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In this paper the existence of an absolute minimizer for a functional

F (u,Ω) = ess sup
x∈Ω

f(x, u(x), Du(x))

is proved by using Perron’s method. The function is assumed to be quasiconvex and uniformly
coercive. This completes the result by Champion, De Pascale and Prinari [6].
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1. Introduction

There has been increasing interest in Calculus of variations for L∞ functionals in
recent years. By Calculus of variations for L∞ functionals we mean minimizing
problems involving functionals of the form

F (u,Ω) = ess sup
x∈Ω

f(x, u(x), Du(x)) (1)

where Ω ⊂ R
n is a bounded domain, f : Ω×R×R

n → R is measurable function and
u is (locally) Lipschitz continuous in Ω. At this point we would like to mention the
pioneering works by Aronsson in 1960’s ([1], [2] and [3]).

One of the fundamental problems in the area is the existence of a so called absolute
minimizer for the functional (1) with a given Dirichlet boundary data. That is to
find a function u ∈ W 1,∞

g (Ω) such that for every V ⊂⊂ Ω it holds

F (v, V ) ≥ F (u, V ) if v ∈ W 1,∞(V ) ∩ C(V ) and v = u on ∂V. (2)

Here g ∈ W 1,∞(Ω) is a given function and W 1,∞
g (Ω) denotes the space of function

u− g ∈ W 1,∞(Ω) ∩ C0(Ω).
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There are basically two ways to find an absolute minimizer for (1): the one is the Lp

approximation argument and the other Perron’s method. Bhattacharya, DiBenedetto
and Manfredi were the first ones to use Lp approximation in [5] where they proved
the existence of an absolute minimizer for (1) in the special case f(x, s, p) = |p|.
The same method was later used by Barron, Jensen, Wang [4] and more recently
by Champion, De Pascale, Prinari [6] for much more general type of L∞ functionals.
Essentially what they proved is that whenever f is quasiconvex with respect to the last
variable and uniformly coercive (see conditions (H1) and (H2) in the next section)
L∞ variational problem has an absolute minimizer.

The use of Perron’s method in L∞ Calculus of variations dates back in 1960’s, when
Aronsson [3] himself proved the existence of absolute minimizer in the special case
f(x, s, p) = |p|. Similar treatment was done by Juutinen [7] and Milman [8] in
general metric spaces. Champion, De Pascale and Prinari [6] showed that this method
also gives the existence of absolute minimizer for more general type of functionals.
However, this result is not as general as in the case of Lp approximation done by
the same authors, since in addition to the natural conditions (H1) and (H2) for f

another assumption (H3) was needed.

A natural question is wheather we will be able to get as strong existence result with
Perron’s method as we get by using Lp approximation? In this paper we prove that
this is indeed the case. We use Perron’s method to prove our main result, Theorem
2.4, which states that an absolute minimizer exists if the integrand f satisfies the
natural conditions (H1) and (H2). The key is to define function classes which we
call absolute superminimizers and absolute subminimizers. This gives an easy way
to characterize the solution and the proof becomes rather straightforward.

2. Preliminaries

As we said in the introduction, the key of the proof is to use the following definition.

Definition 2.1. A function u ∈ W
1,∞
loc (Ω) is an absolute superminimizer (submini-

mizer) of functional (1) if for all V ⊂⊂ Ω and for v ∈ W 1,∞(V ) ∩ C(V ) such that
v > u (v < u) in V and v = u on ∂V it holds

F (v, V ) ≥ F (u, V ).

A function is an absolute minimizer of (1) if it is both absolute super- and submini-
mizer.

It is easy to see that u ∈ W
1,∞
loc (Ω) is an absolute minimizer of (1) if and only if for

all V ⊂⊂ Ω we have that

F (v, V ) ≥ F (u, V ) if v ∈ W 1,∞(V ) ∩ C(V ) and v = u on ∂V.

Therefore our definition of absolute minimizer in Definition 2.1 coincides with the
one introduced earlier in (2).

Function f in (1) is assumed to be measurable and to satisfy the following conditions:
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(H1) For a.e. x ∈ Ω the map f(x, ·, ·) is lower semicontinuous on R×R
n and for all

(x, s) ∈ Ω×R f(x, s, ·) is quasiconvex on R
n i.e. for all p, q ∈ R

n and 0 ≤ t ≤ 1
it holds

f(x, s, tp+ (1− t)q) ≤ max{f(x, s, p), f(x, s, q)}

for all (x, s) ∈ Ω× R,

(H2) For all c ∈ R there is R ≥ 0 such that for every (x, s) ∈ Ω× R it holds

{p ∈ R
n | f(x, s, p) ≤ c} ⊂ B(0, R).

Condition (H2) is just uniform coerciveness. Condition (H1) guarantees that our
functional has the right kind of semicontinuity property as the following result states.
The proof can be found in [6].

Theorem 2.2. Let f : Ω×R×R
n → R satisfy (H1) and (H2). Then the functional

(1) is sequentially lower semicontuous in W 1,∞(Ω) with respect to weak*-convergence

i.e.

lim inf
j→∞

F (uj,Ω) ≥ F (u,Ω)

whenever uj → u weakly* in W 1,∞(Ω).

The previous result is the key tool in finding a minimizer for functional (1) inW 1,∞
g (Ω)

by the direct method of Calculus of variations. We sketch the proof for readers
convenience.

Theorem 2.3. Suppose f : Ω × R × R
n → R satisfies (H1) and (H2) and g ∈

W 1,∞(Ω). Then the functional (1) has at least one minimizer in W 1,∞
g (Ω) i.e. there

is u ∈ W 1,∞
g (Ω) such that

F (u,Ω) = inf
{
F (v,Ω) | v ∈ W 1,∞

g (Ω)
}
.

Proof. Denote c = F (g,Ω) and let (uj) be a sequence such that

F (uj,Ω) → inf
v∈W

1,∞
g (Ω)

F (v,Ω) ∈ [−∞, c].

Obviously the sequence can be chosen so that F (uj,Ω) ≤ c for all j and therefore the
condition (H2) implies that (uj) is bounded inW 1,∞(Ω). Hence inf

v∈W
1,∞
g (Ω) F (v,Ω)>

−∞. Moreover we may assume that the sequence uj weakly*-converges towards
some u ∈ W 1,∞

g (Ω). Theorem 2.2 guarantees that the function u is a minimizer of
F (·,Ω).

Champion, De Pascale and Prinari ([6], Theorem 4.1) proved that the conditions (H1)
and (H2) pretty much guarantees the existence of an absolute minimizer. To be quite
precise, they need yet to assume that the integrand f is continuous with respect to its
second variable. This is the proof which uses Lp approximation. But when they use
Perron’s method ([6], Theorem 4.7) the following additional assumption is needed:

(H3) For any open subset V ⊂ Ω , g ∈ W 1,∞(V ) ∩ C(V ) and y ∈ V , the image set
{
u(y) | u is minimizer of F (·, V ) in W 1,∞

g (V )
}
⊂ R

is connected.
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The point of this paper is to prove the existence of an absolute minimizer by using
Perron’s method, whitout using the assumption (H3).

Theorem 2.4. Suppose f : Ω×R×R
n → R satisfies (H1) and (H2). Then for any

g ∈ W 1,∞(Ω) the functional (1) has at least one absolute minimizer in W 1,∞
g (Ω).

3. Existence of absolute minimizer

The outline of the proof of Theorem 2.4 is quite standard. We will construct our
absolute minimizer piece by piece by using Theorems 2.2 and 2.3.

We will frequently use the following notations,

A (g,Ω) =
{
u ∈ W 1,∞

g (Ω) | u is a minimizer ofF (·,Ω) inW 1,∞(Ω)
}
,

Asup(g,Ω) = A (g,Ω) ∩
{
u ∈ W 1,∞

g (Ω) | u is an absolute superminimizer ofF (·,Ω)
}
,

Asub(g,Ω) = A (g,Ω) ∩
{
u ∈ W 1,∞

g (Ω) | u is an absolute subminimizer ofF (·,Ω)
}
.

Since we are using Perron’s method, it is rather obvious that the following two lemmas
are needed.

Lemma 3.1. Assume that g ∈ W 1,∞(Ω).

(i) Suppose that u1, u2 ∈ Asub(g,Ω) and set u = max(u1, u2). Then u ∈ Asub(g,Ω).

(ii) Suppose that u1, u2 ∈ Asup(g,Ω) and set u = min(u1, u2). Then u ∈ Asup(g,Ω).

Proof. (i) First of all, since u1, u2 ∈ A (g,Ω) we have that u ∈ A (g,Ω). Indeed,
denote W = {x ∈ Ω | u1(x) > u2(x)} and deduce that

F (u,Ω) = max{F (u1,W ), F (u2,Ω\W )} ≤ max{F (u1,Ω), F (u2,Ω)}

= inf
{
F (v,Ω) | v ∈ W 1,∞

g (Ω)
}
.

Hence u ∈ A (g,Ω).

Suppose next that V ⊂⊂ Ω and h ∈ W 1,∞(V ) ∩ C(V ) is such that h < u in V and
h = u on ∂V . Divide V into two parts in two ways. Set first

U1 = {x ∈ V | h(x) < u1(x)},

U2 = {x ∈ V | h(x) < u2(x)}.

Notice that h = u1 on ∂U1 and h = u2 on ∂U2. Define next

W1 = {x ∈ V | u1(x) > u2(x)},

W2 = {x ∈ V | u1(x) ≤ u2(x)}.

It is immediate that u = u1 in W1, u = u2 in W2 and W1 ⊂ U1,W2 ⊂ U2. Together
with the fact that u1 and u2 are absolutely subminimizers these imply

F (h, V ) = max(F (h, U1), F (h, U2)) ≥ max(F (u1, U1), F (u2, U2))

≥ max(F (u1,W1), F (u2,W2)) = max(F (u,W1), F (u,W2)) = F (u, V ).

Part (ii) goes similarly.
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Lemma 3.2. Fix g ∈ W 1,∞(Ω). Then the set A (g,Ω) is non-empty. Moreover,

consider the functions

w(x) := sup
v∈A (g,Ω)

v(x)

and

u(x) := inf
v∈A (g,Ω)

v(x).

Then w ∈ Asup(g,Ω) and u ∈ Asub(g,Ω).

Proof. The fact that A (g,Ω) non-empty is just Theorem 2.3. We will only prove
that w ∈ Asup(g,Ω), since the proof for u is completely analogous.

Suppose {x1, x2, . . . } is dense in Ω. Set k ∈ N and find functions uk
1, . . . , u

k
k ∈

A (g,Ω) such that uk
i (xi) +

1
k

≥ w(xi) ≥ uk
i (xi) for every i = 1, . . . , k. Denote

vk(x) = max(uk
1(x), . . . , u

k
k(x)). Looking at the first part of the proof of Lemma

3.1 we conclude that vk ∈ A (g,Ω). By doing this for all k we obtain a sequence
(vk) of minimizers of (1) such that vk(x) → w(x) pointwise in a dense subset of
Ω. Since functions vk are minimizers we have F (vk,Ω) ≤ F (g,Ω) for all k. By
(H2) the sequence is bounded in W 1,∞(Ω) and by passing to a subsequence we may

assume that vk
w∗

→ w. Since F (·,Ω) is weakly* lower semicontinuous we conclude that
w ∈ A (g,Ω).

Suppose that w is not an absolute superminimizer. Then there would be V ⊂⊂ Ω
and h ∈ W 1,∞(V ) ∩ C(V ) such that h > w in V, h = w on ∂V and

F (h, V ) < F (w, V ).

Define

w̃(x) =

{

h(x) x ∈ V

w(x) x ∈ Ω\V.

Then w̃ ∈ W 1,∞
g (Ω) and

F (w̃,Ω) = max(F (w̃, V ), F (w̃,Ω\V )) = max(F (h, V ), F (w,Ω\V )) ≤ F (w,Ω).

Hence w̃ ∈ A (g,Ω) and w̃ > w in V . But this contradicts the definition of w, and w

is therefore an absolute superminimizer.

Now we are ready to prove our main result.

Proof of Theorem 2.4. Fix g ∈ W 1,∞(Ω). We will show that absolute minimizer
can be found by the formula

ū(x) = inf
v∈Asup(g,Ω)

v(x)

or

w̄(x) = sup
v∈Asub(g,Ω)

v(x).
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Moreover ū is the smallest and w̄ is the biggest absolute minimizer of functional (1)
in W 1,∞

g (Ω). We will only show that ū is an absolute minimizer, since the proof for
w̄ is completely analogous.

Claim 1: ū ∈ Asup(g,Ω). Just like in the proof of Lemma 3.2 we choose a dense
subset {x1, x2, . . . } of Ω and for all k ∈ N functions uk

1, . . . , u
k
k ∈ Asup such that

uk
j (xj) ≥ ū(xj) ≥ uk

j (xj)−
1
k
for j = 1, . . . , k. Denote vk(x) = min(uk

1(x), . . . , u
k
k(x)).

Then by Lemma 3.1 vk ∈ Asup(g,Ω) and by construction vk → ū pointwise in a dense
subset of Ω. In particular, vk ∈ A (g,Ω) and therefore F (vk,Ω) ≤ F (g,Ω) for all k.
Again by (H2) the sequence is bounded in W 1,∞(Ω) and we may assume that

vk
w∗

→ ū.

In particular, vk → ū uniformly. Moreover we may assume that the sequence is
nonincreasing by considering ṽk(x) = min(v1(x), . . . , vk(x)).

Suppose V ⊂⊂ Ω and h ∈ W 1,∞(V ) ∩ C(V ) is such that h > ū in V and h = ū on
∂V . Denote

Vk = {x | h(x) > vk(x)}.

Since (vk) is nonincreasing and converges uniformly to ū we have Vk ⊂ Vk+1 ⊂ · · · ⊂ V

for all k ∈ N and Vk is non-empty when k is large. Therefore

F (h, Vk) ≥ F (vk, Vk)

since vk ∈ Asup(g,Ω). Fix a large k0 for a moment. For all k ≥ k0 we have

F (h, V ) ≥ F (h, Vk) ≥ F (vk, Vk) ≥ F (vk, Vk0).

Therefore letting k → ∞ we have by the weak* semicontinuity of F that

F (h, V ) ≥ lim infk→∞F (vk, Vk0) ≥ F (ū, Vk0).

Finally by letting k0 → ∞ we conclude

F (h, V ) ≥ F (ū, V )

which implies ū ∈ Asup(g,Ω).

Claim 2: ū ∈ Asub(g,Ω). We prove this by contradiction. Suppose that there is
V ′ ⊂⊂ Ω and u ∈ W 1,∞(V ′) ∩ C(V ′) such that u < ū in V ′, u = ū on ∂V ′ and

F (u, V ′) < F (ū, V ′). (3)

Define
w(x) = sup

v∈A (ū,V ′)

v(x).

By Lemma 3.2 w ∈ Asup(ū, V
′). In particular w is a minimizer of functional F (·, V ′)

and therefore by Claim 1 and (3) the set

V = {x ∈ V ′ | w(x) < ū(x)} (4)
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is non-empty. Define a function

u(x) =

{

w(x) x ∈ V

ū(x) x ∈ Ω\V.
(5)

Our goal is to show that u ∈ Asup(g,Ω), which contradicts the definition of ū and
the claim will then follow.

Therefore assume that U ⊂⊂ Ω, h > u in U and h = u on ∂U . Denote

W = {x ∈ U | h(x) > ū(x)}. (6)

Since ū ∈ Asup(g,Ω) we have

F (h, U) = max{F (h,W ), F (h, U\W )} ≥ max{F (ū,W ), F (h, U\W )}

= max{F (ū,W\V )
︸ ︷︷ ︸

∗

, F (ū,W ∩ V ), F (h, U\W )
︸ ︷︷ ︸

∗∗

}. (7)

Consider first the term (∗). Definition (6) yields W ⊂ U and thereby W\V ⊂ U\V .
Suppose that x ∈ U\V . By (5) we have u(x) = ū(x) which implies h(x) > u(x) =
ū(x). This implies x ∈ W and therefore U\V ⊂ W\V . Hence W\V = U\V and in
particular

F (ū,W\V ) = F (ū, U\V ). (8)

Next consider the term (∗∗). Using the definitions of (4) and (6) it is easy to see that

U ∩ V ∩W = V ∩W and

(U ∩ V )\W = U\W.
(9)

Next we notice that min(ū(x), h(x)) > w(x) for x ∈ U∩V and min(ū(x), h(x)) = w(x)
for x ∈ ∂(U ∩ V ). Since w is an absolute superminimizer in V we have

F (w,U ∩ V ) ≤ F (min(ū, h), U ∩ V )

= max{F (ū, (U ∩ V ∩W )), F (h, (U ∩ V )\W )}

= max{F (ū, V ∩W ), F (h, U\W )}

(10)

where the last equality follows from (9).

Combining (7), (8) and (10) yields

F (h, U) ≥ max{F (ū, U\V ), F (w,U ∩ V )} = F (u, U)

since u(x) = ū(x) for x ∈ U\V and u(x) = w(x) for x ∈ V.
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