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The theme of this paper is the study of the separability of subspaces of holomorphic functions respect
to the convergence over a given set and its connection with the metrizability of the polynomial
topology. A notion closely related to this matter is that of Asplund set. Our discussion includes
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them we obtain a characterization of Radon-Nikodým composition operators on algebras of bounded
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1. Introduction and preliminaries

In this article we deal firstly with the natural matter of the separability of some
algebras of bounded analytic functions defined on complex Banach spaces E with
open unit ball BE which may be seen as the natural extensions of the disc algebra.
We will prove that the algebra

A∞(BE) := {f : BE → C : f continuous, bounded and analytic on BE}

endowed with the sup norm is separable if, and only if, E is finite-dimensional. This
is achieved by answering affirmatively the question, raised by Globevnik [15], of the
existence in BE of interpolating sequences for A∞(BE) if E is a non-reflexive Banach
space.
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The separability of the subalgebra Au(BE) ⊂ A∞(BE) of analytic and uniformly
continuous functions on BE is also discussed and we give a simple characterization
of it in terms of the metrizability of its spectrum for the polynomial topology, that
is, the topology τ(P (E)) of the convergence against the continuous polynomials on
E. Recall that the spectrum MA of a Banach algebra A is the set of all non-null
scalar-valued homomorphisms of algebras defined on A.

There are a number of equivalent formulations for the concept of Asplund set in
a Banach space (see [5] Thm. 5.2.11). The most convenient for our purposes is
the following given by Stegall and actually shown equivalent to the original one by
Fitzpatrick. For a Banach space E and A ⊂ E, recall that ‖·‖A denotes the seminorm
on E∗ given by ‖x∗‖A = supx∈A |x∗(x)| for any x∗ ∈ E∗.

Definition 1.1. Let E be a Banach space. A bounded set D ⊂ E is said to have the
Asplund property (AP) or to be an Asplund set if for any countable subset A ⊂ D
the seminormed space (E∗, ‖ · ‖A) is separable.

The connection between the Asplund property and the weak metrizability is recalled
in Theorem 1.2 below. We focus on such kind of connection in a context in which
the dual space E∗ is replaced by the space P (E) of continuous polynomials on E.
Along this lines, we will study some properties related to separability in Au(BE)
and will connect this to the study of the metrizability of some subsets of BE with
respect to the polynomial topology, and, in consequence, to the Asplund property. For
instance, we prove that a subset D ⊂ E has the Asplund property if any separable
A ⊂ aco(D) is metrizable for the polynomial topology τ(P (E)), where aco(D) =
{
∑

tnxn : xn ∈ A,
∑

|tn| ≤ 1, tn ∈ C} denotes the absolutely convex hull of D.

It is known that linear bounded operators map Asplund sets into Asplund sets. In the
third section, we discuss the behaviour of Asplund sets against polynomials instead of
linear operators, and we show that whenever the finite type polynomials are uniformly
dense, then polynomials map Asplund sets into Asplund sets. As a consequence, we
recover a condition for the Banach space of continuous k-homogeneous polynomials
P (kE) to be a Radon-Nikodým space earlier proved by Aron and Dineen [2].

The study of composition operators is a nowadays vast field of research. We contribute
to it in §4 with an application of results in §3 that produces a characterization of
Radon-Nikodým composition operators on H∞(BE), the Banach space of bounded
analytic functions on BE endowed with the uniform norm.

Theorem 1.2 (Fitzpatrick, [5] Thm. 5.4.1). Let E be a Banach space and D a

bounded set of E. Then the following statements are equivalent:

a) D has the Asplund property,

b) If L is a separable subset of aco(D), then L is weakly metrizable.

A warning here: the closed absolutely convex hull of a weakly metrizable set need not
be a weakly metrizable set; think for instance of the set L of the unit vectors in ℓ1,
which is weakly discrete and whose closed absolutely convex hull, the unit ball of ℓ1,
cannot be weakly metrizable, since otherwise, by Schur’s lemma, the weak topology
would coincide there with the norm topology.
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Definition 1.3. Let E and F be Banach spaces. The space E is said to be an
Asplund space if its unit ball BE has the AP or, equivalently, if any closed separable
subspace X of E has a separable dual X∗. A linear operator T : E −→ F is said to
be an Asplund operator if T (BE) has the AP.

Recall (see [5] Proposition 5.2.2 d)) that D has the AP if and only if aco(D) also has
the AP. It is obvious that a bounded set D has the AP if and only if for any A ⊂ D
norm-separable, the seminormed space (X∗, ‖ · ‖A) is separable.

All reflexive spaces are Asplund spaces while ℓ1 is not. We refer to Chapter 5 of
[5] for extensive background regarding Asplund sets. Every weakly compact set in a
Banach space is an Asplund set (see [16] Cor. 287). A Banach space E is an Asplund
space if, and only if, E∗ has the Radon-Nikodým property (see [9]).

We briefly recall some notions about holomorphic mappings. Throughout this paper,
E and F will denote complex Banach spaces. A mapping is holomorphic (or analytic)
if it is Fréchet differentiable on its domain. A k-homogeneous polynomial is a mapping
P : E → F of the form P (x) = A(x, . . . , x), x ∈ E, where A is a continuous F -valued
k-linear map on E.We put P ∈ P (kE;F ), and if F = C, we simply put P ∈ P (kE). A
polynomial is a finite sum of homogeneous polynomials. The space of all polynomials
is denoted by P (E;F ) (P (E), respectively) and it is endowed with the topology of
the uniform convergence on BE. The subalgebra of P (E) generated by E∗ is denoted
by Pf (E) and its elements are referred as to the finite type polynomials. Further
background for analytic functions defined on Banach spaces can be found in [10].

Recall (see [20]) that a predual ofH∞(BE) is given byG∞(BE), the closed subspace of
H∞(BE)

∗ given by the functionals u ∈ H∞(BE)
∗ whose restriction to the closed unit

ball of H∞(BE) is continuous for the compact-open topology, that is, the topology
of uniform convergence on compact sets of BE. We have that the closed absolutely
convex hull of the set of evaluations δx : H∞(BE) −→ C, x ∈ BE, coincides with the
unit ball of G∞(BE). Analogously, (see [20] as well) the set Q(kE) ⊂ P (kE)∗ of all
u ∈ P (kE)∗ such that u restricted to the closed unit ball of P (kE) is continuous for
the compact-open topology is a closed subspace of P (kE)∗ and Q(kE) is a predual of
P (kE).

2. Separability and metrizability

2.1. Separability in A∞(BE)

J. Globevnik studied in [15] the existence of interpolating sequences for A∞(BE),
that is, the existence of sequences (xn) ⊂ BE such that for every bounded sequence
(αn) ⊂ C, there is f ∈ A∞(BE) such that f(xn) = αn ∀n. He proved such existence
for a class of infinite dimensional Banach spaces including the reflexive spaces and
he asked whether this result holds for all infinite dimensional Banach spaces. We
answer this question affirmatively by proving the existence of interpolating sequences
for A∞(BE) for non-reflexive Banach spaces E.

Denote by SE the unit sphere of a Banach space E. A point x ∈ SE is said to
be strongly exposed if there exists L ∈ E∗ such that L(x) = ‖L‖ = 1 and for any



436 P. Galindo, A. Miralles / Asplund sets and metrizability

sequence (xn) in E with limn L(xn) = 1, then limn xn = x in E.

Theorem 2.1 ([15]). Let E be an infinite dimensional complex Banach space whose

unit sphere SE contains a sequence (xn) of strongly exposed points of B̄E with no

cluster points. Then (xn) is an interpolating sequence for A∞(BE).

As it is pointed out in [15], the class of Banach spaces that satisfies the conditions of
Theorem 2.1 contains the infinite dimensional reflexive spaces.

Recall the following theorem of James,

Theorem 2.2 ([18]). A Banach space E is reflexive if and only if every functional

L ∈ E∗ attains its norm on B̄E.

Next, we extend the result given by Globevnik to all infinite dimensional complex
Banach spaces,

Theorem 2.3. Let E be an infinite dimensional complex Banach space. Then there

exist interpolating sequences for A∞(BE).

Proof. As just said, we only have to deal with the non-reflexive case. Thus, we
assume that E is not reflexive. Then by the James Theorem 2.2, there exists a
functional L ∈ E∗ such that ‖L‖ = 1 which does not attain its norm on B̄E. Moreover,
there exists (xn) ⊂ SE such that |L(xn)| → 1. We deduce (see Corollary in [17], p.
204) the existence of a subsequence (L(xnk

))k which is interpolating forH∞. To check
that (xnk

) is interpolating for A∞(BE), set (αk)k ∈ ℓ∞. Then there exists h ∈ H∞

such that h(L(xnk
)) = αk. Consider the function g : B̄E −→ C defined by

g(x) = h ◦ L(x) for any x ∈ B̄E.

We claim that g belongs to A∞(BE). Indeed, for x ∈ B̄E, since L does not attain its
norm, there exists δx > 0 such that |L(x)| < 1− δx. Then,

|L(y)| < 1 for any y ∈ B(x, δx)

so g extends to g̃ on B(x, δx) for any x ∈ B̄E and g̃ is analytic there. Hence, g̃ is
analytic and bounded on the open neighbourhood

⋃

x∈B̄E
B(x, δx) of B̄E. In particu-

lar, g ∈ A∞(BE) since it is the restriction of g̃ to B̄E. Thus (xnk
) is interpolating for

A∞(BE).

From this result we obtain the following characterization of the separability ofA∞(BE)
in terms of the finite dimension of E,

Corollary 2.4. Let E be a complex Banach space. The following statements are

equivalent:

i) A∞(BE) is non-separable.

ii) E is infinite dimensional.

iii) There exist interpolating sequences for A∞(BE).
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Proof. If E is finite-dimensional, then A∞(BE) = Au(BE) is separable. If E is in-
finite dimensional, by Theorem 2.3 we have that there exist interpolating sequences
for A∞(BE). If there is an interpolating sequence, then the algebra cannot be sepa-
rable.

2.2. Separability in Au(BE)

It is clear that Au(BE) is separable if E
∗ is separable and Pf (E) is dense in Au(BE).

This condition is satisfied by c0, the Tsirelson space T ∗, the Tsirelson-James space
introduced in [2], and d

∗
(w), the predual of the Lorentz space considered in [8].

On the other hand, it is known that if ℓ1 ⊂ E, then there exists an interpolating se-
quence for Au(BE) and, therefore, the algebra Au(BE) is not separable. The converse
is false. Indeed, given 1 < p < ∞, we have that for the vectors (en) in the canonical
basis the sequence (en

2
) is interpolating for the algebra Au(Bℓp). This follows easily

by choosing m ∈ N, m ≥ p, and considering for α = (αn) ∈ ℓ∞ the polynomial
Pα ∈ P (mℓp) given by

Pα((xn)) = 2m
∞
∑

n=1

αnx
m
n

for which Pα(
ek
2
) = αk. However, ℓ1 * ℓp since ℓp is reflexive. Notice that this example

also shows that in order to assure that Au(BE) is separable it is not sufficient that E
does not contain ℓ1.

It is well-known that a uniform algebra A is separable if, and only if, its spectrum is
metrizable for the Gelfand topology, that is, the topology of pointwise convergence
against the elements in A. Indeed, it is sufficient to notice that MA is a subset of BA∗

and that the Gelfand topology in MA is the restriction of the w(A∗, A)-topology to
MA. Next we give another simple characterization for Au(BE) to be separable.

Proposition 2.5. Let E be a complex Banach space and A = Au(BE). Then, A is

separable if and only if MA is τ(P (E))-metrizable.

Proof. As we have mentioned above, A is separable if and only if MA is w(A∗, A)-
metrizable. Since P (E) is a dense set in Au(BE), the Hausdorff topology τ(P (E))
coincides on MA with the finer compact topology w(A∗, A).

Remark 2.6. If E is infinite dimensional, then the polynomial topology is strictly

finer than the weak topology. It suffices to consider a linearly independent sequence

(Ln) ⊂ BE∗ , and the 2-homogeneous polynomial P (x) =
∑ L2

n(x)
2n

; it is obviously
τ(E,P (E))-continuous and not weakly continuous since it is not of finite type ([1] 4.1).

Proposition 2.5 leads us to study the metrizability for the polynomial topology of
bounded sets of MA, in particular those of BE, in a similar way as the weak topology
is considered in Theorem 1.2.

Let us denote by τ(E,P (E)) the polynomial topology on E. If we replace MA by a
smaller set L in Proposition 2.5, the τ(E,P (E))−metrizability of L ⊂ BE may not
lead to the separability of Au(BE) for the seminorm ‖ · ‖L. Indeed, consider E = ℓ2
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and L =
{

en
2
: n ∈ N

}

. It is clear that L is a closed bounded separable τ(ℓ2, P (ℓ2))-
metrizable subset of Bℓ2 since it is τ(ℓ2, P (ℓ2))-discrete. However, (P (2ℓ2), ‖ · ‖L) is
not separable since L is an interpolating sequence for P (2ℓ2) as we have seen above.

We have the following strengthening of the necessary condition in 2.5.

Proposition 2.7. Let B ⊂ E be a separable bounded set. If (P (kE), || ||B) is sepa-

rable for all k ∈ N, then B is τ(E,P (E))-metrizable.

Proof. Since for L, the absolutely convex closed hull of B in Q(kE), we have that
||P ||L = ||P ||B ∀P ∈ P (kE), our assumption shows that (P (kE), || ||L) is separable.
Consequently, L ⊂ Q(kE) is an Asplund set. Hence Theorem 1.2 shows that the sepa-
rable subset B ⊂ L is w(Q(kE), P (kE))-metrizable. To conclude, observe that a net is
convergent in (B, τ(E,P (E))) if, and only if, it is convergent in (B,w(Q(kE), P (kE))
for all k ∈ N. So (B, τ(E,P (E))) is metrizable as the supremum of a countable family
of metric topologies.

Proposition 2.8. Let E be a Banach space and let L be a bounded separable abso-

lutely convex set in E which is τ(E,P (E))-metrizable. Then, (E∗, ‖ ·‖L) is separable.

Proof. Since L is a bounded set, we can also assume without loss of generality
that L ⊂ BE. Since L is τ(E,P (E))-metrizable, there exists a countable basis of
τ(E,P (E))-neighbourhoods (Vn) of 0 in L. Therefore, there exists a sequence (Fn)
of finite subsets of P (E) such that the sequence (Vn) is given by

Vn = {x ∈ L : |P (x)− P (0)| ≤ 1 for any P ∈ Fn}.

Set Gn = {dPx : x ∈ L, P ∈ Fn}. Since the mapping x ∈ E 7→ dPx ∈ E∗ is contin-
uous, Gn is a norm separable set in E∗ for all n ∈ N . Let G be the norm closure
in E∗ of span(∪∞

n=1Gn). It is clear that G is a separable subspace of E∗ and G is
‖ · ‖L-separable as well.

We want to prove that E∗ = G + L◦. For this, let g ∈ E∗ and consider U the
τ(E,P (E))-neighbourhood of 0 defined by

U = {x ∈ L : |g(x)| ≤ 1} .

Then, we find m ∈ N such that Vm ⊂ U . We claim that G◦
m ∩ L ⊂ {g}◦. Fix z ∈

G◦
m∩L. For each of the polynomials P ∈ Fm, we apply the mean value theorem to the

function λ ∈ [0, 1] 7→ (P (z)− P (0))P (λz). Then it turns out that for some µ ∈ [0, 1],
|P (z) − P (0)| ≤ sup|t|<1 |dPµz(tz)| ≤ 1 since µz ∈ L. Therefore, |P (z) − P (0)| ≤ 1
for all P ∈ Fm, that is, z ∈ Vm. Hence, |g(z)| ≤ 1 and, therefore, z ∈ {g}◦. Thus the
claim is proved.

Further, since aco(Gm)
w∗
, the w(E∗, E)-closure of the absolutely convex hull of Gm,

is also a w(E∗, E)-compact set and L◦ is a w(E∗, E)-closed set, their sum is an
absolutely convex w(E∗, E)-closed set to which g belongs to, since, otherwise, if

g /∈ aco(Gm)
w∗

+L◦, we may appeal to the Hahn-Banach theorem to get some x ∈ E

such that |g(x)| > 1 and |ϕ(x)| < 1 for all ϕ ∈ aco(Gm)
w∗

+ L◦, that is x ∈ L◦◦ = L
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since L is a closed absolutely convex set, and x ∈ G◦
n, contradicting the relation

G◦
m ∩ L ⊂ {g}◦. Hence, g ∈ G+ L◦.

Finally, for any p ∈ N, we have that pg ∈ G + L◦, so there are α ∈ G and β ∈ L◦

such that pg = α+ β, so
∥

∥

∥

∥

g −
α

p

∥

∥

∥

∥

L

=

∥

∥

∥

∥

β

p

∥

∥

∥

∥

L

≤
1

p
.

Therefore, G is ‖ · ‖L-dense in E∗, thus (E∗, ‖ · ‖L) is a separable space.

The next result is to be compared to Theorem 1.2.

Theorem 2.9. Let D ⊂ E be a bounded set. If any separable subset L ⊂ aco(D) is
τ(E,P (E))-metrizable, then D has the Asplund property.

Proof. For any countable set A ⊂ D, L := aco(A) is τ(E,P (E))-metrizable by
assumption, so (E∗, ‖ · ‖L) is separable by Proposition 2.8 and, clearly, (E∗, ‖ · ‖A) is
separable as well.

Next we show that the converse to Theorem 2.9 does not hold.

Example 2.10. The unit ball of any separable reflexive Banach space E which is also

a Λ-space is an example of an Asplund set, that is, a weakly metrizable set, which is

not metrizable for the polynomial topology. By the very definition of Λ-space (see [6]),
the convergent sequences in BE for the polynomial topology are norm convergent. If
the polynomial topology were metrizable on BE, it would coincide with the norm
topology on BE. However this is not possible since the unit sphere is dense for the
polynomial topology in BE([1] Thm. 4.3). Recall that the spaces ℓp, p > 1, ([6]) and
T, the dual of the (original) Tsirelson space ([19] or [7]), fall within the assumptions
of this example.

3. Polynomials and Asplund property

We begin with an easy example showing that, contrary to the case of linear operators,
polynomials do not necessarily preserve the Asplund property.

Example 3.1. Consider the polynomial P ∈ P (2ℓ2, ℓ1) given by

P ((xn)
∞
n=1) = (x2

n)
∞
n=1. (1)

Then P does not transform Asplund sets into Asplund sets.

To show this, consider the set D = {en : n ∈ N}, which is an Asplund set in ℓ2.
However, P (D) = D is not an Asplund set in ℓ1 because ℓ∗1 = ℓ∞ and the space
(ℓ∞, ‖ · ‖D) is not separable since ‖ · ‖D is the usual norm for ℓ∞.

Notice that if F ∗ is separable and U is a subset of E, then every mapping f : U −→ F
transforms any subset of U into an Asplund set.

Next we aim to find sufficient conditions for analytic mappings to transform Asplund
sets into Asplund sets.
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Recall the following lemma (see [5] Lemmas 5.3.3. and 5.3.4.)

Lemma 3.2. Let E be a Banach space. Then,

a) The sum and the union of a finite number of Asplund sets in E is an Asplund

set.

b) Let (Dn) be a sequence of Asplund sets in E and let (tn) be a sequence of positive

numbers such that limn tn = 0. Then, the set

D =
∞
⋂

n=1

(Dn + tnBE)

is an Asplund set.

Let U be an open subset of E. A subset D ⊂ U is said to be U -bounded if D is
bounded and d(D,ErU) > 0. A function f : U −→ F is said to be of bounded type
if it maps U -bounded sets into bounded sets.

Recall that the space of approximable polynomials from E into F is PA(E,F ) :=
Pf (E)⊗ F ⊂ P (E,F ). It is well-known that PA(E,F ) equals to the set of polynomials
which are weakly continuous on bounded sets, that is, PA(E,F ) = Pw(E,F ), if, and
only if, E∗ has the approximation property. If F = C, we will denote these spaces by
PA(E) and Pw(E) respectively.

We have the following,

Proposition 3.3. Let E and F be Banach spaces.

a) Let k ∈ N and P ∈ P (kE,F ). Suppose that x∗ ◦ P ∈ PA(
kE) for all x∗ ∈ F ∗.

Then P maps Asplund sets into Asplund sets. In particular, if P ∈ PA(
kE,F ),

then P maps Asplund sets into Asplund sets.

b) Let P ∈ P (E,F ). Suppose that x∗ ◦ P ∈ PA(E) for all x∗ ∈ F ∗. Then P maps

Asplund sets into Asplund sets. In particular, if P ∈ PA(E,F ), then P maps

Asplund sets into Asplund sets.

c) If P (kE) = Pf (kE) for some k ∈ N and P ∈ P (kE,F ), then P maps Asplund

sets into Asplund sets.

d) If P (E) = PA(E) and f : U ⊂ E −→ F is an analytic function of bounded

type, then f maps U-bounded Asplund sets into Asplund sets.

Proof. Consider D a bounded set of E with the AP. We can suppose, without loss of
generality, that D ⊂ BE, since the class of Asplund sets is stable under translations
and homotheties.

a) Let A ⊂ P (D) be a countable set, that is, A = P (C) for some countable set C ⊂ D.
Since D is Asplund, we have that (E∗, ‖ · ‖C) is separable, so there exists a countable
set S which is dense in (E∗, ‖·‖C). Consider the adjoint mapping P ∗ : F ∗ −→ PA(

kE)
given by

P ∗(x∗) = x∗ ◦ P.

Clearly, the mapping P ∗ : (F ∗, ‖ · ‖A) −→ (PA(
kE), ‖ · ‖C) is a linear isometry.

Therefore, (F ∗, ‖ · ‖A) is separable if P ∗(F ∗) ⊂ (PA(
kE), ‖ · ‖C) is separable and this
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will be a consequence of the separability of the seminormed space (PA(
kE), ‖ · ‖C).

This space is separable since the algebra generated by S is dense in (Pf (
kE), ‖ · ‖C),

which in turn is dense in (PA(
kE), ‖ · ‖C) since by definition, PA(

kE) = Pf (kE) and
the norm topology is finer than the ‖ · ‖C - topology.

b) It follows from a) and 3.2.a.

c) It follows from a) and b).

d) Let D be an Asplund set. By c) and 3.2.a, any polynomial defined on E maps D
into an Asplund set. Set n ∈ N. Since f is of bounded type, there exists a polynomial
Pn such that ‖f(x)− Pn(x)‖ ≤ 1/n for any x ∈ D. Therefore,

f(D) ⊂ Pn(D) +
1

n
BF ,

and, hence, f(D) is an Asplund set by 3.2.b.

The following application of 3.3 yields a result due to Aron and Dineen [2] Cor. 6.

Corollary 3.4. If P (kE) has the Radon-Nikodým property, then E is an Asplund

space. Conversely, if E is an Asplund space and further Pf (
kE) is dense in P (kE),

then P (kE) has the Radon-Nikodým property.

Proof. For the first statement, recall that according to [3] E∗ is a complemented
subspace of P (kE). Hence E∗ has also the Radon-Nikodým property. For the other
statement, recall that the mapping x ∈ E 7→ δx ∈ Q(kE) is a k-homogeneous poly-
nomical, hence the above Proposition 3.3 shows that δ(BE) is an Asplund set in
Q(kE) and by [5] 5.2.2.d, also its closed absolutely convex hull is such a set. More-
over [20] 2.5, this hull is the unit ball of Q(kE), thus Q(kE) is an Asplund space and
we conclude that its dual P (kE) has the Radon-Nikodým property.

The following example shows that the G∞(BE) is not an Asplund space regardless of
the Banach space E.

Example 3.5. The space G∞(BE) is not an Asplund space. Indeed, it is well-known
that c0 ⊂ H∞(BE) since H∞(BE) is an infinite dimensional uniform algebra. Then,
ℓ1 ⊂ G∞(BE) by Theorem 4 in [4]. Therefore, G∞(BE) is not an Asplund space since
ℓ∗1 = ℓ∞ is not separable.

This remark leads us to point out that Proposition 3.3.d does not hold, in general,
for non U -bounded sets. To show this, consider the predual G∞ of H∞ and the
bounded analytic map δ : D → G∞, given by δ(x) = δx, the evaluation at x. Then
δ(D) = {δx : x ∈ D} is not an Asplund set since otherwise the closure of its absolutely
convex hull BG∞ would have the AP, but as we have just proved, it has not.

The following result gives a sufficient condition for all functions in the algebra
Au(BE, F ) to transform Asplund sets into Asplund sets. This result can be extended
to other algebras of analytic functions on BE.
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Proposition 3.6. Let E and F be Banach spaces and suppose that AE is a separable

space of scalar functions on BE. Let AE,F a space of functions from BE into F such

that for any x∗ ∈ F ∗ and f ∈ AE,F , the function x∗ ◦ f belongs to AE. Then, any

f ∈ AE,F maps Asplund sets into Asplund sets.

Proof. We denote by A the algebra AE,F . Pick f ∈ A and consider the restriction
f ∗ := Cf |F ∗ : F ∗ −→ AE given by f ∗(x∗) = x∗ ◦ f. Let D ⊂ BE be an Asplund set.
To show that f(D) ⊂ F is also an Asplund set, consider the space (F ∗, ‖ · ‖f(D)) and
B ⊂ f(D) a countable set. There exists a countable set C ⊂ D such that f(C) = B.
In consequence, (AE, ‖·‖C) is separable since ‖g−h‖C ≤ ‖g−h‖∞ for any g, h ∈ AE.
Since the mapping f ∗ : (F ∗, ‖ · ‖f(C)) → (AE, ‖ · ‖C) is a linear isometry, we have that
(F ∗, ‖ · ‖f(C)) is separable and, therefore, f(D) is an Asplund set.

Corollary 3.7. If Au(BE) is separable, then any f ∈ Au(BE, F ) transforms Asplund

sets into Asplund sets.

Remark 3.8. (i) There exist Banach spaces E such that E∗ is separable, so E is
Asplund, but there exist functions f ∈ Au(BE, F ) which do not transform Asplund
sets into Asplund sets. To show this, it is sufficient to consider the function given in
Example 3.1.

(ii) There exist Banach spaces E whose dual spaces E∗ are not separable but any
f ∈ Au(BE, F ) transforms Asplund sets into Asplund sets for any Banach space F .
Consider, for instance, E = c0(Γ) for an uncountable set Γ, whose dual space ℓ1(Γ)
is not separable. However, any function f ∈ Au(BE, F ) transforms Asplund sets into
Asplund sets by Proposition 3.3.d.

4. Radon-Nikodým Composition Operators

Every holomorphic map ϕ : BE → BF gives raise to the composition operator
Cϕ : H∞(BF ) −→ H∞(BE) defined according to Cϕ(f) = f ◦ ϕ.

The range of C∗
ϕ|G∞(BE) is contained in G∞(BF ) since for any u ∈ G∞(BE), the

composition u◦Cϕ is still continuous for the compact-open topology on BG∞(BF ). We
denote by Cϕ the restriction Cϕ

∗|G∞(BE).

In this section, we will study when Cϕ is an Asplund operator, which will lead us
to characterize Radon-Nikodým composition operators Cϕ because of the duality
between the Asplund property and the Radon-Nikodým property.

In order to introduce the class of Radon-Nikodým operators, we give some back-
ground on the Radon-Nikodým property for Banach spaces. For further results on
this property or concepts on vector measures see [9].

Definition 4.1. A closed, bounded, convex subset C of a Banach space E is called
a Radon-Nikodým set if, for each probability space (Ω,Σ, µ) and any vector measure
m : Σ −→ E which is absolutely continuous with respect to µ and whose average
range is in C (i.e. m(A)/µ(A) is contained in C for every A ∈ Σ, µ(A) > 0), there
exists a Bochner integrable function f : Ω −→ E such that

m(A) =

∫

A

fdµ for all A ∈ Σ.
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The concept of Radon-Nikodým operator is the following [14],

Definition 4.2. The linear operator T : E −→ F is said to be a Radon-Nikodým

operator if for every finite measure space (Ω,Σ, µ) and for every vector measure
m : Σ −→ E such that ‖m(A)‖ ≤ µ(A) for all A ∈ Σ, there exists a Bochner
integrable function f : Ω −→ F such that

T ◦m(A) =

∫

A

fdµ for all A ∈ Σ.

The set of Radon-Nikodým operators is a closed ideal of operators [21]. In connec-
tion with Radon-Nikodým operators, Ghoussoub and Saab introduced the concept of
strong Radon-Nikodým operator, i.e., an operator T : E −→ F such that T (BE) is
a Radon-Nikodým set. Edgar [11] proved that strong Radon-Nikodým operators are
Radon-Nikodým operators. The converse is not true in general since any quotient Q
from ℓ1 onto c0 is a Radon-Nikodým operator but fails to be a strong Radon-Nikodým
operator [14]. However, as pointed out in [14], these concepts become equivalent when
we deal with adjoint maps, i.e., for an operator T : E −→ F , T ∗ : F ∗ −→ E∗ is a
Radon-Nikodým operator if and only if T ∗ : F ∗ −→ E∗ is strong Radon-Nikodým.
Thus we conclude from Theorem 2.11 in [22],

Theorem 4.3. Let T : E −→ F be a linear operator. Then,

T is Asplund if and only if T ∗ is Radon-Nikodým.

And bearing in mind that (Cϕ)∗ = Cϕ, the following is clear,

Corollary 4.4. A composition operator Cϕ : H∞(BF ) −→ H∞(BE) is Radon-Niko-

dým if and only if Cϕ : G∞(BE) −→ G∞(BF ) is Asplund.

Therefore, we aim to find conditions to ensure that Cϕ is Asplund. We begin with
the following result,

Proposition 4.5. The operator Cϕ is an Asplund operator if and only if the set
{

δϕ(x) : x ∈ BE

}

is Asplund in G∞(BF ).

Proof. Set B = BG∞(BE). The set C
ϕ(B) = {µ ◦ Cϕ : µ ∈ B} is Asplund if and only

if aco({δx ◦ Cϕ : x ∈ BE}) is Asplund, which is equivalent to {δx ◦ Cϕ : x ∈ BE} to
be Asplund and this is satisfied if and only if

{

δϕ(x) : x ∈ BE

}

is Asplund.

Notice that Example 3.5 shows that
{

δϕ(x) : x ∈ BE

}

being an Asplund set is not
equivalent to ϕ(BE) being an Asplund set.

We need the following lemma, whose proof follows the same pattern as Proposition
2 in [12].

Lemma 4.6. Let ϕ : BE −→ BF be an analytic map and suppose that ϕ(BE) * rBF

for all 0 < r < 1. Then, there exist linear operators T : H∞(BE) −→ ℓ∞ and

S : ℓ∞ −→ H∞(BF ) such that

T ◦ Cϕ ◦ S = Idℓ∞ .
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Proof. We may find, by hypothesis, a sequence (xn) ⊂ BE such that limn→∞ ‖ϕ(xn)‖
= 1. We can consider, passing to a subsequence if necessary, that (‖ϕ(xn)‖) converges
fast enough in order to satisfy the Hayman-Newman condition, that is,

1− ‖ϕ(xn+1)‖

1− ‖ϕ(xn)‖
< c for some 0 < c < 1.

By Corollary 8 in [13], the sequence (ϕ(xn)) is interpolating for H∞(BF ). In partic-
ular, there exist a sequence (fk) ⊂ H∞(BF ) and M > 0 such that

fk(ϕ(xn)) = δkn for all n, k ∈ N and
∞
∑

n=1

|fn(x)| ≤ M for all x ∈ BF .

Define the operators S : ℓ∞ −→ H∞(BF ) by S((αk)) =
∑∞

k=1 αkfk and T : H∞(BE)
−→ ℓ∞ by T (f) = (f(xk))

∞
k=1 . Both are well-defined, linear and continuous. Finally,

it is clear that T ◦ Cϕ ◦ S = Idℓ∞ .

Proposition 4.7. Let Cϕ : H∞(BF ) −→ H∞(BE) be a Radon-Nikodým operator.

Then there exists 0 < r < 1 such that ϕ(BE) ⊂ rBF .

Proof. If such an 0 < r < 1 does not exist, we apply Lemma 4.6 and find linear
operators S : ℓ∞ −→ H∞(BF ) and T : H∞(BE) −→ ℓ∞ such that T ◦ Cϕ ◦ S =
Idℓ∞ . This is not possible since the class of Radon-Nikodým operators is an ideal of
operators and Idℓ∞ is not a Radon-Nikodým operator.

These results allow us to give the following characterization of Radon-Nikodým com-
position operators,

Theorem 4.8. The composition operator Cϕ : H∞(BF ) −→ H∞(BE) is Radon-

Nikodým if and only if there exists 0 < r < 1 such that ϕ(BE) ⊂ rBF and (P (F ), ‖·‖A)
is separable for any countable set A ⊂ ϕ(BE).

Proof. To prove the sufficient condition we show firstly that δϕ(BE) = {δx : x ∈
ϕ(BE)} is an Asplund set in G∞(BF ). Let A ⊂ ϕ(BE) be a countable set. This
set can be described as A = ϕ(C) for some countable set C ⊂ BE. Recall that
the Taylor series of f ∈ H∞(BF ) converges uniformly to f on rBF and, therefore,
f is uniformly approximable by polynomials on ϕ(C). Hence, P (F ) is dense in
(H∞(BF ), ‖ · ‖ϕ(C)). Since (P (F ), ‖ · ‖ϕ(C)) is separable and G∞(BF )

∗ = H∞(BF ),
it follows that (G∞(BF )

∗, ‖ · ‖ϕ(C)) is separable. Thus, δϕ(BE) is an Asplund set in
G∞(BF ). Hence Cϕ is an Asplund operator by Proposition 4.5 and, according to
Corollary 4.4, Cϕ is a Radon-Nikodým operator.

Now we prove the necessary conditions. Let Cϕ be a Radon-Nikodým operator.
By Proposition 4.7, there exists 0 < r < 1 such that ϕ(BE) ⊂ rBF . To show
the remaining condition, let A ⊂ ϕ(BE) be a countable set, that is, A = ϕ(C)
for some countable set C ⊂ BE. Since Cϕ(BG∞(BE)) is an Asplund set, the space
(H∞(BF ), ‖ · ‖ϕ(C)) is separable. Therefore, since P (F ) ⊂ H∞(BF ), it follows that
(P (F ), ‖ · ‖ϕ(C)) is a subspace of the seminormed space (H∞(BF ), ‖ · ‖ϕ(C)). Thus,
(P (F ), ‖ · ‖A) is separable.
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Corollary 4.9. Let ϕ : BE −→ BF be an analytic map.

a) Suppose that P (kF ) = Pf (kF ) for any k ∈ N. If ϕ(BE) is an Asplund set and

there exists 0 < r < 1 such that ϕ(BE) ⊂ rBF , then the composition operator

Cϕ : H∞(BF ) −→ H∞(BE) is Radon-Nikodým.

b) Suppose that the algebra Au(BF ) is separable. If ϕ(BE) is an Asplund set and

there exists 0 < r < 1 such that ϕ(BE) ⊂ rBF , then the composition operator

Cϕ : H∞(BF ) −→ H∞(BE) is Radon-Nikodým.

Proof. a) We show in Proposition 3.3.a that for any countable set C ⊂ ϕ(BE), the
space (P (kF ), ‖ · ‖C) is separable. Then,

(P (F ), ‖ · ‖C) =
⋃

k∈N

(P (kF ), ‖ · ‖C)

is also separable and, therefore, we can use the previous theorem to get the result.

b) Since ϕ(BE) ⊂ rBF is an Asplund set and the function δ|rBF
belongs to

Au(rBF , G
∞(BF )), we have that the set δϕ(BE) is also an Asplund set by Proposition

3.6 and, therefore, the composition operator Cϕ is Radon-Nikodým.
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