such that

u = lim
n→∞

tnan.

The set of all asymptotic directions of A is denoted by R′(A) (the letter R is referred
to recession direction, as it is called in convex analysis). This set is a closed cone,
and is convex when the set A is convex. It can also be written as outer limit in the
sense of Kuratowski-Painlevé

R′(A) = lim sup
t↓0

tA.

Sometimes a smaller cone, the inner limit, is considered

R′
inn(A) = lim inf

t↓0
tA

which consists of all vectors u such that for any sequence of positive numbers tn
converging to 0, there is a sequence of elements an of A with u = limn→∞ tnan. When
these two cones coincide, the set A is called regular in [4] or asymptotable in [13].
This is the case for instance when the set A is convex. We shall distinguish those
asymptotic directions which contain only a bounded part of A in their neighborhoods.
Namely a nonzero asymptotic direction u of A is said to be isolated if there is no real
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number r > 0 such that the intersection of A with R+{u}+B(0, r) is unbounded; here
B(0, r) denotes the closed ball centered at the origin and of radius r, and R+{u} the
set of vectors tu with t ≥ 0. It is clear that convex sets have no isolated directions.
A parabola in a plane has all asymptotic directions isolated. To progress further let
us mention some elementary properties of asymptotic cones that can be found in [4]
and [9].

(1) R′(A) = {0} if and only if A is bounded;

(2) R′(A ∪B) = R′(A) ∪R′(B);

(3) R′(A ∩B) ⊆ R′(A) ∩R′(B);

(4) R′(A + B) ⊆ R′(A) + R′(B) if R′(A) ∩ −R′(B) = {0} and R′(A) + R′(B) ⊆
R′(A+B) if A is regular;

(5) R′(A×B) ⊆ R′(A)×R′(B). Equality holds if A is regular.

(6) If L : Rk → R
m is a linear operator, then L(R′(A)) ⊆ R′(L(A)). Equality holds

provided that R′(A) ∩Ker(L) = {0}.
We now introduce second-order asymptotic directions. They are based on limits of
sequences.

Definition 2.1. Let u be a vector of Rk. We say that a vector v is a second-order
asymptotic direction of A at u if there are a sequence of elements an of A and positive
numbers tn and sn such that

lim
n→∞

(

an
sn

− tnu

)

= v, (1)

lim
n→∞

sn = lim
n→∞

tn = ∞.

The set of all second-order asymptotic directions of A at u is denoted by R′′(A;u).
This set is a cone if nonempty. It can be expressed by outer limit

R′′(A;u) = lim sup
t,s↑∞

(

A

s
− tu

)

,

hence it is closed. Let us give some elementary properties of second-order asymptotic
directions.

Proposition 2.2. For nonempty sets A,B and a vector u in R
k, the following as-

sertions hold.

(i) R′′(A; 0) = R′(A);

(ii) R′′(A;u) is nonempty if and only if the vector u is a first-order asymptotic

direction of A;

(iii) R′′(A;u) ⊆ R′′(B;u) if A ⊆ B;

(iv) R′′(A ∪B;u) = R′′(A;u) ∪R′′(B;u);

(v) R′′(A ∩B;u) ⊆ R′′(A;u) ∩R′′(B;u);

(vi) R′′(αA; βu) = R′′(A;u) for every α > 0 and β > 0;

(vii) R′′(A+B;u) = R′′(A;u) whenever B is bounded;

(viii) R′′(A;u) + R{u} = R′′(A;u). In particular, if u is a first-order asymptotic

direction, then R{u} ⊆ R′′(A;u). Moreover, R′(A) ⊆ R{u} = R′′(A;u) holds if
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and only if there exits a ball B(0, r) with r > 0 such that A ⊆ R{u}+ B(0, r).
In particular, if u is an isolated direction, then R′′(A;u) 6= R{u}.

(ix) If L : R
k → R

m is a linear operator and u ∈ R′(A), then L(R′′(A;u)) ⊆
R′′(L(A);L(u)).Equality holds provided that L is injective onR′(A) and R′′(A;u)
∩Ker(L) = {0}.

Proof. The first assertion is immediate from the definition because the outer limit
expression of R′′(A; 0) is exactly that of the cone R′(A). To prove the second assertion,
if v is an element of R′′(A;u), then (1) implies

lim
n→∞

(

an
tnsn

− u

)

= lim
n→∞

v

tn
= 0

which shows that u is a first-order asymptotic direction of A. Conversely, let u be an
element of R′(A), that is

u = lim
n→∞

an
αn

for some an ∈ A and αn > 0 converging to ∞. Consider the sequence of the terms
an − αnu. If it is bounded, then choose tn = sn =

√
αn. We deduce

lim
n→∞

(

an
sn

− tnu

)

= lim
n→∞

1√
αn

(an − αnu) = 0,

with tn and sn converging to ∞, by which the null vector belongs to R′′(A;u). If that
sequence is unbounded, say with norm converging to ∞, then we may assume that

lim
n→∞

an − αnu

‖an − αnu‖
= w

for some unit norm vector w. Choosing sn = ‖an − αnu‖ and tn = αn

sn
we see that

lim
n→∞

tn = lim
n→∞

∥

∥

∥

∥

an
αn

− u

∥

∥

∥

∥

−1

= ∞

and conclude that w belongs to the set R′′(A;u).

Assertions (iii)–(v) are clear. For assertion (vi) it suffices to notice that given v as in
Definition 2.1 and α > 0 and β > 0, by setting s′n = αsn and t′n = tn/β one derives
at once that v ∈ R′′(αA; βu).

Assertion (vii) follows from the fact that

lim
n→∞

(

an + bn
sn

− tnu

)

= lim
n→∞

(

an
sn

− tnu

)

for every bounded sequence {bn}n≥1 and {sn}n≥0 converging to ∞.

Let us prove assertion (viii). If R′′(A;u) = ∅, then the equality R′′(A;u) + R{u} =
R′′(A;u) is obvious. Consider the case R′′(A;u) 6= ∅. Since R{u} contains the null
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vector, the inclusion R′′(A;u) ⊆ R′′(A;u) +R{u} is clear. For the converse inclusion
let v ∈ R′′(A;u) defined by (1) and α ∈ R. Then t′n = tn − α converges to ∞ and so

v + αu = lim
n→∞

(

an
sn

− t′nu

)

∈ R′′(A;u),

which shows that v + αu belongs to R′′(A;u). Thus, the first equality of (viii)
follows. Moreover, being nonempty the set R′′(A;u) is a cone, hence it contains zero,
and therefore R{u} ⊆ R′′(A;u).

Now assume A ⊆ R{u} + B(0, r) for some r ≥ 0. It is clear that R′(A) ⊆ R{u}.
If v ∈ R′′(A;u) is given by (1), then the elements an can be written in the form
an = αnu+ bn where the sequence {bn}n∈N ⊂ B(0, r) is bounded. Hence

v = lim
n→∞

(

αnu+ bn
sn

− tnu

)

= lim
n→∞

(

αnu

sn
− tnu

)

∈ R{u}

and R′′(A;u) ⊆ R{u}, which is in fact equality because the converse inclusion is
evident.

Conversely, assume that for all r > 0, the inclusion A ⊆ R{u} + B(0, r) does not
hold. Then there exists a sequence {an}n∈N ⊆ A such that the distance d(an,R{u})
from an to R{u} tends to ∞ as n goes to ∞. Let tnu be the projection of an onto
R{u}. We may assume that tn are nonnegative, otherwise consider −u instead of u.
Then limn→∞ ‖an − tnu‖ = ∞ and 〈an − tnu, u〉 = 0. We may suppose without loss
of generality that an−tnu

‖an−tnu‖
converges to a nonzero vector w and show that tn

‖an−tnu‖

converges to ∞. Indeed, if not, say it converges to a finite number α, then an
‖an−tnu‖

converges to a first-order asymptotic direction αu + w. Since w is orthogonal to u
we deduce that the limit αu + w does not belong to the straight line R{u} which
contradicts the hypothesis.

Finally, let v ∈ R′′(A;u) be given by (1). Then

L(v) = lim
n→∞

(

L(an)

sn
− tnL(u)

)

(2)

with sn and tn converging to ∞. Hence L(v) ∈ R′′(L(A);L(u)). Conversely, let
p ∈ R′′(L(A);L(u)) be given by the limit of the right hand side of (2). Note that (2)
implies that limn→∞ L( an

sntn
) = L(u). We show first that

lim
n→∞

an
sntn

= u. (3)

Indeed, if not, by taking a subsequence if necessary, we may assume that either
limn→∞ ‖ an

sntn
‖ = ∞ or limn→∞

an
sntn

= u′ 6= u. In the first case, by setting µn = ‖ an
sntn

‖
we may consider that the sequence { an

sntnµn

}n≥1 converges to some unit norm vector

w ∈ R′(A). Then

L(w) = lim
n→∞

L(an)

sntnµn

= 0,

which is impossible by our assumption. In the second case, L(u′) = L(u), which is
also excluded. Thus, (3) is true. Now consider the sequence {an

sn
− tnu}n≥1. If it is
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bounded, then it has a cluster vector, say v. We have v ∈ R′′(A;u) and L(v) = p. If
it is unbounded, then by setting αn = ‖an

sn
− tnu‖ we may assume that the bounded

sequence {(an
sn
−tnu)/αn}n≥1 converges to some nonzero vector q. In view of (3), tn/αn

converges to∞, which yields the inclusion q ∈ R′′(A;u). This, however, together with

L(q) = lim
n→∞

L(an)
sn

− tnL(u)

αn

= lim
n→∞

p

αn

= 0

contradicts the hypothesis. The proof is complete.

Notice that in the above proposition the inclusions of (v) and (ix) are not equality
in general. This is seen in the next examples.

Example 2.3. Consider the following sets

A = {(0, y) ∈ R
2 : y ≥ 0} ∪ {(x, y) ∈ R

2 : y = x2, x ≥ 0}
B = {(0, y) ∈ R

2 : y ≥ 0} ∪ {(x, y) ∈ R
2 : y = x3, x ≥ 0}.

Then it is easy to see that for u = (0, 1) ∈ R′(A ∩B) one has

R′′(A ∩B;u) = {(0, y) ∈ R
2 : y ∈ R},

R′′(A;u) = {(x, y) ∈ R
2 : x ≥ 0, y ∈ R},

R′′(B;u) = R′′(A;u).

And so the inclusion of (v) is strict.

Example 2.4. Define a set A in R
3 and a linear operator L : R3 → R

2 as follows

A = {(n, n2, n3) ∈ R
3 : n = 1, 2, ...},

L(x, y, z) = (x, z) for (x, y, z) ∈ R
3.

Then the first-order asymptotic cone of A is generated by the vector u = (0, 0, 1). The
second-order asymptotic cone of A at u is given by R′′(A;u) = {0} ×R+ ×R, which
implies that L(R′′(A;u)) = {0}×R. Moreover, L(u) = (0, 1) and so R′′(L(A);L(u)) =
R+ × R. Consequently inclusion in (ix) of Proposition 2.2 is strict. In this example
the kernel of L and the second-order asymptotic cone of A at u have nonzero vectors
in common.

We notice also that in the assertion (viii) of Proposition 2.2 equality R{u} = R′′(A;u)
alone does not guarantee the inclusion A ⊆ R{u} + B(0, r). For instance a set A
composed of two crossing straight lines R{u} and R{v} does satisfy the equality but
not the inclusion.

Among second-order asymptotic directions we are particularly interested in those for
which tn, sn and an satisfy an additional relation.

Definition 2.5. A second-order asymptotic direction v is said to be parabolic if
sn = tn for every n in (1), that is

v = lim
n→∞

(

an
tn

− tnu

)

with tn ↑ ∞. (4)
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And it is said to be canonic if ‖u‖ 6= 0 and sn = ‖an‖
tn

, that is

v = lim
n→∞

tn

(

an
‖an‖

− u

‖u‖

)

with tn ↑ ∞,
tn

‖an‖
→ 0. (5)

The sets of all parabolic and canonic second-order asymptotic directions of A at u
are denoted respectively by R2(A;u) and Rν(A;u). By convention, if u = 0, the set
Rν(A;u) is empty. The set Rν(A;u) is a closed cone. In the terminology of outer
limit, R2(A;u) is expressed as

R2(A;u) = lim sup
t↑∞

(

A

t
− tu

)

.

Thus, R2(A;u) is closed too. It is not a cone, however. To see the distinction between
parabolic and canonic second-order asymptotic directions let us consider the following
examples.

Example 2.6. Let A be the same set as in Example 2.3 and u = (0, 1). If v = (p, q) ∈
R2(A;u) is given by relation (4) with an on the curve y = x2, then an = (xn, x

2
n) with

xn → ∞. It follows that

p = lim
n→∞

xn

tn
, q = lim

n→∞
tn

(

x2
n

t2n
− 1

)

.

Thus, p = 1 since limn→∞ tn = ∞. Hence such parabolic second-order asymptotic
directions v belong to {1} × R. Conversely, given q ∈ R set, for n sufficiently large,
xn = (n2 + nq)1/2 and an = (xn, x

2
n). Then

lim
n→∞

(an
n

− nu
)

= (1, q).

Hence the set of parabolic second-order asymptotic directions defined through se-
quences an belonging to the curve y = x2 is exactly {1}×R. It is easy to see that the
set of parabolic asymptotic directions v given by (4) with an belonging to {0} × R+

is {0} × R. Thus, we deduce that R2(A;u) = {0, 1} × R which is not a cone. Let
us find Rν(A;u). It is also not difficult to see that 0 is the only canonic direction
given by relation (5) with an belonging to {0}×R+. Now assume that an = (xn, x

2
n),

xn → ∞. If v = (p, q) then

p = lim
n→∞

tnxn

(x2
n + x4

n)
1/2

, (6)

q = lim
n→∞

tn
x2
n − (x2

n + x4
n)

1/2

(x2
n + x4

n)
1/2

= lim
n→∞

−tnx
2
n

(x2
n + x4

n)
1/2(x2

n + (x2
n + x4

n)
1/2)

. (7)

Using (6) we deduce that q = 0. Since p ≥ 0, we have Rν(A;u) ⊆ R+ × {0}.
Conversely given p > 0, by taking xn = n, an = (n, n2) and tn = pn we see that
(p, 0) ∈ Rν(A;u). Since (0, 0) ∈ Rν(A;u) we infer that Rν(A;u) = R+ × {0}. Thus,
we see that R′′(A;u), R2(A;u) and Rν(A;u) are distinct.
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Example 2.7. Similar calculations applied to the set

C =

{(

n,
n

ln(n+ 1)

)

∈ R
2 : n = 1, 2, ...

}

show that in this case, R′(C) = R+ × {0} and for u = (1, 0), R′′(C;u) = R × R+,
Rν(C;u) = {0} × R+ while R2(C;u) is empty.

We now establish some properties of Rν(A;u) and its relationship with R′′(A;u).

Proposition 2.8. Let A be a nonempty set in R
k. The following assertions hold.

(i) Rν(A;u) is nonempty if and only if u is a nonzero first-order asymptotic direc-

tion of A.

(ii) R′′(A;u) = R{u}+Rν(A;u) if u is nonzero.

(iii) Elements of Rν(A;u) are orthogonal to the vector u.

(iv) Assume that the first-order asymptotic cone of A is generated by a unit norm

vector u, that is R′(A) = R+{u}. Then Rν(A;u) = {0} if and only if there is

a ball B(0, r) with r > 0 such that A ⊆ R+{u}+ B(0, r). In particular, if u is

an isolated direction, then Rν(A;u) 6= {0}.

Proof. For (i), if Rν(A;u) contains an element v given by relation (4), then u 6= 0
by our convention. From Proposition 2.2(ii) and the inclusion Rν(A;u) ⊆ R′′(A;u)
we obtain that R′′(A;u) is nonempty, thus u ∈ R′(A).

Conversely, let u be a unit norm vector that is the limit of a sequence { an
‖an‖

}n≥1 in A

with limn→∞ ‖an‖ = ∞. Consider the sequence {(an − ‖an‖u)}n≥0. If it is bounded,

set tn =
√

‖an‖; otherwise set

tn =
‖an‖

‖(an − ‖an‖u)‖
.

Then the sequence of the terms tn(
an

‖an‖
− u) is bounded, and hence we may assume

that it converges to some vector v. By construction, tn converges to ∞ and tn
‖an‖

converges to 0. Consequently, v belongs to Rν(A;u).

To prove (ii), we notice first that Rν(A;u) ⊆ R′′(A;u). Using Proposition 2.2(viii),
we deduce

R{u}+Rν(A;u) ⊆ R{u}+R′′(A;u) = R′′(A;u).

Conversely, let v ∈ R′′(A;u) be given by relation (1) with u 6= 0. We write

an
sn

− tnu =
‖an‖
sn

(

an
‖an‖

− u

‖u‖

)

+

(‖an‖
sn

− tn ‖u‖
)

u

‖u‖ . (8)

Since {an
sn

− tnu}n≥0 converges to v,

lim sup
n→∞

∣

∣

∣

∣

‖an‖
sn

− tn ‖u‖
∣

∣

∣

∣

≤ ‖v‖ .
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Hence we can assume without loss of generality that {‖an‖
sn

− tn ‖u‖}n≥0 converges to

some α ∈ R, and by equation (8), {‖an‖
sn

( an
‖an‖

− u
‖u‖

)}n≥0 converges to some w ∈ R
k.

Obviously, w ∈ Rν(A;u) and so v = w + αu ∈ Rν(A;u) + R{u}.
To prove (iii), we may assume without loss of generality that u ∈ R′(A) and v ∈
Rν(A;u) are vectors of unit norm. Thus,

u = lim
n→∞

an
‖an‖

, (9)

v = lim
n→∞

an − ‖an‖u
‖(an − ‖an‖u)‖

. (10)

Using ‖(an − ‖an‖u)‖2 = −2 ‖an‖ (〈an, u〉 − ‖an‖), we deduce from (10) that

〈v, u〉 = lim
n→∞

〈an − ‖an‖u, u〉
‖(an − ‖an‖u)‖

= lim
n→∞

〈an, u〉 − ‖an‖
‖(an − ‖an‖u)‖

= lim
n→∞

−‖(an − ‖an‖u)‖
2‖an‖

= 0 (by (9)).

To prove assertion (iv) we notice that if for every positive integer n, there is some
element an ∈ A \ (R+{u} + B(0, n)), then by hypothesis one may assume that the
sequence { an

‖an‖
}n≥0 converges to u. Moreover, the sequence {(an − ‖an‖u)}n≥0 is

unbounded. Defining tn as in the first part, we obtain a unit norm vector v that
belongs to Rν(A;u) . Conversely, if A is contained in R+{u}+B(0, r) for some r > 0,
then by Proposition 2.2(viii) we obtain R′′(A;u) = R{u}. Combining with parts (ii)
and (iii) of the present proposition we deduce Rν(A;u) = {0}. This completes the
proof.

According to (i), the set Rν(A;u) is always nonempty when u is a nonzero first-
order asymptotic direction of A. This, however, is not the case for R2(A;u) as we
have seen in Example 2.7. Observe also that linear operators being not necessarily
isometric, inclusion like that of Proposition 2.2(ix) is, in general, not available for
canonic second-order asymptotic directions. This is shown by the next example.

Example 2.9. Let us consider the set A given in Example 2.4 and define a linear
operator L : R3 → R

2 by L(x, y, z) = (x + z, y + z). Then R′(A) = R{(0, 0, 1)} and
for the vector u = (0, 0, 1) we have

Rν(A;u) = {0} × R+ × {0},
L(Rν(A;u)) = {0} × R+,

Rν(L(A);L(u)) = R+{(−1,−1)}.

From these formulae it is clear that the inclusion (ix) of Proposition 2.2 does not
hold for the canonic directions.
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Below are some properties of parabolic asymptotic directions.

Proposition 2.10. For a nonempty set A, the following assertions hold.

(i) R2(A; 0) = R′(A);
(ii) R2(tA+B; tu) = tR2(A;u) for every t ∈ R and for every B bounded;

(iii) R2(A;u) ⊆ R2(B;u) if A ⊆ B;

(iv) R2(A ∩B;u) ⊆ R2(A;u) ∩R2(B;u);
(v) λR2(A;u) = R2(A;λ2u) for every λ > 0;

(vi) If there is some a ∈ A such that the ray {a + tu : t ≥ 0} lies in A, then

u ∈ R2(A;u). In particular, if A is closed and convex and u ∈ R
′

(A), then

u ∈ R2(A;u).
(vii) R2(A;u) + R{u} = R2(A;u). In particular, u ∈ R2(A;u) if and only if 0 ∈

R2(A;u).

(viii) If A is closed and convex and u ∈ R
′

(A), then R2(A;u) is nonempty and radiant

in the sense that it contains the segment [0, v] for every v ∈ R2(A;u).

(ix) If L : R
k → R

m is a linear operator and u ∈ R′(A), then L(R2(A;u)) ⊆
R2(L(A);L(u)).Equality holds provided that L is injective on R′(A) and R′′(A;u)
∩Ker(L) = {0}.

Proof. The four first assertions being clear, we prove the remaining ones. For every
λ > 0 and v ∈ R2(A;u) given by equation (4), set sn = tn

λ
; then

lim
n→∞

(

an
sn

− λ2snu

)

= λ lim
n→∞

(

an
tn

− tnu

)

= λv.

This proves assertion (v). For (vi), in view of (ii), we may assume that a = 0, so
that tu ∈ A for every t ≥ 0. Choose tn = n, an = (n2 + n)u. Then lim(an

tn
− tnu) =

lim((n+ 1)u− nu) = u. Thus, u ∈ R2(A;u).

To show (vii), let v ∈ R2(A;u) be given by equation (4) and λ ∈ R. Set sn =
2t2n/(2tn + λ). Then one can readily verify that limn→∞ sn = ∞, limn→∞ sn/tn = 1
and limn→∞(tn − s2n/tn) = λ. It follows that

lim
n→∞

(

an
sn

− snu

)

= lim
n→∞

tn
sn

(

an
tn

− tnu+

(

tn −
s2n
tn

)

u

)

= v + λu.

Thus, v + λu ∈ R2(A;u). For assertion (viii), it is clear from (vii) that R2(A;u) is
nonempty and it contains 0. Let v ∈ R2(A;u) be given by equation (4) and α ∈ (0, 1).
To show that αv ∈ R2(A;u) we may assume by assertion (ii) that 0 ∈ A. Then

αv = lim
n→∞

(

α2an
αtn

− αtnu

)

.

But α2an ∈ A since 0 ∈ A, and αtn → ∞, hence αv ∈ R2(A;u).

For the last assertion the inclusion is clear. To prove equality, let p ∈ R2(L(A), L(u)),
say

p = lim
n→∞

(

L(an)

tn
− tnL(u)

)

(11)
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for some an ∈ A and tn > 0 converging to ∞. Consider the sequence {(an
tn
− tnu)}n≥1.

Exactly as in the proof of assertion (ix) of Proposition 2.2, either that sequence is
bounded, in which case it has a cluster point v ∈ R2(A;u) with L(v) = p, or it
is unbounded, in which case we obtain a nonzero vector q ∈ R′′(A;u) with L(q) =
0. In both cases we arrive at a contradiction with our assumption. The proof is
complete.

3. Global optimality conditions

In this section we define a second-order asymptotic function for a given real-valued
function and derive conditions for its minima via second-order asymptotic directions.
Let X ⊆ R

k be a nonempty set and let f be a real valued function on X. It is
known that the first-order asymptotic cone of the epigraph of f is an epigraph. The
first-order asymptotic function of f is given by

epi(R′f) = R′(epi(f)).

It follows from the definition that for every u ∈ R′(X), the point (u,R′f(u)) belongs
to the asymptotic cone R′(epi(f)), in which R′f(u) is computed by

R′f(u) = inf

{

lim inf
n→∞

f(xn)

tn
: xn ∈ X, tn ↑ ∞,

xn

tn
→ u

}

.

Let us fix a nonzero direction u ∈ R′(X) for which R′f(u) is finite, and define the
lower and upper second-order asymptotic functions of f at p ∈ R′′(X;u) as follows.
We first define the set of sequences

K(u) =

{

{xn}n≥1 : xn ∈ X, ‖xn‖ → ∞,
xn

‖xn‖
→ u

‖u‖

}

and for {xn}n≥1 ∈ K(u) and p ∈ R′′(X;u),

L({xn}n≥1, p)

=

{

{(sn, tn)}n≥1 : sn, tn ↑ ∞,
xn

sn
− tnu → p, lim

n→∞

(

f(xn)

sn
− tnR

′f(u)

)

exists

}

.

Then we define

R′′
−f(u; p)

= inf
{xn}∈K(u)
L({xn},p)6=∅

inf
{(sn,tn)}∈L({xn},p)

lim
n→∞

(

f(xn)

sn
− tnR

′f(u)

)

= inf

{

lim inf
n→∞

(

f(xn)

sn
− tnR

′f(u)

)

: xn ∈ X, sn, tn ↑ ∞,
xn

sn
− tnu → p

}

.

Also, we define

R′′
+f(u; p) = inf

{xn}∈K(u)
L({xn},p)6=∅

sup
{(sn,tn)}∈L({xn},p)

lim
n→∞

(

f(xn)

sn
− tnR

′f(u)

)

.
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Remark 3.1. It can be easily seen that for any nonzero vector u ∈ R′(X) with
R′f(u) finite, one has epi(R′′

−f(u; ·)) = R′′(epi(f); (u,R′f(u)). Indeed, if (p, α) ∈
R′′(epi(f); (u,R′f(u)) then there exist sequences (xn, αn) ∈ epi(f), tn, sn ↑ ∞ such
that

xn

sn
− tnu → p and

αn

sn
− tnR

′f(u) → α.

Since f(xn) ≤ αn it follows that R′′
−f(u; p) ≤ α, i.e., (p, α) ∈ epi(R′′

−f(u; ·)). Con-
versely, if (p, α) ∈ epi(R′′

−f(u; ·)) then for each ε > 0 one has R′′
−f(u; p) < α + ε;

hence there exist sequences xn ∈ X, tn, sn ↑ ∞ such that

xn

sn
− tnu → p and β := lim

n→∞

(

f(xn)

sn
− tnR

′f(u)

)

≤ α+ ε.

It follows that for each ε > 0 there exists β ∈ [α, α+ ε] such that (p, β) ∈ R′′(epi(f);
(u,R′f(u)). Since the second-order asymptotic cone is closed, we deduce that (p, α) ∈
R′′(epi(f); (u,R′f(u)).

Similar definitions can be given for parabolic and canonic second-order asymptotic
directions. However, for application purposes to be developed in the this section, we
shall focus on the asymptotic functions R′′

−f and R′′
+f only.

Here are some elementary properties of the second-order asymptotic functions.

Proposition 3.2. For a nonzero vector u ∈ R′(X) with R′f(u) finite, the following

assertions hold.

(i) For strictly positive numbers α and β one has R′′
−f(αu; βp) = βR′′

−f(u; p) and
R′′

+f(αu; βp) = βR′′
+f(u; p).

(ii) For every strictly positive number λ, one has R′′
−(λf)(u; p) = λR′′

−f(u; p) and

R′′
+(λf)(u; p) = λR′′

+f(u; p).

(iii) If R′(f + g)(u) = R′f(u) +R′g(u), then

R′′
−(f + g)(u; p) ≥ R′′

−f(u; p) +R′′
−g(u; p).

In particular, this is always the case when f and g are convex and lower semi-

continuous on a convex set X.

Proof. To prove (i) let us compute R′′
−f(αu; βp):

R′′
−f(αu; βp)

= inf

{

lim inf
n→∞

(

f(xn)

sn
− tnR

′f(αu)

)

: xn ∈ X, sn, tn ↑ ∞,

(

xn

sn
− tnαu

)

→ βp

}

= inf

{

lim inf
n→∞

β

(

f(xn)

βsn
− αtn

β
R′f(u)

)

:

xn ∈ X, (βsn),

(

αtn
β

)

↑ ∞,

(

xn

βsn
− αtn

β
u

)

→ p

}

= βR′′
−f(u; p).

The proof for the upper second-order asymptotic function follows the same argument.
The second assertion follows from the fact that R′(λf) = λR′f . The last assertion is
clear from the definition.



N. Hadjisavvas, D. T. Luc / Second-Order Asymptotic Directions of ... 193

Let us now consider the following optimization problem denoted by (P ):

minimize f(x)

subject to x ∈ X

where X is a nonempty subset of Rk and f is a real valued function on R
k.

Theorem 3.3 (necessary condition). The following conditions are necessary for

(P ) to have an optimal solution:

(i) R′f(u) ≥ 0 for every u ∈ R′(X).

(ii) R′′
−f(u; p) ≥ 0 for every nonzero vector u ∈ R′(X) with R′f(u) = 0 and p ∈

R′′(X;u).

Proof. The first condition is already known. Let us prove the second condition. Let
u be a nonzero first-order asymptotic direction of X with R′f(u) = 0. Let p be a
second-order asymptotic vector defined by p = limn→∞(xn

sn
− tnu) where sn and tn are

positive numbers converging to ∞, and xn ∈ X. Since f(xn) is bounded from below
by the minimum of f on X we have

lim inf
n→∞

f(xn)

sn
≥ 0.

This being true for all sequences {xn}n≥1 and {sn}n≥1 defining p as above, we conclude
that R′′

−f(u; p) ≥ 0.

Example 3.4. Consider the function f(x) = −
√

|x| on X = R. The asymptotic
cone of the epigraph of f is the upper half plane. So that

R′f(u) = 0 for every u ∈ X.

Let us check the second-order condition. It follows from Proposition 2.2(viii) that for
u = 1, the set R′′

−(X;u) = X. Pick p = 1 and we look for an estimate of R′′
−f(u; p).

Choose xn = n+ n2, sn = n and tn = n. Then

lim
n→∞

(

xn

sn
− tnu

)

= p.

Then

lim inf
n→∞

(

f(xn)

sn
− tnR

′f(u)

)

= lim inf
n→∞

−
√
n+ n2

n
< 0.

Hence R′′
−f(1; 1) < 0, and the second-order necessary condition is violated. Problem

(P ) cannot have optimal solutions, as expected.

To obtain a sufficient condition, we will need the following lemma which improves
the inclusion R{u} ⊆ R"(A;u) of Proposition 2.2(viii):

Lemma 3.5. Let {xn}n≥1 be a sequence in X such that limn→∞ ‖xn‖ = ∞ and

limn→∞
xn

‖xn‖
= u. Then there exist sequences {sn}n≥1 and {tn}n≥1 converging to ∞

such that limn→∞(xn

sn
− tnu) = u.
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Proof. Without loss of generality we may assume that the vectors xn are nonzero
for every n ≥ 1. Define λn by

1

λn

= max

{

1

‖xn‖1/2
, ‖ xn

‖xn‖
− u‖1/2

}

.

Then λn → ∞, λn(
xn

‖xn‖
−u) → 0 and ‖xn‖

λn

→ ∞. If we set sn = ‖xn‖
λn

and tn = λn−1,

then we obtain

lim
n→∞

(

xn

sn
− tnu

)

= lim
n→∞

(

λn

(

xn

‖xn‖
− u

)

+ u

)

= u

as requested.

Theorem 3.6 (sufficient condition). Assume that f is lower semicontinuous and

X is closed. The following conditions are sufficient for (P ) to have an optimal solu-

tion:

(i) R′f(u) ≥ 0 for every u ∈ R′(X).

(ii) R′′
+f(u;u) > 0 for every u ∈ R′(X), u 6= 0 with R′f(u) = 0.

Proof. It suffices to show that f is coercive in the sense that f(xn) tends to ∞ as
xn ∈ X and ‖xn‖ → ∞. Let xn be a sequence in X with limn→∞ ‖xn‖ = ∞. We
may assume that xn

‖xn‖
converges to some u ∈ R′(X). If R′f(u) > 0 then clearly

limn→∞ f(xn) = ∞. Assume that R′f(u) = 0. By Lemma 3.5 there exist sequences
sn and tn converging to ∞ such that limn→∞

xn

sn
− tnu = u. This shows that the

set L({xn}n≥1, u) is nonempty. Since R′′
+f(u;u) > 0 by our assumption, we deduce

that for some {(sn, tn)}n≥1 ∈ L({xn}n≥1, u}), one has limn→∞(f(xn)
sn

− tnR
′f(u)) =

limn→∞
f(xn)
sn

> 0. It follows that limn→∞ f(xn) = ∞.

Note that the assumption R′′
+f(u;u) > 0 is much weaker than R′′

−f(u;u) > 0. This
becomes clear in the following example.

Example 3.7. Consider the function f(x) =
√

|x| on X = R. The asymptotic cone
of the epigraph of f is the upper half plane. We have R′f(u) = 0 for every vector u.
Let u 6= 0, say u > 0. Let {xn}n≥1 be any sequence of X converging to ∞ (so that
limn→∞ xn/|xn| = u/|u|). Choose

tn =
−u+

√
u2 + 4uxn

2u

for every n ≥ 1. Then

lim
n→∞

(

xn

tn
− tnu

)

= u,

lim
n→∞

f(xn)

tn
=

√
u.

Hence R′′
+f(u;u) > 0. By Theorem 3.6, (P ) has optimal solutions. Note that

R′′
−f(u;u) = 0.
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4. Efficient points

Let A be a nonempty set and C a closed, convex and pointed cone with a nonempty
interior in R

k. A point x0 ∈ A is said to be efficient (with respect to the ordering
cone C) if

A ∩ (x0 + C) = {x0}
and it is said to be weakly efficient if

A ∩ (x0 + intC) = ∅.

It is known (Theorem 3.17, page 52, [9]) that if the set A has weakly efficient points,
then

R′(A) ∩ intC = ∅. (12)

When A is closed, a sufficient condition for existence of efficient points can be given
by

R′(A) ∩ C = {0}. (13)

Actually under the latter condition the set A has the domination property, which
means that for every point x in A there is an efficient point a of A such that a
dominates x in the sense that a ∈ x + C, that is a ≥C x, where "≥C" is the usual
partial order generated by C. The interested reader is referred to [9] for details
on the domination property. In this section we will establish new conditions for
efficient points that deepen conditions (12) and (13), by making use of second-order
asymptotic directions.

Theorem 4.1. If A has weakly efficient points, then for every nonzero vector u ∈
R′(A) ∩ C one has

R′′(A;u) ∩ intC = ∅.

Proof. Suppose to the contrary that there is some vector v from the intersection
R′′(A;u) ∩ intC. Then there exist elements an ∈ A and positive numbers tn and sn
converging to ∞ such that v is the limit of an

sn
− tnu as n tends to ∞. We claim that

for each element a ∈ A there is some an such that

an ∈ a+ intC. (14)

Indeed, if not, one has
an
sn

− tnu 6∈ a

sn
− tnu+ intC

for every k ≥ 1. Since u ∈ C we deduce

an
sn

− tnu 6∈ a

sn
+ intC. (15)

By passing to the limit in (15) we obtain v 6∈ intC which contradicts the hypothesis.
Inclusion (14) shows that A has no weakly efficient points and the proof is complete.
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Notice that since the second-order asymptotic set contains the straight line R{u} by
Proposition 2.2(viii), the conclusion of Theorem 4.1 produces the first-order necessary
condition (12) as well. Next we give an example to show that the second-order
condition above is, in fact, better than the first-order condition in detecting a set
without efficient points.

Example 4.2. Consider the set

A := {(x, y) ∈ R
2 : y = x2, x ≥ 0}

and the Pareto ordering cone C = R
2
+. Then

R′(A) = {(0, y) ∈ R
2 : y ≥ 0},

so that the first-order necessary condition (12) is satisfied. Let us look at the second-
order condition. Pick a nonzero first-order asymptotic direction u of A, say u = (0, 1).
Then a direct calculation yields

R′′(A;u) = {(x, y) ∈ R
2 : x ≥ 0}.

In particular the second-order asymptotic set R′′(A;u) meets the interior of the cone
C, and hence the second-order necessary condition is violated, by which A has no
weakly efficient points as expected.

Now we turn to second-order sufficient conditions. Given a subset D of Rk with
0 ∈ D, the tangent cone of D at 0 is defined by T (D) = lim supt→∞ tD.

Theorem 4.3. Let A be a nonempty closed set in R
k. If every nonzero direction

u ∈ R′(A) ∩ C is isolated and satisfies the condition

Rν(A;u) ∩ T (C − u) = {0},

then the set A has the domination property.

Proof. Our aim is to show that for every point x in A, the section Ax := A∩ (x+C)
is compact. This will achieve the proof because being nonempty and compact, the
section Ax admits efficient points which are also efficient points of the set A (Theorem
3.3, page 46 [9]) and evidently dominate x. Suppose to the contrary that for some
x ∈ A the section Ax is unbounded. Pick a sequence {an}n≥1 in Ax with ‖an‖ → ∞
and such that the sequence { an

‖an‖
}n≥1 converges to some unit norm vector u. It

is clear that u is an asymptotic direction of A and belongs to C. Consider the
projection un of an on R{u}. Let αn be a positive number such that un = αnu. By
hypothesis u is an isolated direction, the sequence {an − αnu}n≥0 is unbounded, say
with sn := ‖an − αnu‖ → ∞ as n → ∞. Without loss of generality we may assume
that {an−αnu

sn
}n≥0 converges to a unit norm vector v. By construction, the vectors

an − αnu are orthogonal to u, therefore the limit v is orthogonal to u too. We claim
that

v ∈ R′′(A;u) ∩ T (C − u). (16)
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Indeed, set tn = αn

sn
. Then as we have already mentioned above the numbers sn

converge to ∞. We prove that tn converges to ∞ too. Suppose that this is not the
case, say tn converges to some positive number t0. Then

v = lim
n→∞

(

an
sn

− tnu

)

= lim
n→∞

an
sn

− t0u

= αu

for some real number α because u is an asymptotic direction defined by the sequence
{an}n≥1. But this contradicts the fact that v is orthogonal to u. Thus, both sn
and tn converge to ∞ and hence v is a second-order asymptotic direction of A at u.
Furthermore, since an ∈ x+ C, we have an−x

sntn
∈ C. Let us express v as

v = lim
n→∞

tn

(

an
sntn

− u

)

= lim
n→∞

tn

(

an − x

sntn
− u

)

which shows that v is a first-order tangential direction of the cone C at u. This
establishes (16). Since v is orthogonal to u, Proposition 2.8 shows that v ∈ Rν(A;u)∩
T (C − u) and so we arrive at a contradiction with the hypothesis of the theorem.
The proof is complete.

Let us derive a sufficient condition making use of the full second-order asymptotic
cone R′′(A;u).

Corollary 4.4. If every nonzero direction u ∈ R′(A)∩C is isolated and satisfies the

condition

R′′(A;u) ∩ T (C − u) ⊆ R{u},
then the set A has the domination property.

Proof. It is plain that the hypothesis of this corollary implies that of Theorem 4.3,
and so the conclusion follows immediately.

Needless to say that the condition given in Corollary 4.4 is stronger than the condi-
tion required in Theorem 4.3, and both of them are a consequence of the first-order
condition (13). Below we present an example to show that the second-order condition
of Corollary 4.4 is a real refinement of the first-order condition (13).

Example 4.5. Consider the set A := {(x, x2) ∈ R
2 : x ≤ 0} and the ordering cone

C := R
2
+. Then the first-order asymptotic cone of A is given by

R′(A) = {(0, y) ∈ R
2 : y ≥ 0}.

We see that the first-order condition (13) is not fulfilled. Pick any nonzero first-order
asymptotic direction u of A. It is clear that u is isolated. Moreover, the second-order
asymptotic set is given by

R′′(A;u) = {(x, y) ∈ R
2 : x ≤ 0}
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and the first-order tangent cone of C at u is the set

T (C − u) = {(x, y) ∈ R
2 : x ≥ 0}.

Hence the hypothesis of Theorem 4.3 is satisfied and by this A has the domination
property.

Notice that without the hypothesis on isolated directions, the result may fail. To see
this consider the set A = {(0, y) ∈ R

2 : y ≥ 0}. Then R′(A) = A and R′′(A;u) =
R{u} for every nonzero u ∈ R′(A). We have R′′(A;u) ∩ T (C − u) = R{u}. However,
A has no efficient points. Its asymptotic directions are not isolated.

The sufficient condition of Theorem 4.3 can be simplified when the cone C is poly-
hedral.

Corollary 4.6. Assume that C is a polyhedral cone and that every nonzero direction

u ∈ R′(A) ∩ C is isolated and satisfies the condition

Rν(A;u) ∩ (C − u) = {0}.

Then the set A has the domination property.

Proof. When the cone C is polyhedral, the tangent cone to C at u is the cone
generated by the polyhedral set C−u. Thus, a nonzero vector v belongs to T (C−u)
if and only if there is a strictly positive number t and a nonzero vector w ∈ C−u such
that v = tw. Due to this observation the corollary follows from Theorem 4.3.

We end this section by an example to show that the last corollary does not work
when the cone C is not polyhedral.

Example 4.7. Let us define an ordering cone C in R
3 by

C = {(x, y, z) ∈ R
3 : (x− z)2 + y2 ≤ z2, z ≥ 0}.

Consider the set A defined by

A = {(n, n
√
2n− 1, n2) ∈ R

3 : n = 0, 1, ...}.

It is easy to see that
R′(A) = {(0, 0, z) ∈ R

3 : z ≥ 0}
and so

R′(A) ∩ C = R′(A).

We claim that every asymptotic direction u = (0, 0, α) with α > 0 is isolated. Indeed,

the projection un of an := (n, n
√
2n− 1, n2) on R{u} is given by un = n2

α
u. Hence

an − un = (n, n
√
2n− 1, 0) which implies that for every positive number r, an does

not belong to R{u} + B(0, r) as soon as n ≥ r. Moreover, one can see without
difficulty that the second-order asymptotic set is given by

R′′(A;u) = {(0, y, z) ∈ R
3 : y ≥ 0}.
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hence
Rν(A;u) = {(0, y, 0) ∈ R

3 : y ≥ 0}.
This yields

Rν(A;u) ∩ (C − u) = {0},
i.e., the condition of Corollary 4.6 is satisfied. However, the set A does not have the
domination property; even more, it has no efficient points because for each n ≥ 1,

an+1 − an =
(

1, (n+ 1)
√

2(n+ 1)− 1− n
√
2n− 1, (n+ 1)2 − n2

)

∈ C.

The assumption on the cone C in Corollary 4.6 is violated, this cone is not polyhedral.
Notice also that the condition of Theorem 4.3 is not satisfied either, for the intersec-
tion of the second-order asymptotic set Rν(A;u) with the tangent cone T (C − u) is
the set Rν(A;u) itself and does contain a nonzero vector orthogonal to u.

5. Closedness of the sum of two closed sets

Let A and B be two closed sets in R
k. We are interested in conditions under which

the sum A+B is closed. This important problem of applied analysis has been studied
by a number of researchers starting with Dieudonne’s work on convex sets (see [4],
[6], [7], [9], [13], [21]). The classical result states that if R′(A) and R′(−B) have no
nonzero vector in common, then the sum A+B is a closed set. A nice extension has
been given in [12] which reduces to the classical case by a quotient space technique. In
this section we relax the above condition by using second-order asymptotic directions.

Definition 5.1. Let u be a unit norm first-order asymptotic direction of A. We
say that A is strongly closed in direction u if for every sequence {an}n≥1 in A with
limn→∞

an
‖an‖

= u and every tn > 0 converging to ∞, all cluster points of the sequence

{an − tnu}n≥1 belong to A. We say that A is closed in direction u if either u is
isolated, or for every sequence {an}n≥1 in A with limn→∞

an
‖an‖

= u there exists a

sequence tn > 0 converging to ∞, such that some cluster point of the sequence
{an − tnu}n≥1 belongs to A.

It is clear that if A is strongly closed in direction u, then it is closed in that direction.
The converse is not always true. Moreover, if u is an isolated asymptotic direction of
A, then A is strongly closed in this direction.

Theorem 5.2. Let A and B be nonempty closed sets. Assume that for every unit

norm direction u ∈ R′(A) ∩R′(−B) , the following conditions hold

(i) Either u is an isolated direction of A or −B, or one of the sets A and −B is

closed in u and the other is strongly closed in u;

(ii) Rν(A;u) ∩Rν(−B, u) = {0}.
Then the sum A+B is closed.

Proof. Let {an}n≥1 and {bn}n≥1 be sequences in A and B such that {an + bn}n≥1

converges to some limit c. We need to show that this limit belongs to A + B. Note
that the sequences {an}n≥1 and {bn}n≥1 are both bounded or both unbounded. If
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they are bounded, then by selecting subsequences instead we may assume that they
converge, respectively, to some points a ∈ A and b ∈ B. In this case c = a + b
belongs to A+ B and we are done. If those sequences are unbounded, then we may
assume that {‖an‖}n≥1 and {‖bn‖}n≥1 converge to ∞. By taking again a subsequence
if necessary, we obtain that {an/‖an‖}n≥1 converges to some unit norm asymptotic
vector u ∈ R′(A) which is also the limit of the sequence {−bn/‖an‖}n≥1 and an
asymptotic direction of −B. We now show that the sequence {an − ‖an‖u}n≥1 is
bounded. If not, we may assume that the sequence {‖(an − ‖an‖u)‖}n≥1 converges

to ∞ and the sequence { an−‖an‖u
‖(an−‖an‖u)‖

}n≥1 converges to some unit norm vector v ∈
Rν(A;u). In particular, v ⊥ u. Note that

lim
n→∞

(

an − ‖an‖u
‖(an − ‖an‖u)‖

+
bn + ‖an‖u

‖(an − ‖an‖u)‖

)

= 0

hence the sequence { −bn−‖an‖u
‖(an−‖an‖u)‖

}n≥1 converges to v. Since

lim
n→∞

‖an‖
‖(an − ‖an‖u)‖

= lim
n→∞

1
∥

∥

∥

an
‖an‖

− u
∥

∥

∥

= ∞

and v ⊥ u, we have v ∈ Rν(−B;u). But this contradicts assumption (ii).

Since the sequence {an − ‖an‖u}n≥1 is bounded,{bn + ‖an‖u}n≥1 is also bounded.
Thus u is an isolated asymptotic direction neither for A nor for −B. Now assume
that A is strongly closed in u. Since −B is closed in u, we may assume that for some
tn > 0 converging to ∞, {−bn − tnu}n≥1 converges to some −b ∈ −B. Then from
an + bn → c we get that {an − tnu}n≥1 converges to a := c − b. Since A is strongly
closed in u, we have a ∈ A, hence c ∈ A+ B. The case where −B is strongly closed
in u and A is closed in u is similar. The proof is complete.

It is worthwhile noticing that in the first condition of Theorem 5.2 if none of the sets
A and B is strongly closed in direction u, then the conclusion may fail as the next
example shows.

Example 5.3. Consider the following sets in R
2:

A =

{(

1− 1

n
, n− 1

)

∈ R
2 : n = 1, 2, ...

}

∪ {(x, 0) : x ≥ 0},

B =

{(

1− 1

n
, 2− n

)

∈ R
2 : n = 1, 2, ...

}

∪ {(x, 0) : x ≥ 0}.

It is clear that R′(A) ∩ R′(−B) = {(0, y) : y ≥ 0}. For a unit norm vector u = (0, 1)
from R′(A) ∩ R′(−B) the canonic second-order asymptotic direction sets of A and
−B at u are zero, so that condition (ii) on the canonic second-order asymptotic set
is satisfied. It can be seen that the sets A and −B are closed in direction u; but none
of them is strongly closed in this direction. The sum A+B is not closed because the
limit point (2, 1) of the sum (1− 1

n
, n− 1) + (1− 1

n
, 2− n) when n tends to ∞ does

not belong to A+B.
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Here is a useful corollary when a set has only isolated asymptotic directions.

Corollary 5.4. Let A and B be nonempty closed sets. Assume that every unit norm

vector u from R′(A) ∩ R′(−B) is an isolated direction of A or B, and Rν(A;u) ∩
Rν(−B, u) = {0}. Then A+B is closed.

Proof. This is immediate from Theorem 5.2.

Below we present some examples to illustrate the second-order condition given in
Theorem 5.2. The two first examples show that the new condition works well even
when the classical first-order condition does not hold. The last example proves the
role of condition (ii).

Example 5.5. Let us define

A =

{(

1− 1

n
, n− 1

)

∈ R
2 : n = 1, 2, ...

}

∪ {(1, 0)},

B = {(1, t) ∈ R
2 : t ∈ R}.

Then we have R′(A) ∩ R′(−B) = {(0, y) : y ≥ 0}. Hence the classical theorem does
not apply. Let us verify the conditions of Theorem 5.2. For the unit norm vector
u = (0, 1) ∈ R′(A)∩R′(−B), the set A is closed in u, and the set B is strongly closed
in u. Moreover, both of the sets Rν(A;u) and Rν(−B;u) are trivial, so that their
intersection is the zero vector. By Theorem 5.2 the sum A+B is closed.

Example 5.6. In this example we consider the sets

A = {(n, n2) ∈ R
2 : n = 1, 2, ...},

B = {(n,−n3) ∈ R
2 : n = 1, 2, ...}.

It is clear that R′(A)∩R′(−B) = {(0, y) : y ≥ 0}. Hence the classical criterion is not
applicable. Since the unit norm vector u = (0, 1) ∈ R′(A) ∩ R′(−B) is an isolated
direction of A and −B, and

Rν(A;u) = {(x, 0) ∈ R
2 : x ≥ 0},

Rν(−B;u) = {(x, 0) ∈ R
2 : x ≤ 0},

we see that the hypothesis of Corollary 5.4 is satisfied, by which the sum A + B is
closed.

Example 5.7. The sets A and B are now defined as follows

A = {(n, n2) ∈ R
2 : n = 1, 2, ...},

B =

{(

−n+
1

n
,−n2

)

∈ R
2 : n = 1, 2, ...

}

.

Again we have R′(A) ∩ R′(−B) = {(0, y) : y ≥ 0}. It is clear that the unit norm
vector u = (0, 1) ∈ R′(A) ∩ R′(−B) is an isolated direction of A and −B. Direct
computation shows that Rν(A;u)∩Rν(−B;u) consists of all vectors (x, 0) ∈ R

2 with
x ≥ 0. The condition on second-order asymptotic directions of Corollary 5.4 is not
fulfilled; and the sum A+B is not closed either.
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