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Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain

glopez@us.es

Victoria Mart́ın-Márquez§

Departamento de Análisis Matemático,
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1. Introduction

Many problems arising in different areas of mathematics such as optimization, vari-
ational analysis and game theory, can be formulated as the fixed point problem:

find x ∈ X such that x = Tx, (1)

where T is a nonexpansive mapping defined on a metric space X, i.e., T satisfies the
property d(Tx, Ty) ≤ d(x, y), for all x, y ∈ X.

For instance, let A : C → H be a nonlinear operator where C ⊂ H is a closed
convex subset of a Hilbert space. The variational inequality problem associated to
A, VIP(A,C), is formulated as finding a point x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (2)

It is well-known that the VIP(A,C) is equivalent to the problem of finding the fixed
point

x∗ = PC(x
∗ − λAx∗), (3)

where λ > 0 and PC is the metric projection onto C, which is a nonexpansive mapping
in this case. Besides, if f : C → R is a differentiable convex function and we denote by
A the gradient operator of f , then (2) is the optimality condition for the minimization
problem

min
x∈C

f(x). (4)

Bearing in mind that the iterative methods for approximating a fixed point of a
nonexpansive mapping can be applied to find a solution to a variational inequality, a
zero of an accretive operator and a minimizer of a convex function, in the recent years
the study of the convergence of those methods has received a great deal of attention.
Basically two types of iterative algorithms have been investigated: Mann algorithm
and Halpern algorithm.

In the following, let X be a real Banach space, C ⊂ X a closed convex subset and
T : C → C a nonexpansive mapping with fixed point set F = {x ∈ C : x = Tx} 6= ∅.

Mann algorithm generates a sequence according to the iterative scheme

xn+1 = (1− tn)xn + tnTxn, n ≥ 0, (5)

where the initial guess x0 ∈ C and {tn} is a sequence in (0, 1).

Halpern algorithm generates a sequence via the recursive formula

xn+1 = αnu+ (1− αn)Txn, n ≥ 0 (6)

where x0, u ∈ C are arbitrary and the sequence {αn} ⊂ (0, 1).

Whenever a fixed point of the mapping T exists, Halpern algorithm strongly con-
verges, whereas we just get weak convergence for Mann algorithm as was estab-
lished in [11] thanks to a counterexample. The references [29, 21, 15, 36, 10, 49]
can be consulted for convergence results of Mann algorithm. Some modifications
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have been proposed in [33, 16] to get strong convergence. As for Halpern algorithm,
see [14, 25, 45, 39, 48, 6, 43, 27] and references therein for studies dedicated to its
convergence.

Another iterative approach to solving the problem (1) which may have multiple solu-
tions, is to replace it by a family of perturbed problems admitting a unique solution,
and then to get a particular original solution as the limit of these perturbed solutions
as the perturbation vanishes. For example, Browder [2, 3] proved that if the under-
lying space H is Hilbert, then, given u ∈ H and t ∈ (0, 1), the approximating curve
{xt} defined by

xt = tu+ (1− t)Txt (7)

strongly converges, as t → 0, to the fixed point of T closest to u from F . Browder’s
result has been generalized and extended to a more general class of Banach spaces
[37, 41, 34]. Combettes and Hirstoaga [8] introduced a new type of approximating
curve for fixed point problems in the setting of a Hilbert space. This curve whose
iterative scheme is a more general version of the implicit formula

xt = T (tu+ (1− t)xt), (8)

was proved to converge to the best approximation to u from F . In [51] Xu studied
the behavior of {xt} defined by (8) in the setting of a Banach space X and discretized
this regularization method studying the strong convergence of the explicit algorithm

xn+1 = T (αnu+ (1− αn)xn), (9)

where {αn} ⊂ (0, 1). Moreover, he proved that the convergence point is the image of
u under the unique sunny nonexpansive retraction Q from X to F (see, for instance,
[35, 37]).

On the other hand, Moudafi in [32] introduced the viscosity approximation method for
nonexpansive mappings, which generalizes Browder (7) and Halpern (6) iterations,
by using a contraction Φ instead of an arbitrary point u. The convergence of the
implicit and explicit algorithms has been the subject of many papers because under
suitable conditions these iterations strongly converge to the unique solution q ∈ F to
the variational inequality

〈(I − Φ)q, J(x− q)〉 ≥ 0 ∀x ∈ F, (10)

where J is a duality mapping; that is, q is the unique fixed point of the contraction
Q ◦ Φ. This fact allows us to apply this method to convex optimization, linear
programming and monotone inclusions. See [50, 42, 44] and references therein for
convergence results regarding viscosity approximation methods.

In this paper, we analyze the behavior of a new approximating curve in the setting of
Banach spaces, which constitutes a hybrid method of the ones presented by Combettes
and Hirstoaga (8) and Moudafi. This curve is defined by

xt = T (tΦ(xt) + (1− t)xt), (11)

for some contraction Φ; that is, for any t ∈ (0, 1) xt is the unique fixed point of the
contraction Tt = T (tΦ + (1− t)I). The discretized iteration

xn+1 = T (αnΦ(xn) + (1− αn)xn) (12)



468 V. Colao et al. / Alternative Iterative Methods for Nonexpansive Mappings

is also considered and studied under suitable conditions on the sequence {αn} ⊂ (0, 1).
From this explicit algorithm we obtain the so-called hybrid steepest descent method

xn+1 = Txn − αng(Txn). (13)

This iterative method was suggested by Yamada [46] as an extension of viscosity
approximation methods for solving the variational inequality VIP(g, F ) (2) in the case
when g is strongly monotone and Lipschitz continuous, and F is the fixed point set of
a mapping T which belongs to a subclass of the quasi-nonexpansive mappings (also
see [47, 28]). We will get the convergence of the algorithm (13) for a nonexpansive
mapping T , just requiring I − µg to be a contraction for some µ > 0, which it is
satisfied in the particular case when g is strongly monotone and Lipschitz continuous.

Asymptotic regularity is a very important concept in metric fixed point theory. It
was already implicit in [21, 40, 9], but it was formally introduced by Browder and
Petryshyn in [4]. In our setting, the mapping T is called asymptotically regular if for
all x ∈ C

lim
n→∞

‖xn − Txn‖ = 0.

Effective rates of asymptotic regularity for both Mann and Halpern iterations have
been obtained (see [17, 18, 19, 22, 23]) by applying methods of proof mining. By
“proof mining� we mean the logical analysis, using proof-theoretic tools, of mathe-
matical proofs with the aim of extracting relevant information hidden in the proofs.
This new information can be both of quantitative nature, such as algorithms and
effective bounds, as well as of qualitative nature, such as uniformities in the bounds
or weakening the premises. Thus, even if one is not particularly interested in the
numerical details of the bounds themselves, in many cases such explicit bounds im-
mediately show the independence of the quantity in question from certain input data.
A comprehensive reference for proof mining is Kohlenbach’s book [20]. One of the
aims of this paper is to give effective rates of asymptotic regularity for the algorithm
(12) of nonexpansive mappings in the framework of normed spaces.

The organization of the paper is as follows. In Section 2 some preliminary results
are presented together with a technical lemma with regards to the behavior of the
sequence defined by algorithm (12), which will be useful for the proof of the conver-
gence and the evaluation of the rate of asymptotic regularity in following sections.
Section 3 contains the main results about the strong convergence of both implicit
(11) and explicit (12) algorithms to the unique solution to the variational inequality
(10) in the setting of uniformly smooth Banach spaces, and also in the framework
of reflexive Banach spaces with weakly continuous normalized duality mapping. A
hybrid method is deduced to converge as well in this section. Section 4 is devoted
to the rate of asymptotic regularity for the iteration (12) of nonexpansive mappings
in normed spaces. Finally, in Section 5 we give examples of how to apply the main
results of Ssection 3 to find a solution to a variational inequality and a zero of an
accretive operator.

2. Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and dual space X∗. For any x ∈ X and
x∗ ∈ X∗ we denote x∗(x) = 〈x, x∗〉. Given a nonempty closed convex subset C ⊂ X,
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Φ : C → C will be a ρ-contraction and T : C → C a nonexpansive self-mapping with
nonempty fixed point set F := {x ∈ C : Tx = x}.

We include some brief knowledge about geometry of Banach spaces which can be
found in more details in [7]. The normalized duality mapping J : X → 2X

∗

is defined
by

J(x) = {x∗ ∈ X
∗

: 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}. (14)

It is known that

J(x) = ∂

(

1

2
‖ · ‖2

)

(x),

where ∂(1
2
‖ ·‖2)(x) is the subdifferential of 1

2
‖ ·‖2 at x in the sense of convex analysis.

Thus, for any x, y ∈ X, we have the subdifferential inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, j(x+ y) ∈ J(x+ y). (15)

A Banach space X is said to be smooth if

lim
t→0

‖x+ ty‖ − ‖x‖

t
(16)

exists for each x, y ∈ SX , where SX is the unit sphere of X, i.e., SX = {v ∈ X : ‖v‖ =
1}. When this is the case, the norm of X is said to be Gateaux differentiable. If for
each y ∈ X the limit (16) is uniformly attained for x ∈ X, we say that the norm of
X is uniformly Gateaux differentiable, and we say that X is uniformly smooth if the
limit (16) is attained uniformly for any x, y ∈ SX .

It is known that a Banach space X is smooth if and only if the duality mapping J
is single-valued, and that X is uniformly smooth if and only if the duality mapping
J is single-valued and norm-to-norm uniformly continuous on bounded sets of X.
Moreover, if the norm of X is uniformly Gateaux differentiable then J is norm-to-
weak∗ uniformly continuous on bounded sets of X.

Following Browder [3] we say that the duality mapping J is weakly sequentially con-

tinuous (or simply weakly continuous) if J is single-valued and weak-to-weak∗ se-
quentially continuous; i.e., if xn ⇀ x in X, then J(xn) ⇀∗ J(x) in X∗. A Banach
space with weakly continuous duality mapping is known (see [24]) to satisfy Opial’s

property (i.e., whenever xn ⇀ x and y 6= x, we have lim‖xn − x‖ < lim‖xn − y‖),
and this fact implies (see [12]) that X satisfies the Demiclosedness principle : if C is
a closed convex subset of X and T is a nonexpansive self-mapping, then xn ⇀ x and
(I − T )xn → y imply that (I − T )x = y .

Consider a subset D ⊂ C and a mapping Q : C → D. We say that Q is a retraction

provided Qx = x for any x ∈ D. The retraction Q is said to be sunny if it satisfies
the property: Q(x+ t(x−Qx)) = Qx whenever x+ t(x−Qx) ∈ C, where x ∈ C and
t ≥ 0.

Lemma 2.1 ([5, 35, 13]). Let X be a smooth Banach space and D ⊂ C be non-

empty closed convex subsets of X. Given a retraction Q : C → D, the following three

statements are equivalent:
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(a) Q is sunny and nonexpansive.

(b) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉 for all x, y ∈ C.

(c) 〈x−Qx, J(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ D.

Consequently, there is at most one sunny nonexpansive retraction from C onto D.

In some circumstances, we can construct the sunny nonexpansive retraction. For the
nonexpansive mapping T with fixed point set F , an arbitrary u ∈ C and t ∈ (0, 1),
let zt be the unique fixed point of the contraction z 7→ tu+ (1− t)Tz for z ∈ C; that
is, zt is the unique solution in C to the fixed point equation

zt = tu+ (1− t)Tzt. (17)

It is natural to study the behavior of the net {zt} as t → 0+. It is unclear if the
strong limit of {zt} always exists in a general Banach space. However, the answer is
affirmative in some classes of smooth Banach spaces and then the limit defines the
sunny nonexpansive retraction from C onto F . Those Banach spaces where the net
{zt} strongly converges are said to have Reich’s property since Reich was the first to
show that all uniformly smooth Banach spaces have this property.

Theorem 2.2 ([37, 34]). Let X be either a reflexive Banach space with a weakly

continuous duality mapping or a uniformly smooth Banach space, C be a nonempty

closed convex subset of X, and T : C → C be a nonexpansive mapping with F 6= ∅.
Then the net {zt} strongly converges as t → 0+ to a fixed point of T ; moreover, the

limit

Q(u) := lim
t→0+

zt (18)

defines the unique sunny nonexpansive retraction from C onto F .

In [38] Reich proved the following two lemmas which will be needed for the conver-
gence results in Section 3.

Lemma 2.3. Let {xn} be a bounded sequence contained in a separable subset D of a

Banach space X. Then there is a subsequence {xnk
} of {xn} such that

lim
k→∞

‖xnk
− y‖

exists for all y ∈ D.

Lemma 2.4. Let D be a closed convex subset a real Banach space X with a uniformly

Gateaux differentiable norm, and let {xn} be a sequence in D such that

f(y) := lim
n→∞

‖xn − y‖

exists for all y ∈ D. If the function f attains its minimum over D at u, then

lim sup
n→∞

〈y − u, J(xn − u)〉 ≤ 0

for all y ∈ D.



V. Colao et al. / Alternative Iterative Methods for Nonexpansive Mappings 471

The following lemma collects some properties of the iteration (12), useful both for
proving the convergence of the iteration and for computing the rate of asymptotic
regularity.

Lemma 2.5. Let X be a normed space and {xn} be the sequence defined by the

explicit algorithm (12).

(1) For all n ≥ 0,

‖Φ(xn)− xn‖ ≤ (1 + ρ)‖xn − x0‖+ ‖Φ(x0)− x0‖, (19)

‖xn − Txn‖ ≤ ‖xn+1 − xn‖+ αn‖Φ(xn)− xn‖. (20)

(2) For all n ≥ 1,

‖xn+1 − xn‖ ≤ (1− (1− ρ)αn)‖xn − xn−1‖

+ |αn − αn−1| ‖Φ(xn−1)− xn−1‖.
(21)

(3) If T has fixed points, then {xn} is bounded for every x0 ∈ C.

Proof. (1) Let n ≥ 0.

‖Φ(xn)− xn‖ ≤ ‖Φ(xn)− Φ(x0)‖+ ‖Φ(x0)− x0‖+ ‖x0 − xn‖

≤ (1 + ρ)‖xn − x0‖+ ‖Φ(x0)− x0‖.

‖xn − Txn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Txn‖

= ‖xn+1 − xn‖+ ‖T (αnΦ(xn) + (1− αn)xn)− Txn‖

≤ ‖xn+1 − xn‖+ ‖αnΦ(xn) + (1− αn)xn − xn‖

= ‖xn+1 − xn‖+ αn‖Φ(xn)− xn‖.

(2) Let n ≥ 1.

‖xn+1 − xn‖ = ‖T (αnΦ(xn) + (1− αn)xn)

− T (αn−1Φ(xn−1) + (1− αn−1)xn−1)‖

≤ ‖αnΦ(xn) + (1− αn)xn − αn−1Φ(xn−1)− (1− αn−1)xn−1‖

= ‖αn(Φ(xn)− Φ(xn−1)) + (1− αn)(xn − xn−1)

+ (αn − αn−1)(Φ(xn−1)− xn−1)‖

≤ αnρ‖xn − xn−1‖+ (1− αn)‖xn − xn−1‖

+ |αn − αn−1| ‖Φ(xn−1)− xn−1‖

= (1− (1− ρ)αn)‖xn − xn−1‖

+ |αn − αn−1| ‖Φ(xn−1)− xn−1‖.
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(3 ) Let p be a fixed point of T .

‖xn+1 − p‖ = ‖T (αnΦ(xn) + (1− αn)xn)− Tp‖

≤ ‖αnΦ(xn) + (1− αn)xn − p‖

= ‖αn(Φ(xn)− Φ(p)) + (1− αn)(xn − p) + αn(Φ(p)− p)‖

≤ αnρ‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖Φ(p)− p‖

= (1− (1− ρ)αn)‖xn − p‖+ (1− ρ)αn
‖Φ(p)− p‖

1− ρ

≤ max

{

‖xn − p‖,
‖Φ(p)− p‖

1− ρ

}

.

By induction, we obtain that for all n ≥ 0,

‖xn − p‖ ≤ max

{

‖x0 − p‖,
‖Φ(p)− p‖

1− ρ

}

,

thus {xn} is bounded.

Let us recall some terminology that is used for expressing the quantitative results in
Section 4. We denote by Z+ the set of nonnegative integers. Let k ∈ Z+ and {an}n≥k

be a sequence of nonnegative real numbers. If {an} is convergent, then a function
ω : (0,∞) → {k, k + 1, . . .} is called a Cauchy modulus of {an} if for all ε > 0,

|aω(ε)+n − aω(ε)| < ε, ∀n ∈ Z+. (22)

If limn→∞ an = a, then a function ω : (0,∞) → {k, k + 1, . . .} is called a rate of

convergence of {an} if for any ε > 0

|an − a| < ε, ∀n ≥ ω(ε). (23)

If the series
∑∞

n=k an is divergent, then a function ω : Z+ → {k, k+ 1, . . .} is called a

rate of divergence of the series if
∑ω(n)

i=k ai ≥ n for all n ∈ Z+. If the series
∑∞

n=k an
converges, then by a Cauchy modulus of the series we mean a Cauchy modulus of the
sequence of partial sums {sn}n≥k, sn =

∑n
i=k ai.

Lemma 2.6 ([48]). Assume {an} is a sequence of nonnegative real number such that

an+1 ≤ (1− γn)an + γnbn + ǫn, n ≥ 0,

where {γn} and {ǫn} are sequences in (0, 1) and {bn} is a sequence in R such that
∑∞

n=1 γn = ∞,
∑∞

n=1 ǫn < ∞ and either lim supn→∞ bn ≤ 0 or
∑∞

n=1 γn|bn| < ∞.

Then limn→∞ an = 0.

The following lemma is a quantitative version of [26, Lemma 2].

Lemma 2.7 ([23, Lemma 9]). Let {λn}n≥1 be a sequence in (0, 1) and {an}n≥1,
{bn}n≥1 be sequences of nonnegative real numbers such that

an+1 ≤ (1− λn+1)an + bn for all n ∈ N.
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Assume that
∑∞

n=1 λn is divergent,
∑∞

n=1 bn is convergent and let δ : Z+ → N be a

rate of divergence of
∑∞

n=1 λn and γ : (0,∞) → N be a Cauchy modulus of
∑∞

n=1 bn.

Then limn→∞ an = 0 and moreover for all ε ∈ (0, 2)

an < ε, ∀n ≥ h(γ, δ,D, ε), (24)

where D > 0 is an upper bound on {an} and

h(γ, δ,D, ε) = δ

(

γ
(ε

2

)

+ 1 +

⌈

ln

(

2D

ε

)⌉)

.

3. Convergence of the algorithms

In this section we prove the convergence of the implicit (11), explicit (12) and hybrid
steepest descent (13) algorithms in the setting of Banach spaces, which generalize
previous results by Combettes and Hirstoaga [8], Xu [51], Yamada [46], and Xu and
Kim [52].

Theorem 3.1. Let X be either a reflexive Banach space with weakly continuous nor-

malized duality mapping J or a uniformly smooth Banach space, C a nonempty closed

convex subset of X, T : C → C a nonexpansive mapping with fixed point set F 6= ∅
and Φ : C → C a ρ-contraction. Then the approximating curve {xt} ⊂ C defined by

xt = T (tΦ(xt) + (1− t)xt) (25)

strongly converges, as t → 0, to the unique solution q ∈ F to the inequality

〈(Φ− I)q, J(x− q)〉 ≤ 0, ∀x ∈ F. (26)

Proof. First of all, note that if Q : C → F is the unique sunny nonexpansive
retraction whose existence is assured by Theorem 2.2, by the characterization Lemma
2.1, q ∈ C is the unique fixed point of the contraction Q ◦ Φ if and only if q ∈ F
satisfies inequality (26).

We observe that we may assume that C is separable. To see this, consider the set K
defined by

K0 := {q},

Kn+1 := co(Kn ∪ T (Kn) ∪ Φ(Kn)),

K :=
⋃

n

Kn.

Then K ⊂ C is nonempty, convex, closed, and separable. Moreover K is invariant
under T , Φ and, therefore, Tt = T (tΦ+(1−t)I). Then {xt} ⊂ K and we may replace
C with K.

We will prove that {xt} converges, as t → 0, to the point q ∈ F which is the unique
solution to the inequality (26).
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The sequence {xt} is bounded. Indeed, given p ∈ F ,

‖xt − p‖ = ‖T (tΦ(xt) + (1− t)xt)− Tp‖

≤ ‖t(Φ(xt)− Φ(p)) + (1− t)(xt − p) + t(Φ(p)− p)‖

≤ (tρ+ (1− t))‖xt − p‖+ t‖Φ(p)− p‖.

Then, for any t ∈ (0, 1),

‖xt − p‖ ≤
1

1− ρ
‖Φ(p)− p‖.

Take an arbitrary sequence {tn} ⊂ (0, 1) such that tn → 0, as n → 0, and denote
xn = xtn for any n ≥ 0. Let Γ := lim supn→∞ 〈Φ(q) − q, J(xn − q)〉 and {xnk

} be a
subsequence of {xn} such that

lim
k→∞

〈Φ(q)− q, J(xnk
− q)〉 = Γ.

Since {xnk
} is bounded, by Lemma 2.3, there exists a subsequence, which also will

be denoted by {xnk
} for the sake of simplicity, satisfying that

f(x) := lim
k→∞

‖xnk
− x‖

exists for all x ∈ C.

We define the set
A := {z ∈ C : f(z) = min

x∈C
f(x)}

and note that A is a nonempty bounded, closed and convex set since f is a continuous
convex function and lim‖x‖→∞ f(x) = ∞. Moreover,

‖xnk
− Tz‖ ≤ tnk

‖Φ(xnk
)− xnk

‖+ ‖xnk
− z‖,

for any z ∈ C. Since the sequence {tnk
} converges to 0 as k → ∞, we deduce that

f(Tz) ≤ f(z) for any z ∈ C. Then T (A) ⊆ A, in other words, T maps A into itself.

Since A is a nonempty bounded, closed and convex subset of either a reflexive Banach
space with weakly continuous normalized duality mapping or a uniformly smooth
Banach space, it has the fixed point property for nonexpansive mappings (see [12]),
that is F ∩ A 6= ∅.

If X is a reflexive Banach space with weakly continuous normalized duality mapping,
we can assume that {xnk

} has been chosen to be weakly convergent to a point q̃.
Since X satisfies Opial’s property, we have A = {q̃}. Then, since q̃ ∈ F , we obtain
that

Γ = 〈Φ(q)− q, J(q̃ − q)〉 ≤ 0.

If X is uniformly smooth, let q̃ ∈ F ∩ A. Then q̃ minimize f over C and, since the
norm is uniformly Gateaux differentiable, by Lemma 2.4,

lim sup
k→∞

〈x− q̃, J(xnk
− q̃)〉 ≤ 0 (27)
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holds, for all x ∈ C, and in particular for x = Φ(q̃).

We shall show that {xnk
} strongly converges to q̃. Denote

δk := 〈Φ(q̃)− q̃, J(tnk
(Φ(xnk

)− xnk
) + (xnk

− q̃))− J(xnk
− q̃)〉.

Since J is norm-to-weak∗ uniformly continuous on bounded sets, limk δk = 0. More-
over,

‖xnk
− q̃‖2 ≤ ‖tnk

(Φ(xnk
)− Φ(q̃)) + (1− tnk

)(xnk
− q̃) + tnk

(Φ(q̃)− q̃)‖2

≤ ‖tnk
(Φ(xnk

)− Φ(q̃)) + (1− tnk
)(xnk

− q̃)‖2 + 2tnk
δk

+ 2tnk
〈Φ(q̃)− q̃, J(xnk

− q̃)〉

≤ (1− (1− ρ)tnk
)‖xnk

− q̃‖2 + 2tnk
δk

+ 2tnk
〈Φ(q̃)− q̃, J(xnk

− q̃)〉.

(28)

From (28) and by (27), we obtain

lim
k→∞

‖xnk
− q̃‖2≤ lim sup

k→∞

2

1− ρ

(

δk + 2〈Φ(q̃)− q̃, J(xnk
− q̃)〉

)

≤ 0.

That is limk→∞ xnk
= q̃. Since q̃ is a fixed point of T , we also have

Γ = lim
k→∞

〈Φ(q)− q, J(xnk
− q)〉 = 〈Φ(q)− q, J(q̃ − q)〉 ≤ 0.

By applying (28) to {xn} and q, since Γ ≤ 0 in both cases, we obtain

lim
n→∞

xn = q

as required.

Corollary 3.2. Let H be a Hilbert space, C ⊂ H a nonempty closed convex subset,

T : C → C a nonexpansive mapping with fixed point set F 6= ∅ and Φ : C → C
a ρ-contraction. Then the approximating curve {xt} ⊂ C defined by (25) strongly

converges, as t → 0, to the unique solution q ∈ F to the inequality

〈(Φ− I)q, x− q〉 ≤ 0, ∀x ∈ F. (29)

Theorem 3.3. Let X be either a reflexive Banach space with weakly continuous nor-

malized duality mapping J or a uniformly smooth Banach space, C a nonempty closed

convex subset of X, T : C → C a nonexpansive mapping with F 6= ∅, Φ : C → C a

ρ-contraction and {αn} a sequence in (0, 1) satisfying

(H1 ) limn→∞ αn = 0

(H2 )
∑∞

n=1 αn = ∞

(H3 )
∑∞

n=1 |αn+1 − αn| < ∞ or limn→∞
αn

αn+1

= 1.

Then, for any x0 ∈ C, the sequence {xn} defined by

xn+1 = T (αnΦ(xn) + (1− αn)xn) (30)

strongly converges to the unique solution q ∈ F to the inequality

〈(Φ− I)q, J(x− q)〉 ≤ 0, ∀x ∈ F. (31)
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Proof. Since T has fixed points, by Lemma 2.5(3 ) we have that {xn} is bounded,
and therefore so are {T (xn)} and {Φ(xn)}. The fact that {xn} is asymptotically
regular is a consequence of Lemmas 2.5 and 2.6. Indeed, by hypothesis we have that
∑∞

n=1(1− ρ)αn−1 = ∞ and either
∑∞

n=1 |αn − αn−1| < ∞ or

lim sup
n→∞

|αn − αn−1|

αn

= lim
n→∞

∣

∣

∣

∣

1−
αn−1

αn

∣

∣

∣

∣

= 0. (32)

Then inequality (21)

‖xn+1 − xn‖ ≤ (1− (1− ρ)αn)‖xn − xn−1‖+ |αn − αn−1| ‖Φ(xn−1)− xn−1‖

allows us to use Lemma 2.6 to deduce that

lim
n→∞

‖xn+1 − xn‖ = 0. (33)

By using inequality (20) and the hypothesis (H1 ) we get

lim
n→∞

‖xn − Txn‖ ≤ lim
n→∞

(

‖xn+1 − xn‖+ αn‖Φ(xn)− xn‖
)

= 0. (34)

Distinguishing both cases according to the underlying space we will see now that

lim sup
n→∞

〈Φ(q)− q, J(xn − q)〉 ≤ 0. (35)

Assume first that X is a reflexive Banach space with weakly continuous normalized
duality mapping J . Take a subsequence {nk} of {n} such that

lim sup
n→∞

〈Φ(q)− q, J(xn − q)〉 = lim
k→∞

〈Φ(q)− q, J(xnk
− q)〉.

SinceX is reflexive and {xn} bounded, we may assume that xnk
⇀ x̄. SinceX satisfies

the Demiclosedness principle and {(I − T )xn} converges to 0 from (34), we deduce
that x̄ ∈ F . Then by inequality (31) and the weak-to-weak∗ uniform continuity of J ,

lim sup
n→∞

〈Φ(q)− q, J(xn − q)〉 = lim
k→∞

〈Φ(q)− q, J(xnk
− q)〉

= 〈Φ(q)− q, J(x̄− q)〉 ≤ 0.

If X is uniformly smooth we proceed as follows. Let {βk} be a null sequence in (0, 1)
(i.e., {βk} → 0, as k → ∞) and define {yk} by

yk := T (βkΦ(yk) + (1− β)yk).

We have proved in Theorem 3.1 that {yk} strongly converges to q. For any n, k ≥ 0
define

δn,k := ‖xn − Txn‖
2 + 2‖xn − Txn‖‖yk − Txn‖

and

ǫk := sup
n≥0

{‖Φ(yk)− xn‖‖J(βk(Φ(yk)− xn) + (1− βk)(yk − xn))− J(yk − xn)‖}.
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For any fixed k ∈ N, by (34), limn→∞ δn,k = 0. Moreover limk→∞ ǫk = 0 because
of the uniform continuity of J over bounded sets. By using inequality (15) and the
nonexpansivity of T we obtain

‖yk − xn‖
2 ≤ (‖Txn − xn‖+ ‖yk − Txn‖)

2

= ‖xn − Txn‖
2 + 2‖xn − Txn‖‖yk − Txn‖+ ‖yk − Txn‖

2

≤ δn,k + ‖(1− βk)(yk − xn) + βk(Φ(yk)− xn)‖
2

≤ δn,k + (1− βk)
2‖yk − xn‖

2

+ 2βk〈Φ(yk)− xn, J(βk(Φ(yk)− xn) + (1− βk)(yk − xn))〉

≤ δn,k + (1− βk)
2‖yk − xn‖

2 + 2βk〈Φ(yk)− xn, J(yk − xn)〉+ 2βkǫk

= δn,k + (1− βk)
2‖yk − xn‖

2 + 2βk〈yk − xn, J(yk − xn)〉

+ 2βk〈Φ(yk)− yk, J(yk − xn)〉) + 2βkǫk

= δn,k + ((1− βk)
2 + 2βk)‖yk − xn‖

2 + 2βkǫk

+ 2βk〈Φ(yk)− yk, J(yk − xn)〉

Then we deduce that

lim sup
n→∞

〈Φ(yk)− yk, J(xn − yk)〉 ≤
βk

2
lim sup
n→∞

‖yk − xn‖
2 + ǫk. (36)

On the other hand

〈Φ(q)− q, J(xn − q)〉 = 〈Φ(q)− q, J(xn − q)− J(xn − yk)〉

+ 〈(Φ(q)− q)− (Φ(yk)− yk), J(xn − yk)〉

+ 〈Φ(yk)− yk, J(xn − yk)〉.

(37)

Note that

lim
k→∞

(

sup
n→∞

{〈Φ(q)− q, J(xn − q)− J(xn − yk)〉}

)

= 0 (38)

because J is norm to norm uniform continuous on bounded sets. By using (36), (38)
and passing first to lim supn→∞ and then to limk→∞, from (37) we obtain

lim sup
n→∞

〈Φ(q)− q, J(xn − q)〉 ≤ 0.

Finally we prove that {xn} strongly converges to q. Set

ηn := ‖J(αn(Φ(xn)− xn) + (xn − q))− J(xn − q)‖.

Then ηn → 0, as n → 0. We compute

‖xn+1 − q‖2 ≤ ‖αn(Φ(xn)− q) + (1− αn)(xn − q) + αn(Φ(q)− q)‖2

≤ ‖αn(Φ(xn)− q) + (1− αn)(xn − q)‖2 + 2αn〈Φ(q)− q, J(xn − q)〉

+ 2αnηn‖Φ(q)− q‖

≤ (1− (1− ρ)αn)‖xn − q‖2 + 2αn〈Φ(q)− q, J(xn − q)〉

+ 2αnηn‖Φ(q)− q‖

and the result follows from (35) and Lemma 2.6.
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Corollary 3.4. Let X be either a reflexive Banach space with weakly continuous

normalized duality mapping J or a uniformly smooth Banach space, C a nonempty

closed convex subset of X, T : C → C a nonexpansive mapping with F 6= ∅ and

g : C → C a mapping such that I −µg is a contraction for some µ > 0. Assume that

{αn} is a sequence in (0, 1) satisfying hypotheses (H1 )–(H3 ) in Theorem 3.3. Then

the sequence {xn} defined by the iterative scheme

xn+1 = Txn − αng(Txn), (39)

strongly converges to the unique solution q ∈ F to the inequality problem

〈g(q), x− q〉 ≥ 0, ∀x ∈ F. (40)

Proof. Consider the sequence {zn} defined by zn = Txn, for any n ≥ 0. Then

zn+1 = T (Txn − αng(Txn))

= T (zn −
αn

µ
µg(zn))

= T (α′
n(I − µg)zn + (1− α′

n)zn),

where α′
n = αn

µ
for all n ≥ 0, so the sequence {α′

n} satisfies hypotheses (H1 )–(H3 ).
Since Φ := I − µg is a contraction, Theorem 3.3 implies the strong convergence of
{zn} to the unique solution q ∈ F to the inequality problem

〈(Φ− I)q, x− q〉 ≥ 0, ∀x ∈ F,

which is equivalent to (40). Therefore, from the iteration scheme (39) we deduce that
the sequence {xn} strongly converges to q.

Remark 3.5. It is easily seen that the conclusion of Theorems 3.1, 3.3 and Corollary
3.4 remains true if the uniform smoothness assumption of X is replaced with the
following two conditions:

(a) X has a uniformly Gateaux differentiable norm.

(b) X has Reich’s property.

Furthermore, in [31], all previous results were proved to remain true in the more
general framework of a reflexive Banach space with a weakly continuous generalized
duality mapping Jφ associated to a gauge φ. Likewise, the relationship between
Halpern iteration and algorithms (25) and (30) was studied.

4. Rates of asymptotic regularity

In the following, we apply proof mining techniques to get effective rates of asymptotic
regularity for the iteration {xn} defined by (12). The methods we use in this paper
are inspired by those used in [22] to obtain effective rates of asymptotic regularity for
Halpern iterations. As in the case of Halpern iterations, the main ingredient turns
out to be the quantitative Lemma 2.7.
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Theorem 4.1. Let X be a normed space, C ⊆ X a nonempty convex subset and

T : C → C be nonexpansive. Assume that Φ : C → C is a ρ-contraction and that

{αn}n≥0 is a sequence in (0, 1) such that limn→∞ αn = 0,
∑∞

n=0 αn is divergent and
∑∞

n=0 |αn+1−αn| is convergent. Let x0 ∈ C and {xn}n≥0 be defined by (12). Assume

that {xn} is bounded.

Then limn→∞ ‖xn − Txn‖ = 0 and moreover for all ε ∈ (0, 2),

‖xn − Txn‖ < ε, ∀n ≥ Ψ(ϕ, β, θ, ρ,M,D, ε),

where

1. ϕ : (0,∞) → Z+ is a rate of convergence of {αn},

2. β : (0,∞) → Z+ is a Cauchy modulus of
∑∞

n=0 |αn+1 − αn|,

3. θ : Z+ → Z+ is a rate of divergence of
∑∞

n=0 αn,

4. M ≥ 0 is such that M ≥ ‖Φ(x0)− x0‖,

5. D > 0 satisfies D ≥ ‖xn − xm‖ for all m,n ≥ 0,

and Ψ(ϕ, β, θ, ρ,M,D, ε) is defined by

Ψ := max

{

1 + θ

(⌈

1

1− ρ

⌉(

β
( ε

4P

)

+ 2 +

⌈

ln

(

4D

ε

)⌉))

, 1 + ϕ
( ε

2P

)

}

,

with P = (1 + ρ)D +M .

Proof. Applying (21) and (19), we get that for all n ≥ 1

‖xn+1 − xn‖ ≤ (1− (1− ρ)αn)‖xn − xn−1‖

+ |αn − αn−1| ‖Φ(xn−1)− xn−1‖

≤ (1− (1− ρ)αn)‖xn − xn−1‖+ P |αn − αn−1|.

Let us denote for n ≥ 1

an := ‖xn − xn−1‖, bn := P |αn − αn−1|, λn := (1− ρ)αn−1.

Then D is an upper bound on {an} and

an+1 ≤ (1− λn+1)an + bn for all n ≥ 1.

Moreover,
∑∞

n=1 λn is divergent with rate of divergence

δ : Z+ → Z+, δ(n) = 1 + θ

(⌈

1

1− ρ

⌉

n

)

, (41)

since for all n ∈ Z+,

δ(n)
∑

i=1

λi = (1− ρ)

δ(n)−1
∑

i=0

αi = (1− ρ)

θ(⌈1/1−ρ⌉n)
∑

i=0

αi ≥ (1− ρ)

⌈

1

1− ρ

⌉

n ≥ n.
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Let tn :=
∑n

i=0 |αi+1 − αi| and sn :=
∑n

i=1 bi = Ptn−1 and define

γ : (0,∞) → Z+, γ(ε) := 1 + β
( ε

P

)

, (42)

Then for all n ≥ 0,

sγ(ε)+n − sγ(ε) = P
(

tβ(ε/P )+n − tβ(ε/P )

)

< P
ε

P
= ε.

Thus,
∑∞

n=1 bn is convergent with Cauchy modulus γ.

It follows that we can apply Lemma 2.7 to get that for all ε ∈ (0, 2) and for all
n ≥ h1(β, θ, ρ,M,D, ε)

‖xn − xn−1‖ <
ε

2
, (43)

where

h1(β, θ, ρ,M,D, ε) := 1 + θ

(⌈

1

1− ρ

⌉ (

β
( ε

4P

)

+ 2 +

⌈

ln

(

4D

ε

)⌉))

.

Using (20) and (19), we get that for all n ≥ 1,

‖xn−1 − Txn−1‖ ≤ ‖xn − xn−1‖+ αn−1‖Φ(xn−1)− xn−1‖

≤ ‖xn − xn−1‖+ Pαn−1.
(44)

Let h2(ϕ, ρ,M,D, ε) := 1 + ϕ
(

ε
2P

)

. Since ϕ is a rate of convergence of {αn} towards
0, it follows that

Pαn−1 <
ε

2
for all n ≥ h2(ϕ, ρ,M,D, ε). (45)

As a consequence of (43), (44) and (45), we get that

‖xn−1 − Txn−1‖ < ε

for all n ≥ max{h1(β, θ, ρ,M,D, ε), h2(ϕ, ρ,M,D, ε)}, so the conclusion of the theo-
rem follows.

If C is bounded, then {xn} is bounded for all x0 ∈ C. Moreover, we can take
M := D := dC in the above theorem, where dC := sup{‖x − y‖ | x, y ∈ C} is the
diameter of C.

Corollary 4.2. In the hypotheses of Theorem 4.1, assume moreover that C is bounded.

Then limn→∞ ‖xn − Txn‖ = 0 for all x0 ∈ C and moreover for all ε ∈ (0, 2),

‖xn − Txn‖ < ε, ∀n ≥ Ψ(ϕ, β, θ, ρ, dC , ε),

where Ψ(ϕ, β, θ, ρ, dC , ε) is defined as in Theorem 4.1 by replacing M and D with dC.
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Thus, for bounded C, we get asymptotic regularity for general {αn} and an explicit
rate of asymptotic regularity Ψ(ϕ, β, θ, ρ, dC , ε) that depends weakly on C (via its
diameter dC) and on the ρ-contraction Φ (via ρ), while it does not depend on the
nonexpansive mapping T , the starting point x0 ∈ C of the iteration or other data
related with C and X.

The rate of asymptotic regularity can be simplified when the sequence {αn} is de-
creasing.

Corollary 4.3. Let X,C, T,Φ, {xn} be as in the hypotheses of Corollary 4.2. Assume

that {αn} is a decreasing sequence in (0, 1) such that limn→∞ αn = 0 and
∑∞

n=0 αn is

divergent.

Then limn→∞ ‖xn − Txn‖ = 0 for all x0 ∈ C and furthermore, for all ε ∈ (0, 2),

‖xn − Txn‖ < ε, ∀n ≥ Ψ(ϕ, θ, ρ, dC , ε),

where ϕ : (0,∞) → Z+ is a rate of convergence of {αn}, θ : Z+ → Z+ is a rate of

divergence of
∑∞

n=0 αn and Ψ(ϕ, θ, ρ, dC , ε) is defined by

Ψ := max

{

1 + θ

(⌈

1

1− ρ

⌉(

ϕ
( ε

4P

)

+ 2 +

⌈

ln

(

4dC
ε

)⌉))

, 1 + ϕ
( ε

2P

)

}

with P = (2 + ρ)dC.

Proof. Remark that
∑∞

n=0 |αn+1 − αn| is convergent with Cauchy modulus ϕ.

Finally, we get, as in the case of Halpern iterates, an exponential (in 1/ε) rate of
asymptotic regularity for αn = 1

n+1
.

Corollary 4.4. Let X,C, T,Φ, {xn} be as in the hypotheses of Corollary 4.2. Assume

that αn = 1
n+1

for all n ≥ 0.

Then limn→∞ ‖xn − Txn‖ = 0 for all x0 ∈ C and furthermore, for all ε ∈ (0, 2),

‖xn − Txn‖ < ε, ∀n ≥ Θ(ρ, dC , ε),

where

Θ(ρ, dC , ε) = exp

(

4

1− ρ

(

16dC
ε

+ 2

))

Proof. We can apply Corollary 4.3 with

ϕ : (0,∞) → Z+, ϕ(ε) =

⌈

1

ε

⌉

− 1.

and
θ : Z+ → Z+, θ(n) = 4n − 1

to conclude that for all ε ∈ (0, 2),

‖xn − Txn‖ < ε, ∀n ≥ Ψ(ρ, dC , ε),
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where P = (2 + ρ)dC and

Ψ(ρ, dC , ε) = max

{

exp

(

ln 4

⌈

1

1− ρ

⌉ (⌈

4P

ε

⌉

+ 1 +

⌈

ln

(

4dC
ε

)⌉))

,

⌈

2P

ε

⌉}

= exp

(

ln 4

⌈

1

1− ρ

⌉ (⌈

4P

ε

⌉

+ 1 +

⌈

ln

(

4dC
ε

)⌉))

< exp

(

4

1− ρ

(

16dC
ε

+ 2

))

= Θ(ρ, dC , ε).

as ρ ∈ (0, 1), ⌈a⌉ < a+ 1 and 1 + ln a ≤ a for all a > 0. The conclusion follows now
immediately.

5. Applications

As it was pointed out in the introduction, iterative methods for nonexpansive map-
pings have been applied to solve the VIP(A,C) (2) which, in fact, is equivalent under
suitable conditions to the minimization problem of a certain function. On the other
hand, the relation between the set of zeros of an accretive operator and the fixed
point set of its resolvent allows us to use those iterative techniques for nonexpansive
mappings to approximate zeros of such operators. We first apply the explicit iterative
method for approximating fixed points, presented in Section 3, to solve a particular
variational inequality problem in the setting of Hilbert spaces. Then we focus on the
asymptotic behavior of the resolvent of an accretive operator in the framework of
Banach spaces.

5.1. A variational inequality problem

Let H be a Hilbert space, T : H → H be a nonexpansive mapping with fixed point
set F 6= ∅, and Φ : H → H be a contraction. Assume that A is a Lipschitzian
self-operator on H which is strongly monotone; that is, there exist a constant η > 0
such that

〈Ax− Ay, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H.

It is known that the variational inequality

〈(A− γΦ)q, q − x〉 ≤ 0, ∀x ∈ F, (46)

where γ > 0, is the optimality condition for the minimization problem

min
x∈F

f(x)− h(x)

where f is a subdifferentiable function with subdifferential ∂f = A and h is a potential
function for γΦ (i.e. h′(x) = γΦ(x) for x ∈ H). Marino and Xu [30] presented
an iterative method to solve the variational inequality (46) for a linear bounded
operator. We apply the explicit method (30), in particular algorithm (39), to solve
such variational inequality dispensing with the linear condition on the operator A.
To this end, we need the following lemma.
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Lemma 5.1. Assume that A is a L-Lipschitzian η-strongly monotone operator, and

let Φ be a ρ-contraction. Then, for any γ < η/ρ, A − γΦ is R-Lipschitzian and δ-
strongly monotone with R = L+γρ and δ = η−γρ. Besides, for any 0 < µ < 2δ/R2,

the mapping I − µ(A− γΦ) is a contraction.

Proof. Since A is L-Lipschitzian and Φ is a ρ-contraction,

‖(A− γΦ)x− (A− γΦ)y‖ ≤ ‖Ax− Ay‖+ γ‖Φx− Φy‖ ≤ (L+ γρ)‖x− y‖,

that is, A− γΦ is Lipschitzian with constant R = L+ γρ. The strong monotonicity
of A− γΦ is consequence of the strong monotonicity of A as it is showed as follow.

〈(A− γΦ)x− (A− γΦ)y, x− y〉 = 〈Ax− Ay, x− y〉 − γ〈Φx− Φy, x− y〉

≥ η‖x− y‖2 − γ‖Φx− Φy‖‖x− y‖

≥ (η − γρ)‖x− y‖2,

where δ = η − γρ > 0. By applying the R-Lipschitz continuity and δ-strong mono-
tonicity of B := A− γΦ we obtain

‖(I − µB)x− (I − µB)y‖2 = ‖x− y‖2 + µ2‖Bx−By‖2 − µ〈x− y,Bx−By〉

≤ ‖x− y‖2 + µ2R2‖x− y‖2 − 2µδ‖x− y‖2

= (1− µ(2δ − µR2))‖x− y‖2.

Then, for any 0 < µ < 2δ/R2, the mapping I − µ(A − γΦ) is a contraction with
constant

√

1− µ(2δ − µR2).

Theorem 5.2. Let T be a nonexpansive mapping with fixed point set F , A a L-
Lipschitzian η-strongly monotone operator and Φ a ρ-contraction on a Hilbert space.

Then, for any γ < η/ρ, the sequence defined by the iterative scheme

xn+1 = Txn − αn(A− γΦ)Txn,

where {αn} ⊂ (0, 1) satisfies hypotheses (H1 )–(H2 ) in Theorem 3.3, strongly con-

verges to the unique solution to the variational inequality (46).

Proof. Note that, for any γ < η/ρ, Lemma 5.1 implies that there exists µ > 0 such
that I − µg is a contraction, where g = A − γΦ. Then, by Theorem 3.4 we obtain
the strong convergence of the sequence {xn} to the unique solution to the variational
inequality problem (46).

5.2. Zeros of m-accretive operators

Let X be a real Banach space. A set-valued operator A : X → 2X with domain D(A)
and range R(A) in X is said to be accretive if, for each xi ∈ D(A) and yi ∈ Axi

(i = 1, 2), there exists j(x1 − x2) ∈ J(x1 − x2) such that

〈y1 − y2, j(x1 − x2)〉 ≥ 0,
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where J is the normalized duality mapping. An accretive operator A is m-accretive

if R(I + λA) = X for all λ > 0. Denote the set of zeros of A by

Z := A−1(0) = {z ∈ D(A) : 0 ∈ Az}.

Throughout this subsection it is assumed that A is m-accretive and A−1(0) 6= ∅. Set
C = D(A) and assume it is convex. It is known that the resolvent of A, defined by

Jλ = (I + λA)−1,

for λ > 0, is a single-valued nonexpansive mapping from C into itself (cf. [1]).

If we consider the problem of finding a zero of A, i.e.,

find z ∈ C such that 0 ∈ Az,

it is straightforward to see that the set of zeros A−1(0) coincides with the fixed
point set of Jλ, Fix(Jλ), for any λ > 0. Therefore an equivalent problem is to find
z ∈ Fix(Jλ).

As a consequence of the convergence of the implicit iterative scheme (25), we obtain
Reich’s result (cf. [37]) for approximating zeros of accretive operators in uniformly
smooth Banach spaces. Besides, the following theorem in the setting of reflexive
Banach spaces with weakly continuous normalized duality mapping constitutes a
new approach.

Theorem 5.3. Let X be either a reflexive Banach spaces with weakly continuous

normalized duality mapping J or a uniformly smooth Banach space, and A a m-

accretive operator. Then, for each x ∈ X, the sequence {Jλ(x)} strongly converges,

as λ → ∞, to the unique zero of A, q ∈ A−1(0), which satisfies the variational

inequality

〈x− q, J(y − q)〉 ≤ 0 ∀y ∈ A−1(0). (47)

Proof. Given x ∈ X we consider the approximating curve {xt} such that xt = J1/tx,
for any t ∈ (0, 1). By definition of the resolvent of A, we obtain the following
equivalence:

xt =

(

I +
1

t
A

)−1

x ⇔ x ∈ xt +
1

t
Axt

⇔ t(x− xt) ∈ Axt

⇔ xt + t(x− xt) ∈ (I + A)xt

⇔ xt = (I + A)−1(xt + t(x− xt))

⇔ xt = T (tΦ(xt) + (1− t)xt),

where T = (I + A)−1 is the nonexpansive resolvent with constant 1, and Φ = x is a
constant mapping which is a contraction. Therefore, Theorem 3.1 implies the strong
convergence of {xt}, as t → 0, to the unique solution to the inequality (26); in other
words, {Jλx} strongly converges, as λ → ∞, to the unique solution q ∈ A−1(0) to
the inequality (47).
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Remark 5.4. If we define the mapping Q : X → A−1(0) such that, for any x ∈ X,

Qx = lim
λ→∞

Jλx,

then, since Qx satisfies the inequality (47), by Lemma 2.1 we can claim that Q is the
unique sunny nonexpansive retraction from X to A−1(0).
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