
Journal of Convex Analysis

Volume 18 (2011), No. 3, 707–720

About the Existence of an Isotone

Retraction onto a Convex Cone

S. Z. Németh∗

The University of Birmingham, School of Mathematics,
The Watson Building, Edgbaston, B15 2TT Birmingham, United Kingdom

nemeths@for.mat.bham.ac.uk

A. B. Németh
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The existence of continuous isotone retractions onto pointed closed convex cones in Hilbert spaces is
studied. The cones admitting such mappings are called isotone retraction cones. In finite dimension,
generating, isotone retraction cones are polyhedral. For a closed, pointed, generating cone in a
Hilbert space the isotonicity of a retraction and its complement implies that the cone is latticial and
the retraction is well defined by the latticial structure. The notion of sharp mapping is introduced.
If the cone is generating and normal, it is proved that its latticiality is equivalent to the existence
of an isotone retraction onto it, whose complement is sharp. The subdual and autodual latticial
cones are also characterized by isotonicity. This is done by attempting to extend Moreau’s theorem
to retractions.

1. Introduction

G. Isac and A. B. Németh have characterized a cone in the Euclidean space which
admits an isotone projection onto it [1], where isotonicity is considered with respect
to the order induced by the cone. They called such a cone isotone projection cone.
The same authors [2] and S. J. Bernau [3] considered the similar problem for the
Hilbert space.

This problem is related to nonlinear complementarity. Both the solvability and the
approximation of solutions of nonlinear complementarity problems can be handled
by using the metric projection onto the cone defining the problem. The isotonicity
of the projection provides new existence results and iterative methods [4, 5, 6, 7].

With an eye on this, bearing also in mind the future possibility of extending the
given iterative methods to more general discrete dynamical systems where the pro-
jection is replaced by a continuous isotone retraction, S. Z. Németh [8, 9] started
to study the extension of the isotonicity problem, when the projection is replaced
by a continuous retraction. He called the pointed closed convex cones which admit
a continuous isotone retraction onto it, isotone retraction cones. Regardless of its
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immediate applications, this problem is interesting in itself too. It provides a new
insight in the convex geometry of cones and relates the ordering structure of a space
to its topological and geometrical structure.

The main results proved in the paper are the following:

1. In finite dimension every generating isotone retraction cone is polyhedral.

2. If a generating pointed closed convex cone of a Hilbert space admits a continuous
isotone retraction ρ onto it such that I − ρ is also isotone, where I stands for
the identity mapping, then K is latticial and ρ(x) = x+ := sup{0, x} for all x.

3. A normal generating pointed closed convex cone K of a Hilbert space is latticial
if and only if it admits an isotone retraction ρ onto it whose complement is sharp
(that is, for which im(I − ρ)∩ im(ρ− I) = {0}), where I stands for the identity
mapping and im for the image of a mapping. In the case of retractions the later
implication is equivalent to ρ(x) + ρ(y) = x+ y =⇒ x ∈ K.

By attempting to extend Moreau’s theorem to retractions, we also give two impor-
tant characterizations of subdual and autodual latticial cones respectively, through
isotonicity properties. The paper also contains several other properties of the isotone
retractions and it is structured as follows: First we introduce the preliminary no-
tions and the new notations used throughout the paper. Then, we provide the main
results: the investigation of the facial structure of the isotone projection cones in
Euclidean spaces, and the relation between the existence of an isotone retraction and
the latticiality of the cone. Since there are fundamental questions which remain open
and the construction of examples is difficult, we considered important to allocate a
separate section to examples. We conclude the paper by providing some conclusions,
which both give an overview of the paper and raises several questions for the future.

2. Preliminaries

In all what follows (H, 〈·, ·〉) stands for a separable Hilbert space over the reals, denoted
simply with H. Let be ‖.‖ the norm defined by 〈·, ·〉.

The nonempty set K ⊂ H is called a convex cone if

(i) λx ∈ K, for all x ∈ K and λ ≥ 0 and if

(ii) x+ y ∈ K, for all x, y ∈ K.

A convex cone K is called pointed if K ∩ (−K) = {0}.

A convex cone is called generating if K −K = H.

The relation ≤ defined by the pointed convex cone K is given by x ≤ y if and only
if y − x ∈ K. Particularly, we have K = {x ∈ H : 0 ≤ x}. The relation ≤ is an
order relation, that is, it is reflexive, transitive and antisymmetric; it is translation
invariant, that is, x + z ≤ y + z, ∀x, y, z ∈ H with x ≤ y; and it is scale invariant,
that is, λx ≤ λy, ∀x, y ∈ H with x ≤ y and λ > 0.

Conversely, for every ≤ scale invariant, translation invariant and antisymmetric order
relation in H there is a pointed convex cone K, defined by K = {x ∈ H : 0 ≤ x},
such that x ≤ y if and only if y − x ∈ K. The cone K is called the positive cone of
H and (H,≤) (or (H,K)) is called an ordered Hilbert space.
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The cone K0 ⊂ K is called a face of K if from x ∈ K, y ∈ K0 and x ≤ y, it follows
that x ∈ K0. If x ∈ K, then the set {λy : 0 ≤ y ≤ x, λ ≥ 0} is a face of K called
the face of x and is denoted fcex. If K0 6= K, then it is called a proper face of K. If
L denotes a supporting hyperplane of K and K0 = K ∩L, then K0 is said an exposed
face of K.

The ordered Hilbert space (H,≤) is called latticially ordered if for every x, y ∈ H
there exists x ∨ y := sup{x, y}. In this case the positive cone K is called a latticial
cone. Denote x+ = 0 ∨ x and x− = 0 ∨ (−x). Then, x = x+ − x−, x+ is called
the positive part of x and x− is called the negative part of x. The mapping x 7→ x+

is called the positive part mapping. The continuity of the positive part mapping is
equivalent to the closedness of K.

Let K ⊆ H be a closed convex cone. Recall that

K∗ = {x ∈ H : 〈x, y〉 ≥ 0, ∀y ∈ K}

is called the dual cone of K. K∗ is a closed convex cone and if K is generating, then
K∗ is pointed (this is the case for example if K is latticial).

The closed convex cone K is called subdual if K ⊆ K∗.

The closed convex cone K◦ = −K∗ is called the polar of K. We have K◦ = {x ∈ H :
〈x, y〉 ≤ 0, ∀y ∈ K} and if K is closed (K◦)◦ = K (Farkas lemma). Therefore, the
closed convex cones K and L are called mutually polar if K = L◦ (or equivalently
K◦ = L).

Let PK : H → H be the projection mapping onto K defined by PK(x) ∈ K and
‖x− PK(x)‖ = min{‖x− y‖ : y ∈ K}. The following theorem is proved in [10].

Theorem 2.1 (Moreau). Let H be a Hilbert space, K,L ⊆ H two mutually polar
closed convex cones in H. Then, the following statements are equivalent:

(i) z = x+ y, x ∈ K, y ∈ L and 〈x, y〉 = 0,

(ii) x = PK(z) and y = PL(z)

The closed, pointed cone K ⊂ H is called normal if from xm ∈ K, xm → 0 and
0 ≤ ym ≤ xm it follows ym → 0. The cone K is called regular if every decreasing
sequence (and hence each increasing and order bounded sequence) in it is convergent.
McArthur in [11] shows that every closed convex normal cone in a Banach space is
regular if this space does not contain any subspace isomorphic to the Banach space
c0 of all sequences of real numbers convergent to zero equipped with the supremum
norm. In particular, this is true for a Hilbert space. Therefore, any closed convex
normal cone in a Hilbert space is regular.

3. New definitions

By the image imϕ of a mapping ϕ we mean the set of points ϕ(x), where x goes
through all elements of the domain of definition of ϕ. In the next definition only the
notions of sharp mapping and isotone retraction cone are new. We combined them
together with slightly adapted, already known notions for the sake of compactness
only.
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Definition 3.1. Let H be a Hilbert space, K ⊆ H and ζ : H → H.

1. The mapping ζ is called a retraction, if ζ ◦ ζ = ζ. If im ζ = K this is equivalent
to
(a) ζ(x) ∈ K, for all x ∈ H,
(b) ζ(u) = u, for all u ∈ K.

2. The mapping ζ is called sharp if ζ(0) = 0 and im ζ ∩ im(−ζ) = {0}. If ζ is
sharp, then tζ is also sharp, for all t ∈ R. If ζ is a retraction and im ζ = K,
then I − ζ is sharp if and only if ζ(x) + ζ(y) = x+ y implies x, y ∈ K.

3. Suppose that K is a pointed closed convex cone. The mapping ζ : H → H
is called K-isotone (or simply isotone if there is no ambiguity) if y − x ∈ K
implies ζ(y) − ζ(x) ∈ K. This can be written in the equivalent form: x ≤ y
implies ζ(x) ≤ ζ(y). If there is a continuous K-isotone retraction ζ : H → H
with im ζ = K, then K is called an isotone retraction cone.

We remark that the set of isotone retractions onto a given pointed closed convex cone
is convex.

The next remark follows easily from item 2 of Definition 3.1.

Remark 3.2. Let K ⊆ H with K ∩ (−K) = {0} (in particular, K may be a pointed
convex cone). Let ζ : H → H be a mapping onto K such that ζ(0) = 0. Then, tζ
is sharp for all t ∈ R. In particular, if ζ is a retraction onto K, then tζ is sharp for
all t ∈ R. If in addition the relation K + K ⊆ K holds (in particular K may be a
convex cone) and ρ : H → H is another mapping onto K with ρ(0) = 0, then ζ + ρ
is sharp too.

More generally, it is easy to show that the property of sharpness is independent of
the multiplication with an arbitrary scalar. Although we will not cite this result
explicitly, we will implicitly assume it.

4. On the facial structure of an isotone retraction cone in R
n

Let K ⊆ R
n be a pointed closed convex generating cone in R

n. Since K is generating,
intK 6= ∅, and K + intK = intK. Each proper face of a generating cone in R

n is on
its boundary bdrK. If x ∈ bdrK, then always exists an exposed face of K containing
it.

The pointed closed convex cone K ⊂ R
n is called polyhedral if it is the intersection

of a finite number of closed half-spaces. Among the defining half-spaces there is
a minimal number of defining half-spaces. The intersection with the cone of the
hyperplanes defining these half-spaces are exactly its maximal proper faces.

The next lemma exhibits some simple, but fundamental properties of an isotone
retraction. These will be used to show that every isotone retraction cone in R

n is
polyhedral.

Lemma 4.1. Let ρ : Rn → R
n be an isotone retraction onto K. Then,

1. For x ∈ R
n \K we have ρ(x) ∈ bdrK and ρ(x−K) ⊆ fce ρ(x). If x ∈ bdrK,

then ρ(x−K) ⊆ fcex.
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2. If K0 is a face of dimension n−1 of K and L is the subspace generated by K0, if
L− is the closed half-space determined by L which contains K, and L+ = −L−,
then ρ(L+) ⊆ K0.

Proof. 1. Since K is generating, there exist two elements u, v ∈ K such that
x = u − v, and hence x ≤ u. Then, there exists some t ∈ [0, 1) such that w =
tx+ (1− t)u ∈ bdrK. Obviously, x ≤ w (since (1− t)x ≤ (1− t)u). Hence,

0 ≤ ρ(x) ≤ ρ(w) = w.

Consequently, ρ(x) ∈ fcew ⊆ bdrK.

For every y ∈ x−K we have 0 ≤ ρ(y) ≤ ρ(x) ∈ bdrK. Hence,

ρ(x−K) ⊆ fce ρ(x).

If x ∈ bdrK the conclusion is immediate.

2. Let x ∈ L. Since K0 generates L, there exists u ∈ K0 such that u−x ∈ K0. Hence,
x ≤ u and then ρ(x) ≤ u and since u ∈ K0, it follows that ρ(x) ∈ K0.

Let x ∈ L+. Take u ∈ K with x ≤ u. Since L separates L+ and K, there exists
t ∈ [0, 1) such that w = tx+(1− t)u ∈ L. Then, according to our above proof ρ(w) ∈
K0. Since x ≤ w, it follows that 0 ≤ ρ(x) ≤ ρ(w). In conclusion, ρ(x) ∈ K0.

The next theorem shows that every isotone retraction cone in R
n is polyhedral. The

construction of isotone retractions on non-latticial polyhedral cones is rather difficult
and will be done elsewhere. However, it is not clear yet whether every polyhedral cone
is or not an isotone retraction one. This is the main open question which remains to
be clarified in the future.

Theorem 4.2. If K is an isotone retraction cone in R
n, then it is polyhedral.

Proof. (a) Denote by Bε the open ball with the center 0 and radius ε > 0, that is,
the set

Bε = {x ∈ R
n : ‖x‖ < ε}.

We shall show that for any ε > 0 there exists δ > 0 such that

∀ v ∈ Bδ ∃x ∈ K ∩ (v +K) with x ∈ Bε.

To this end, take a nonempty open set U ⊆ intK ∩Bε, and let x ∈ U . Then, x− U
is a neighborhood of 0. Hence, there exists δ > 0 with Bδ ⊆ x − U . If v ∈ Bδ, then
v ∈ x− U and hence x ∈ v + U ⊆ v +K, and we are done.

(b) From the assertion in (a), it follows that for a sequence (vn) with vn → 0, there
exists a sequence (xn) with xn ∈ K ∩ (vn +K) and xn → 0.

(c) Let L be a hyperplane meeting K in 0. Then, for k ∈ K \ {0} the set B =
(k+L)∩K will be a bounded closed convex subset of k+L, which is a so called base
of K, which means that each element of K is the positive multiple of an element in
k + L.



712 S. Z. Németh, A. B. Németh / About the Existence of an Isotone Retraction ...

Consider the set B as a subset of Rn−1. It is well known that B is the convex hull of its
extremal points, and the set of exposed points of B is dense in the set of its extremal
points ([12]). (The point z ∈ B is its exposed point if there exists a hyperplane in
R

n−1 which meets B in the single point z.)

The exposed points of B have the particularity that they generate exposed rays of K,
that is, rays on the boundary ofK along whichK is "supported" by some hyperplane,
in the sense that this hyperplane meets K in that ray. Such a ray is a face of K which
can meet any other proper face of it only at 0.

(d) The assertion that K is polyhedral is equivalent with the fact that B possesses a
finite set of extremal points in k + L.

Assume thatK is not polyhedral. ThenB has an infinity of extremal points. Let x0 be
an accumulation point of these extremal points. Then, according to the observation
in (c), there is a sequence (xn) of exposed points of B such that xn → x0.

From (b), we have a sequence (yn) with yn ∈ (x0 −K) ∩ (xn −K) and yn → x0.

(e) Suppose that ρ : Rn → R
n is an isotone retraction onto K. Then, by Lemma

4.1, ρ(yn) is on the face of x0 and on the face of xn. Since the face of xn is an
exposed ray, we must have by (c) that ρ(yn) = 0 for all n. On the other hand, from
yn → x0 and the continuity of ρ, it follows that ρ(yn) → ρ(x0) = x0 6= 0. The obtained
contradiction shows that K must be polyhedral.

5. Isotone retractions and latticiality

As in Section 2, the space H is a (real) separable Hilbert space. The next lemma
exhibits some more simple, but useful properties of isotone retractions onto cones.
They will be used to prove items 1, 2 and 3 (a) of Theorem 5.2.

Lemma 5.1. Let K ⊆ H be a pointed closed convex cone and ρ : H → H an isotone
mapping onto K. We have the following:

1. If ρ(0) = 0, then ρ(−K) = {0} and −K ⊆ im(I − ρ). In particular, this is the
case if ρ is a retraction onto K.

2. Suppose that ρ is a retraction onto K.
(a) If there is an x ∈ K such that x ≤ ρ(x), then there exists x+ = 0 ∨ x and

ρ(x) = x+.
(b) If K ⊆ H is a latticial cone, then ρ(x) ≤ x+, for all x ∈ H.

Proof. 1. Let v ∈ −K arbitrary, or equivalently v ≤ 0. By the isotonicity of ρ, we
have 0 ≤ ρ(v) ≤ ρ(0) = 0. Hence, ρ(v) = 0, or equivalently ρ(−K) = {0}. We also
have

v = ρ(v) + (I − ρ)(v) = (I − ρ)(v) ∈ im(I − ρ).

Hence, −K ⊆ im(I − ρ).

2. (a) Suppose that there is an x ∈ H such that x ≤ ρ(x). Then ρ(x) is obviously an
upper bound of the set {0, x}. Let u be an arbitrary upper bound of the set {0, x}.
Then, 0 ≤ u and x ≤ u. Since ρ is a retraction onto K, by the isotonicity of ρ, we
have ρ(x) ≤ ρ(u) = u. Hence, ρ(x) = 0 ∨ x = x+.
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(b) Suppose that K is latticial. Since x ≤ x+, by the isotonicity of ρ, we have
ρ(x) ≤ ρ(x+) = x+, for all x ∈ H.

Although we couldn’t completely clarify the structure of an isotone retraction cone,
we can answer the question “when is an isotone retraction cone latticial?� Item 3 (b)
of the next theorem shows that the existence of an isotone retraction with rather
mild property implies its latticiality. For this we have to require an extra condition
of sharpness for the complement of the isotone retraction onto the cone.

Theorem 5.2. Let K ⊆ H be a pointed closed convex cone and ≤ the order defined
by K. We have the following:

1. If K is latticial and ρ : H → H is defined by ρ(x) = x+, then ρ is a continuous
isotone retraction onto K such that x ≤ ρ(x), for all x ∈ H, and I − ρ is
isotone and sharp.

2. If there is a continuous isotone retraction ρ : H → H onto K such that x ≤
ρ(x), for all x ∈ H, then K is latticial and ρ(x) = x+, for all x ∈ K.

3. Suppose that K is generating.
(a) If there is a continuous retraction ρ : H → H onto K such that ρ and I−ρ

are isotone, then K is latticial and ρ(x) = x+, for all x ∈ K.
(b) If K is normal and there is a continuous isotone retraction ρ : H → H

onto K such that the complement I − ρ of ρ is sharp, then K is latticial.

Proof. 1. Suppose that K is latticial. Let ρ : H → H be defined by ρ(x) = x+.
Obviously, ρ is a continuous isotone retraction onto K, x ≤ ρ(x). Moreover, since

(I − ρ)(x) = x− x+ = −x− = −(−x)+,

I − ρ is isotone and sharp.

2. Suppose that there is a continuous isotone retraction ρ : H → H onto K such
that x ≤ ρ(x), for all x ∈ H. By item 2 (a) of Lemma 5.1 it follows that there exists
x+ = 0 ∨ x and ρ(x) = x+, for all x ∈ H. By using standard arguments it can be
easily shown that x ∨ y = (x− y)+ + y, for all x, y ∈ H. Thus, K is latticial.

3. Suppose that K is generating.

(a) Suppose that ρ : H → H is a continuous retraction onto K such that ρ and I − ρ
are isotone. By item 2, it is sufficient to show that x ≤ ρ(x), for all x ∈ H. Let
x ∈ H be arbitrary. Since K is generating, it follows that there are u, v ∈ K such
that x = u − v. Hence, x ≤ u. Since I − ρ is isotone and ρ is a retraction onto K,
we have x− ρ(x) ≤ u− ρ(u) = 0. Hence, x ≤ ρ(x).

(b) Suppose that ρ : H → H is a continuous isotone retraction onto K. For all y ∈ H
define ρy : H → H by ρy(x) = y + ρ(x − y). Since ρ is continuous and isotone,
ρy is also continuous and isotone. Moreover, y ≤ ρy(x). Let u and v be arbitrary
elements in H. We have to show that there exists u ∨ v. If u and v are comparable
the statement is trivial. Suppose that they are not comparable. First we remark
that the set {u, v} has an upper bound. Indeed, since K is generating, there exist
u1, u2, v1, v2 ∈ K such that u = u1 − u2 and v = v1 − v2. Hence, u1 + v1 is an upper
bound of the set {u, v}. Let w be an arbitrary upper bound of the set {u, v}, that
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is, an arbitrary element of (u+K) ∩ (v +K). The mappings ρu and ρv are isotone.
Moreover, ρu(w) = u+ρ(w−u) = u+(w−u) = w and similarly ρv(w) = w. Consider
the operators σ = ρu ◦ ρv and τ = ρv ◦ ρu. They are isotone because ρu and ρv are.
Moreover, σ(w) = τ(w) = w. Put vn = τn(v), u1 = ρu(v) and un = σn−1(u1). We
have u ≤ ρu(v) = u1. Also, u ≤ ρu(v) implies v ≤ ρv(u) ≤ ρv ◦ ρu(v) = v1 and
therefore u1 = ρu(v) ≤ ρu(v1), or equivalently u1 ≤ ρu ◦ ρv ◦ ρu(v) = σ(u1) = u2.
Bearing in mind that σ, τ are isotone σ(w) = τ(w) = w, the relations

v ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ w

and

u ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ w

can be verified by using mathematical induction. We further have

vn = τn(v) = (ρv ◦ ρu)
n(v) = ρv ◦ (ρu ◦ ρv)

n−1 ◦ ρu(v)

= ρv ◦ σ
n−1(u1) = ρv(un) (1)

and

un+1 = σ(un) = ρu ◦ ρv(un) = ρu(vn). (2)

Since H is a Hilbert space and K ⊆ H is normal, K is also regular (see [11]). Since
K is regular and closed, the sequences {un} and {vn} are increasing and bounded
above by w, and u ≤ un ≤ w and v ≤ vn ≤ w, there exists the limit

u∗ = lim
n→∞

un and v∗ = lim
n→∞

vn (3)

such that

u ≤ u∗ ≤ w and v ≤ v∗ ≤ w. (4)

From the continuity of the mappings ρu and ρv and the relations (1), (2) and (3) it
follows that v∗ = ρv(u

∗) and u∗ = ρu(v
∗). Hence, we have v∗−u∗+u∗−v = ρ(u∗−v)

and u∗ − v∗ + v∗ − u = ρ(v∗ − u), or equivalently (I − ρ)(a) = c and (I − ρ)(b) = −c,
where a = u∗−v, b = v∗−u and c = u∗−v∗. Thus, we have c ∈ im(I−ρ)∩ im(ρ−I).
Since I − ρ is sharp, we have c = 0, or equivalently u∗ = v∗. Hence, from relation
(4), it follows that u∗ = v∗ = u ∨ v.

Theorem 5.2 also shows that in the case of a continuous isotone retraction ρ onto the
cone, the requirement for I − ρ to be isotone completely determines ρ. It is still an
open question what would imply the isotonicity of I − ρ only.

Lemma 5.3. Let K,L ⊆ H be normal generating pointed closed convex cones. If
ρ : H → H is a continuous K-isotone retraction onto K such that im(I − ρ) ⊆ L,
then K is latticial and −K ⊆ L.

Proof. The inclusion im(I − ρ) ⊆ L implies that I − ρ is sharp. Hence, from item
3 (b) of Theorem 5.2 we get that K is latticial. By item 1 of Lemma 5.1 we also get
−K ⊆ L.
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Since the projection is a particular retraction, it is an interesting question whether
it is possible to give extensions of Moreau’s theorem for retractions or not. The
next two theorems provide a partial answer to this question in the case of particular
latticial cones only.

Theorem 5.4. Let K,L ⊆ H be mutually polar normal generating pointed closed
convex cones. Then, K is a subdual latticial cone if and only if there are a continuous
K-isotone retraction ρK : H → H onto K and a mapping ρL : H → H onto L such
that x = ρK(x) + ρL(x) for all x ∈ H.

Proof. 1. Suppose that K is a subdual latticial cone. Choose ρK : H → H defined
by ρK(x) = x+ and ρL : H → H defined by ρL(x) = −x− (with respect to the latticial
structure of K). It is easy to see that ρK is K-isotone. Since K is subdual, it follows
that ρL is well defined.

2. Conversely, suppose that there are a continuous K-isotone retraction ρK : H → H
onto K and a mapping ρL : H → H onto L such that x = ρK(x) + ρL(x) for all
x ∈ H. Then im(I − ρK) ⊆ L. Hence, Lemma 5.3 implies that K is latticial and
subdual.

Theorem 5.5. Let K,L ⊆ H be mutually polar normal generating pointed closed
convex cones. Then, K is an autodual latticial cone if and only if there are a contin-
uous K-isotone retraction ρK : H → H onto K and a continuous L-isotone retrac-
tion ρL : H → H onto L such that x = ρK(x) + ρL(x) for all x ∈ H. In this case
ρK(x) = x+ (with respect to the latticial structure of K).

Proof. 1. Suppose that K is an autodual latticial cone. Choose ρK : H → H
defined by ρK(x) = x+ and ρL : H → H defined by ρL(x) = −x− (with respect to the
latticial structure of K). It is easy to see that ρK is K-isotone. Since K is autodual,
it follows that ρL is well defined. Moreover, since ρL(x) = −(−x)+ it follows that
ρL is K-isotone. But, since K is autodual, it follows that −K = L. Hence, ρL is
L-isotone too.

2. Conversely, suppose that there are a continuous K-isotone retraction ρK : H →
H onto K and a continuous L-isotone retraction ρL : H → H onto L such that
x = ρK(x) + ρL(x) for all x ∈ H. By Theorem 5.4 we have that both K and L are
latticial subdual cones. Hence, K is an autodual latticial cone. Since I − ρK = ρL is
L-isotone and K = −L it follows that I−ρK is K-isotone too. Hence, from item 3 (a)
of Theorem 5.2 it follows that ρK(x) = x+ (with respect to the latticial structure of
K).

6. Miscellaneous examples and counterexamples

We start by stating a well known lemma. We include its proof for the sake of com-
pleteness only.

Lemma 6.1. Let K ⊆ H be a subdual pointed closed convex cone, ≤ the order
relation defined by K and u, v ∈ H such that 0 ≤ u ≤ v. Then ‖u‖ ≤ ‖v‖.
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Proof. If u = 0 the statement of the lemma is trivial. Let us suppose that u 6= 0.
Then, u ∈ K and v − u ∈ K ⊆ K∗ imply 〈u, v − u〉 ≥ 0. Thus, by using the Cauchy
inequality we get ‖u‖2 ≤ 〈v, u〉 ≤ ‖v‖‖u‖, or equivalently ‖u‖ ≤ ‖v‖.

The next example shows that the isotonicity of a retraction ρ onto a cone does not
imply that the complement I − ρ of ρ is sharp. According to Theorem 4.2 and item
3 (a) of Theorem 5.2 this gives a chance for the existence of an isotone retraction cone
which is polyhedral but not latticial. (Special non-latticial cones with this property
will be constructed in a separate note.)

Example 6.2. Let K ⊆ H be a subdual latticial cone. Then, the mapping ρ : H →
H defined by

ρ(x) =







(

1−
‖x−‖

‖x+‖

)

x+ if‖x+‖ > ‖x−‖,

0 if‖x+‖ ≤ ‖x−‖.

is a continuous isotone retraction onto K, but in general I − ρ is not sharp.

Proof. Obviously ρ(x) ∈ K, for all x ∈ H. Hence, ρ is well defined. If x ∈ K \ {0},
then x+ = x and x− = 0. Hence, ‖x+‖ > ‖x−‖. By the definition of ρ we have
ρ(x) = x. If x = 0, then x+ = x− = 0. Hence, ‖x+‖ ≤ ‖x−‖. By the definition of ρ
we have ρ(x) = 0 = x. Thus, ρ(x) = x, for all x ∈ K. It follows that ρ is a retraction
onto K. Obviously, ρ is continuous. Next, we prove that ρ is isotone. Suppose that
x, y ∈ H such that x ≤ y. We have to show that ρ(x) ≤ ρ(y). Since

0 ≤ x+ ≤ y+ (5)

and 0 ≤ y− ≤ x−, we have

‖x+‖ ≤ ‖y+‖ (6)

and

‖y−‖ ≤ ‖x−‖. (7)

We consider three different cases:

1. ‖y+‖ > ‖y−‖ and ‖x+‖ > ‖x−‖. Then, by the definition of ρ, (5), (6) and (7)
we have ρ(x) ≤ ρ(y).

2. ‖y+‖ > ‖y−‖ and ‖x+‖ ≤ ‖x−‖. Then, by the definition of ρ we have ρ(x) =
0 ≤ ρ(y).

3. ‖y+‖ ≤ ‖y−‖. Then, by (6) and (7) we have ‖x+‖ ≤ ‖y+‖ ≤ ‖y−‖ ≤ ‖x−‖.
Hence, by the definition of ρ we have ρ(x) = 0 ≤ 0 = ρ(y).

In general I − ρ is not sharp. Indeed, if K = R
2
+, x = (1,−1) /∈ K, y = (−1, 1) /∈ K,

then by the definition of ρ we have x + y = 0 = 0 + 0 = ρ(x) + ρ(y). Hence,
0 6= (I − ρ)(x) = −(I − ρ)(y), which shows that im(I − ρ) ∩ im(−(I − ρ)) 6= {0}.
Therefore, I − ρ is not sharp.

The next example shows the surprising fact that there are isotone retractions ρ onto
cones whose complement I − ρ is not sharp, but for an arbitrarily small “homotopic
deformation� of ρ we get an isotone retraction whose complement is sharp.
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Example 6.3. Consider the previous example with H = R
2 and K = R

2
+. Let

t ∈ [0, 1[ and ρt : R2 → R
2 defined by ρt(x) = tρ(x) + (1 − t)x+. Then, ρt is a

continuous isotone retraction onto K such that I − ρt is sharp.

Proof. If t = 0 the assertion is obvious. Therefore, we can suppose that t ∈]0, 1[.
By the previous example ρ is a continuous isotone retraction onto K. The mapping
x 7→ x+ bears the same properties. Hence, ρt bears the same properties too. It
remains to prove that I − ρ is sharp. First, note that

x+ − ρ(x) =
‖x−‖

‖x+‖
x+

implies that
〈x+ − ρ(x), x−〉 = 0 (8)

and
‖x+ − ρ(x)‖ = ‖x−‖ (9)

By using (8) and (9) we get

〈x− ρt(x), x
+ − ρt(x)〉

= 〈tx+ (1− t)x− tρ(x)− (1− t)x+, tx+ + (1− t)x+ − tρ(x)− (1− t)x+〉

= 〈t(x− ρ(x))− (1− t)x−, t(x+ − ρ(x))〉 = t2〈x− ρ(x), x+ − ρ(x)〉

= t2〈x+ − ρ(x)− x−, x+ − ρ(x)〉 = t2‖x+ − ρ(x)‖2 = t2‖x−‖2.

By tidying up we have

〈x− ρt(x), x
+ − ρt(x)〉 = t2‖x−‖2. (10)

By reductio ad absurdum suppose that I−ρt is not sharp. Then, there exists x, y /∈ K
such that

x+ y = ρt(x) + ρt(y) (11)

We can suppose that x, y /∈ −K. Indeed suppose that x ∈ −K (the argument is
similar if we suppose that y ∈ −K). Then, by item 1 of Lemma 5.1 we have ρt(x) = 0.
Thus, (11) implies that y ∈ K, which is a contradiction. Hence x+, y+ 6= 0. Since ρt is
an isotone retraction ontoK, item 2 (b) of Lemma 5.1 implies 0 ≤ ρt(x) ≤ x+. Hence,
0 ≤ x+ − ρt(x) ≤ x+. Then, ρt(x), x

+ − ρt(x) ∈ fcex+. Similarly ρt(y), y
+ − ρt(y) ∈

fce y+. We consider two cases.

1. fcex+ = fce y+. Then, x+ − ρt(x) = r(y+ − ρt(y)) for some r > 0. By using the
latter relation and (10), it follows that

〈x− ρt(x), y
+ − ρt(y)〉 > 0 (12)

and
〈y − ρt(y), y

+ − ρt(y)〉 > 0 (13)

By summing up (12) and (13) we get

0 = 〈x+ y − (ρt(x) + ρt(y)), y
+ − ρt(y) > 0

which is a contradiction.
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2. fcex+ ⊥ fce y+. Then, y+ − y = r(x+ − ρt(x)) and x
+ − x = s(y+ − ρt(y)), for

some r, s > 0. From (11) and the last two relations we get

ρt(x) + ρt(y) = x+ y = (1− r)x+ + (1− s)y+ + rρt(x) + sρt(y),

or equivalently (1− r)(x+ − ρt(x)) = (1− s)(ρt(y)− y+). The left hand side of
the latter equality is in K \ {0} and the right hand is in −K \ {0}. But, this
contradicts the pointedness of K.

The contradictions obtained in both of the cases show that I − ρt is sharp.

Next, we present an even simpler example than Example 6.2 for an isotone retraction
ρ onto a cone whose complement I − ρ in general is not sharp.

Example 6.4. Let K ⊆ H be a subdual latticial cone. Then, the mapping ρ : H →
H defined by

ρ(x) =
x+

1 + ‖x−‖

is a continuous isotone retraction onto K, but in general I − ρ is not sharp.

Proof. Obviously, ρ is a continuous retraction onto K. From (5), (6) and (7) it
follows that ρ is isotone. In general I − ρ is not sharp. Indeed, if K = R

2
+, x =

(3,−2) /∈ K and y = (−2, 3) /∈ K, then by the definition of ρ we have

ρ(x) + ρ(y) =
(3, 0)

1 + 2
+

(0, 3)

1 + 2
= (1, 1) = x+ y.

Similarly to the proof of the previous example, we obtain that I−ρ is not sharp.

Lemma 6.5. Let h : R+ → R+ be a monotone increasing mapping such that h(0) =
0, H a Hilbert space and K ⊆ H a subdual generating pointed closed convex cone.
If ψ : H → H is an isotone mapping such that ψ(x) = 0, for all x ∈ K, then the
function r : H → R defined by

r(x) =
1

1 + h(‖ψ(x)‖)

is isotone.

Proof. Let x, y ∈ H such that x ≤ y. Since K is generating there is an u ∈ K such
that x ≤ u. Then, by the isotonicity of ψ we get 0 = −ψ(u) ≤ −ψ(y) ≤ −ψ(x).
Hence, by Lemma 6.1 we have ‖ψ(y)‖ ≤ ‖ψ(x)‖. Therefore, the monotonicity of h
implies r(x) ≤ r(y).

The next proposition is an immediate consequence of Lemma 6.5 and extends the
result of Example 6.4. It shows that if there is an isotone retraction onto a cone,
then there are quite many. Therefore, although it is difficult to construct an isotone
retraction, once an isotone retraction is found, it is much easier to generate a whole
family of such mappings.
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Proposition 6.6. Let h : R+ → R+ be a monotone increasing mapping such that
h(0) = 0, H a Hilbert space, K ⊆ H a subdual generating pointed closed convex cone,
ρ : H → H an isotone retraction onto K and ψ : H → H an isotone mapping such
that ψ(x) = 0, for all x ∈ K. Then, the mapping ζ : H → H defined by

ζ(x) =
ρ(x)

1 + h(‖ψ(x)‖)

is an isotone retraction onto K.

We remark that the mapping defined in Example 6.4 is a particular case of the
mapping defined in the previous proposition with h(t) = t, ρ(x) = x+ and ψ(x) =
−x−.

The next theorem shows a fundamental property of isotone retraction, namely, the
invariance of an isotone retraction ζ under a coordinate transformation. If the com-
plement I−ζ of ζ is sharp the complement of the transformed mapping is also sharp.
In this way we can generate many examples for new isotone retractions and new
mappings whose complements are sharp.

Theorem 6.7. Let A be an n× n nonsingular real matrix. Consider a latticial cone
K in R

n, the latticial cone L defined by

L = {x ∈ R
n : Ax ∈ K},

a continuous K-isotone retraction ζ : Rn → R
n onto K and the mapping ρ : Rn → R

n

defined by
ρ(x) = A−1ζ(Ax).

Then, ρ is a continuous L-isotone retraction onto L. If I − ζ is sharp, then I − ρ is
sharp too.

Proof. Let x ∈ R
n be arbitrary. We have Aρ(x) = ζ(Ax) ∈ K, which means

ρ(x) ∈ L. Hence, ρ is well defined. Let u ∈ L be arbitrary. Then, Au ∈ K. Thus,
ζ(Au) = Au and therefore ρ(u) = u. It follows that ρ is a continuous retraction onto
L. Now, let x, y ∈ R

n such that y−x ∈ L. This means A(y−x) ∈ K, or equivalently
Ay − Ax ∈ K. Hence, by the K-isotonicity of ζ we have ζ(Ay) − ζ(Ax) ∈ K, or
equivalently A(ρ(y)− ρ(x)) ∈ K. Hence, ρ(y)− ρ(x) ∈ L. Therefore, ρ is L-isotone.
Suppose that I − ζ is sharp and let x, y ∈ H such that ρ(x) + ρ(y) = x + y. Then,
ζ(Ax) + ζ(Ay) = Ax + Ay. Since, I − ζ is sharp it follows that Ax,Ay ∈ K, or
equivalently x, y ∈ L. Hence, I − ρ is sharp.

7. Conclusions

In this paper we have considered the problem of the existence and construction of
continuous isotone retractions onto pointed closed convex cones in Hilbert spaces. In
the case of adding an extra sharpness condition to the isotone retraction, these map-
pings characterize the latticial cones. We presented several other characterizations
of latticial cones and particular latticial cones. However, it is still an open question
to characterize cones which admit continuous isotone retractions onto them and not
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satisfying the extra condition. In finite dimension we could show that the generating
pointed closed convex cones which admit a continuous isotone retraction onto them
must be polyhedral. The construction of non-latticial isotone retraction cones in R

n

is a rather difficult problem and will be done by us in a next note. But we cannot an-
swer yet the question if a general polyhedral cone in R

n is or not an isotone retraction
one. This is the main question which should be answered in the future. Although
construction of isotone retractions onto latticial cones is not easy neither, we could
give several examples for such mappings.

The results presented in this paper provide a connection between the order structure
and the topological-geometrical structure of a space. The remaining challenging issues
will hopefully provide further insight in the order-topological-geometrical structure
of a space. Apart from its theoretical importance, we plan to use the results to
extend the existence and iterative methods of [4, 5, 6, 7] to more general equilibrium
problems or/and more general discrete dynamical systems where the projection is
replaced by a continuous isotone retraction.
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