On the Infimum of a Quasiconvex Function over an Intersection. Application to the Distance Function

Juan-Enrique Martínez-Legaz*

Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain JuanEnrique.Martinez.Legaz@uab.es

Antonio Martinón

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Spain anmarce@ull.es

Received: July 10, 2009

We give sufficient conditions for the infimum of a quasiconvex function f over the intersection $\bigcap_{i \in I} R_i$ to agree with the supremum of the infima of f over the R_i 's. We apply these results to the distance function in a normed space.

Keywords: Quasiconvex functions, distance to the intersection

2000 Mathematics Subject Classification: 26-99, 54E35

1. Introduction

In this paper we are interested in the following problem. Let S be a set, $(R_i)_{i\in I}$ be a family of subsets of S, $C = \bigcup_{i\in I} R_i$ its union and $R = \bigcap_{i\in I} R_i$ its intersection. Given a map $f: C \longrightarrow \overline{\mathbb{R}} = [-\infty, \infty]$, is the equality

$$\inf_{x \in R} f(x) = \sup_{i \in I} \inf_{x \in R_i} f(x) \tag{1}$$

true? Of course, the inequality \geq is always satisfied.

We consider several settings. Our main results about equality (1) are obtained in the case when S = V is a linear space, C is a convex subset of V, f is a quasiconvex function and the family $(R_i)_{i \in I}$ satisfies certain conditions, basically $R_i \cap R_j = R$ $(i \neq j)$.

If S = X is a normed space, $C \subset X$ is a convex subset and $x \in X$ is a given point, the distance function $d(x, \cdot) : C \longrightarrow \mathbb{R}$ is convex, hence quasiconvex, and we can apply

*The first author is supported by the Ministerio de Ciencia e Innovacin (Spain) MTM2008-06695-C03-03/MTM, the Barcelona GSE Research Network and the Generalitat de Catalunya; he is affiliated to MOVE (Markets, Organizations and Votes in Economics).

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

the above results. In this setting the problem can be formulated in the following way: is the equality

$$d(x,R) = \sup_{i \in I} d(x,R_i)$$
(2)

true? Several authors have studied the validity of equality (2). A. Hoffmann [4] obtains an upper estimate of the distance from a point to the intersection of two convex sets. The papers [6, 8] consider the case of a family $(R_i)_{i\in I}$ consisting of two subsets; in [6] it is proved that, in the setting of metric spaces, (2) is true if and only if C is x-boundedly connected.

On the other hand, J.-E. Martínez-Legaz, A. M. Rubinov and I. Singer [7, 9, 10, 11] have proved (2) for families of normal and downward subsets of the finite dimensional space ℓ_{∞}^d . In this paper, we obtain (2) for any family of downward subsets of ℓ_{∞} .

G. Chacón, V. Montesinos and A. Octavio [2] consider a nested sequence of subspaces of a Banach space and prove that the space is reflexive if (2) is true for every such sequence. J. M. F. Castillo and P. L. Papini [1] have also studied the validity of equality (2) for a nested sequence of subsets of a Banach space. In this paper we prove a result about nested sequences of subsets in complete metric spaces.

Besides the general results about quasiconvex functions and the distance function, we consider the case $S = \overline{\mathbb{R}}$ and $f = I : C \longrightarrow \overline{\mathbb{R}}$, the identity map; that is, we study when the infimum of the intersection of a family of subsets of $\overline{\mathbb{R}}$ coincides with the supremum of the infimum of the sets of the family.

2. The infimum of a family of subsets of $\overline{\mathbb{R}}$

In this section the situation we study is $S = \overline{\mathbb{R}}$ and $f = I : C \longrightarrow \overline{\mathbb{R}}$, the identity function. Recall that $\inf \emptyset = \infty$ and $\inf A = \inf \overline{A}$, where \overline{A} is the closure of $A \subset \overline{\mathbb{R}}$.

We consider on $\overline{\mathbb{R}}$ the usual distance $d(x,y) = |\arctan x - \arctan y|$. For $\emptyset \neq E \subset \overline{\mathbb{R}}$, we have

$$d(-\infty, E) = \inf_{x \in E} \left| \arctan x + \frac{\pi}{2} \right| = \arctan \inf E + \frac{\pi}{2},$$

hence

$$\inf E = \tan\left(d(-\infty, E) - \frac{\pi}{2}\right);$$

note that this formula is also valid if $E = \emptyset$ and we put $d(-\infty, \emptyset) = \pi$, the diameter of $\overline{\mathbb{R}}$.

The next result relates the validity of the equalities (1) for f = I and (2) for $x = -\infty$.

Proposition 2.1. Let $(E_i)_{i\in I}$ be a family of subsets of $\overline{\mathbb{R}}$. Consider the following statements:

- (1) $\sup_{i \in I} \inf E_i \in \overline{\bigcap_{i \in I} E_i}$
- (2) $\inf \bigcap_{i \in I} E_i = \sup_{i \in I} \inf E_i$
- (3) $d(-\infty, \bigcap_{i \in I} E_i) = \sup_{i \in I} d(-\infty, E_i)$
- (4) $\lambda \in \mathbb{R} \ and \ (\forall i \in I, [-\infty, \lambda] \cap E_i \neq \emptyset) \Longrightarrow [-\infty, \lambda] \cap \overline{\bigcap_{i \in I} E_i} \neq \emptyset$

Then

$$(1) \Longrightarrow (2) \Longleftrightarrow (3) \Longleftrightarrow (4).$$

Moreover, if $\bigcap_{i \in I} E_i \neq \emptyset$, then

$$(1) \Longleftrightarrow (2) \Longleftrightarrow (3) \Longleftrightarrow (4).$$

Proof. (1) \Longrightarrow (2). The inequality $\inf \bigcap_{i \in I} E_i \ge \sup_{i \in I} \inf E_i$ is clear. Moreover, if $\inf \bigcap_{i \in I} E_i > \sup_{i \in I} \inf E_i$, then there exists $\lambda \in \mathbb{R}$ such that

$$\inf \bigcap_{i \in I} E_i > \lambda > \sup_{i \in I} \inf E_i,$$

hence $[-\infty, \lambda[$ is an open set with $\sup_{i \in I} \inf E_i \in [-\infty, \lambda[$, but $\sup_{i \in I} \inf E_i \notin \overline{\bigcap_{i \in I} E_i}$, since $\inf \bigcap_{i \in I} E_i \notin [-\infty, \lambda]$ and $\inf \bigcap_{i \in I} E_i = \inf \overline{\bigcap_{i \in I} E_i}$.

 $(2) \iff (3)$ We have that

$$\inf \bigcap_{i \in I} E_i = \tan \left(d(-\infty, \bigcap_{i \in I} E_i) - \frac{\pi}{2} \right) \ge \tan \left(\sup_{i \in I} d(-\infty, E_i) - \frac{\pi}{2} \right)$$

$$= \tan \sup_{i \in I} \left(d(-\infty, E_i) - \frac{\pi}{2} \right) = \sup_{i \in I} \tan \left(d(-\infty, E_i) - \frac{\pi}{2} \right) = \sup_{i \in I} \inf E_i.$$

Hence the equality

$$\inf \bigcap_{i \in I} E_i = \sup_{i \in I} \inf E_i$$

holds if and only if the equality

$$d(-\infty, \bigcap_{i \in I} E_i) = \sup_{i \in I} d(-\infty, E_i)$$

holds.

 $(2) \Longrightarrow (4)$. Let $\lambda \in \mathbb{R}$ be such that, for every $i \in I$, $[-\infty, \lambda] \cap E_i \neq \emptyset$, hence $\sup_{i \in I} \inf E_i \leq \lambda$. By (2), given $n \in \mathbb{N}$, there exists $z_n \in \bigcap_{i \in I} E_i$ with $z_n < \lambda + 1/n$ and $\liminf_{n \to \infty} z_n \in \overline{\bigcap_{i \in I} E_i}$. Therefore $[-\infty, \lambda] \cap \overline{\bigcap_{i \in I} E_i} \neq \emptyset$.

 $(4) \Longrightarrow (2)$. If $\sup_{i \in I} \inf E_i < \inf \bigcap_{i \in I} E_i = \inf \overline{\bigcap_{i \in I} E_i}$, then there exists $\lambda \in \mathbb{R}$ such that

$$\sup_{i \in I} \inf E_i < \lambda < \inf \overline{\bigcap_{i \in I} E_i} ,$$

hence $[-\infty, \lambda] \cap E_i \neq \emptyset$, for every $i \in I$, but $[-\infty, \lambda] \cap \overline{(\bigcap_{i \in I} E_i)} = \emptyset$.

 $(2) \Longrightarrow (1)$. If $\bigcap_{i \in I} E_i \neq \emptyset$, then

$$\sup_{i \in I} \inf E_i = \inf \bigcap_{i \in I} E_i \in \overline{\bigcap_{i \in I} E_i}.$$

Now let S be a nonempty set. Let $(R_i)_{i\in I}$ be a family of subsets of S. We write

$$R = \bigcap_{i \in I} R_i$$
, $C = \bigcup_{i \in I} R_i$.

Let $f: S \to \overline{\mathbb{R}}$ be a map. For $A \subset S$ we consider $\inf_{x \in A} f(x) = \inf f(A) \in \overline{\mathbb{R}}$.

We are interested in conditions for equality (1) to hold. We denote E = f(R) and $E_i = f(R_i)$ $(i \in I)$, hence $E \subset \bigcap_{i \in I} E_i$, and consequently, for every $i \in I$,

$$\inf_{x \in R} f(x) = \inf f(R) = \inf E \ge \inf \bigcap_{i \in I} E_i \ge \inf E_i = \inf_{x \in R_i} f(x).$$

Then equality (1) implies

$$\inf E = \inf \bigcap_{i \in I} E_i = \sup_{i \in I} \inf E_i.$$
 (3)

Remark 2.2. It is possible that the three numbers in equation (3) be different. Let $S = \mathbb{R}$, $f(x) = x^2$, $R_1 = [1, \sqrt{2}] \cup [2\sqrt{2}, 3]$, $R_2 = [-4, -2] \cup \{3\}$. Then we obtain $E_1 = f(R_1) = [1, 2] \cup [8, 9]$, $E_2 = f(R_2) = [4, 16]$, $E_1 \cap E_2 = [8, 9]$ and $E = \{9\}$, hence inf E = 9, inf $(E_1 \cap E_2) = 8$ and max $\{\inf E_1, \inf E_2\} = 4$.

Remark 2.3. Note that the equality

$$\inf \bigcap_{i \in I} E_i = \sup_{i \in I} \inf E_i \tag{4}$$

does not imply equality (3), as seen in the following example. If we take $S = \mathbb{R}$, $f(x) = x^2$, $R_1 = [1,3]$, $R_2 = [-4,-2] \cup \{3\}$, then we obtain $E_1 = f(R_1) = [1,9]$, $E_2 = f(R_2) = [4,16]$, $E_1 \cap E_2 = [4,9]$ and $\inf(E_1 \cap E_2) = 4 = \max\{\inf E_1, \inf E_2\}$, but $\inf_{x \in R_1 \cap R_2} f(x) = 9 > 4 = \max\{\inf_{x \in R_1} f(x), \inf_{x \in R_2} f(x)\}$. In the case of f injective, then $\inf f(R) = \inf(\bigcap_{i \in I} f(R_i))$ and the equalities (4) and (3) are equivalent.

3. The infimum of a quasiconvex function

In this section we prove several results about equality (1), f being a quasiconvex function defined on a convex subset $C = \bigcup_{i \in I} R_i$ of a vector space V and $R = \bigcap_{i \in I} R_i$.

We basically consider two hypotheses: first, $[r_i, r_j] \cap R_i \cap R_j \neq \emptyset$, for every $r_i \in R_i$, $r_j \in R_j$ $(i \neq j)$; second, the sets R_i are linearly closed in C. In several situations the second hypothesis implies the first one.

Proposition 3.1. Let V be a vector space, $C \subset V$ a convex set and $f: C \longrightarrow \overline{\mathbb{R}}$ a quasiconvex function. Let $(R_i)_{i \in I}$ be a family of subsets of C satisfying $[r_i, r_j] \cap R_i \cap R_j \neq \emptyset$, for every $r_i \in R_i$ and $r_j \in R_j$ $(i, j \in I \text{ with } i \neq j)$, and $C = \bigcup_{i \in I} R_i$. Let $R = \bigcap_{i \in I} R_i$ and assume that $R_i \cap R_j = R$, for $i, j \in I$ with $i \neq j$. Then

$$\exists h \in I, \forall k \in I, k \neq h, \quad \inf_{x \in R} f(x) = \inf_{x \in R_k} f(x), \tag{5}$$

hence equality (1) holds.

Proof. Notice that, for every $i \in I$, we have

$$\inf_{x \in C} f(x) \le \inf_{x \in R_i} f(x) \le \sup_{i \in I} \inf_{x \in R_i} f(x) \le \inf_{x \in R} f(x).$$

Hence, if $\inf_{x\in C} f(x) = \inf_{x\in R} f(x)$, then (5) is clear. In the following we assume that $\inf_{x\in C} f(x) < \inf_{x\in R} f(x)$, hence, as $\inf_{x\in C} f(x) = \inf_{i\in I} \inf_{x\in R_i} f(x)$, there exists $h\in I$ such that

$$\inf_{x \in C} f(x) \le \inf_{x \in R_h} f(x) < \inf_{x \in R} f(x).$$

For each $i \in I$, let $\lambda_i > \inf_{x \in R_i} f(x)$ and choose $r_i \in R_i$ such that

$$f(r_i) < \lambda_i$$
.

For every $k \in I$ with $h \neq k$, we choose $r \in [r_h, r_k] \cap R$ and we obtain, taking into account that f is quasiconvex,

$$\inf_{x \in R} f(x) \le f(r) \le \max\{f(r_h), f(r_k)\} < \max\{\lambda_h, \lambda_k\}.$$

Because of the arbitrariness of the λ_i 's we have, for every $k \in I$ with $k \neq h$,

$$\inf_{x \in R_h} f(x) < \inf_{x \in R} f(x) \le \max \left\{ \inf_{x \in R_h} f(x), \inf_{x \in R_k} f(x) \right\};$$

hence, for every $k \in I$ with $k \neq h$, we obtain

$$\max \left\{ \inf_{x \in R_h} f(x), \inf_{x \in R_k} f(x) \right\} = \inf_{x \in R_k} f(x),$$

so

$$\inf_{x \in R_b} f(x) < \inf_{x \in R} f(x) \le \inf_{x \in R_b} f(x)$$

and, consequently,

$$\inf_{x \in R} f(x) = \inf_{x \in R_k} f(x).$$

From this we obtain the announced result.

Now we recall a definition:

Definition 3.2. Let V be a vector space and $C \subset V$. The subset $A \subset C$ is said linearly closed in C if $A \cap C \cap L$ is closed in L, for every straight line L of V endowed with the natural topology.

In the next result the family $(R_i)_{i\in I}$ is at most countable and the R_i 's are linearly closed subsets.

Proposition 3.3. Let V be a vector space, $C \subset V$ a convex set and $f: C \longrightarrow \mathbb{R}$ a quasiconvex function. Let $(R_i)_{i \in \mathbb{N}}$ be a sequence of subsets of C which are linearly closed in C and such that $C = \bigcup_{i \in \mathbb{N}} R_i$. Let $R = \bigcap_{i \in \mathbb{N}} R_i$ and assume that $R_i \cap R_j = R$, for $i, j \in \mathbb{N}$ with $i \neq j$. Then condition (5) is satisfied, hence equality (1) holds.

Proof. In view of Prop. 3.1, we only have to prove that if $r_h \in R_h$ and $r_k \in R_k$ with $h, k \in \mathbb{N}$ and $h \neq k$, then the segment $[r_h, r_k]$ satisfies $[r_h, r_k] \cap R \neq \emptyset$. For $i \in \mathbb{N}$ we denote $S_i = R_i \cap [r_h, r_k]$. As $[r_h, r_k] = \bigcup_{i \in \mathbb{N}} S_i$ is a continuum (compact, connected and Hausdorff topological space) and no continuum can be written as the union of countably many disjoint closed sets [12, Problem 28E.2], we have $S_i \cap S_j \neq \emptyset$ for some $i, j \in \mathbb{N}$ with $i \neq j$, hence we obtain $[r_h, r_k] \cap R = S_i \cap S_j \neq \emptyset$.

Remark 3.4. The above result is not true for an arbitrary infinite family of subsets (R_i) . Consider $X = \mathbb{R}$, C = [-1, 1], $R = \{1\}$, $R_i = \{i-1, i, 1\}$ $(0 \le i < 1)$ and $f(x) = (1+x)^2$. Then we have $\inf_{x \in R} f(x) = 4$ and $\sup_{0 \le i < 1} \inf_{x \in R_i} f(x) = \sup_{0 \le i < 1} i^2 = 1$.

In the following proposition the family $(R_i)_{i\in I}$ is finite, but it is only required that $R_h \cap R_j = R$ with $\inf_{x\in R_h} f(x) \leq \inf_{x\in R_j} f(x)$ $(j \neq h)$. Note that the condition $R \neq \emptyset$ is obtained as conclusion.

Proposition 3.5. Let V be a vector space, $C \subset V$ a convex set and $f: C \longrightarrow \mathbb{R}$ a quasiconvex function. Let $R_1, R_2, ..., R_n \subset C$ be nonempty and linearly closed in C and such that $C = \bigcup_{1 \leq i \leq n} R_i$, and let $R = \bigcap_{1 \leq i \leq n} R_i$. Assume that, for certain h = 1, ..., n and for every j = 1, ..., n with $j \neq h$, $R_h \cap R_j = R$ and

$$\inf_{x \in R_h} f(x) \le \inf_{x \in R_i} f(x). \tag{6}$$

Then $R \neq \emptyset$ and

$$\forall j = 1, ..., n; j \neq h, \quad \inf_{x \in R} f(x) = \inf_{x \in R_j} f(x),$$

hence equality (1) holds.

Proof. Let $r \in R_h$, $s \in R_j$ $(1 \le j \le n, j \ne h)$ and, assuming that $r \ne s$, let L be the straight line that contains the segment $[r, s] \subset C$. Define

$$\overline{\lambda} = \sup\{\lambda \in [0,1] : (1-\lambda)r + \lambda s \in R_h\}$$

and $t = (1 - \overline{\lambda})r + \overline{\lambda}s$. We have $t \in R_h$. If $\overline{\lambda} = 1$, then $t = s \in [r, s] \cap R_h \cap R_j$. Let $S = (\bigcup_{k \neq h} R_k) \cap [r, s]$. If $\overline{\lambda} < 1$, for every p = 1, 2, 3... there exists $y_p \in S$ such that $y_p = (1 - \lambda_p)r + \lambda_p s$, being $\overline{\lambda} < \lambda_p \leq \overline{\lambda} + 1/p$. As S is the finite union of the sets $R_k \cap [r, s]$, there is a subsequence $(y_{p_m})_{m \geq 1}$ of $(y_p)_{p \geq 1}$ contained in some $R_k \cap [r, s]$. Since $R_k \cap [r, s]$ is closed in $C \cap L$, it is clear that t is the limit of a sequence of points of $R_k \cap L$ and, consequently, $t \in R_k$; hence $t \in R_h \cap R_k = R = R_h \cap R_j$. We have thus proved that $[r, s] \cap R_h \cap R_j \neq \emptyset$, for every $r \in R_h$ and $s \in R_j$. Therefore, by (6), the inclusion $R \subset R_j$, the equality $R = R_h \cap R_j$ and Proposition 3.1, for every $j = 1, ..., n, j \neq h$,

$$\inf_{x \in R_j} f(x) \le \inf_{x \in R} f(x) = \inf_{x \in R_h \cap R_j} f(x) = \max \left\{ \inf_{x \in R_h} f(x), \inf_{x \in R_j} f(x) \right\} = \inf_{x \in R_j} f(x).$$

From this we obtain the result.

Remark 3.6. The above proposition is not true for a countable family of subsets. In fact, let $V = \mathbb{R}$, C = [0, 1], $R_0 = \{0, 1\}$, $R_n = \left[\frac{1}{n+1}, \frac{1}{n}\right] \cup \{1\}$ $(n \in \mathbb{N})$ and f(x) = x; then $R = \{1\} = R_0 \cap R_n$ $(n \in \mathbb{N})$, $\inf_{x \in R} f(x) = 1$, $\inf_{x \in R_0} f(x) = 0$, $\inf_{x \in R_n} f(x) = \frac{1}{n+1}$ $(n \in \mathbb{N})$ and $\sup_{i \ge 1} \inf_{x \in R_i} f(x) = \frac{1}{2}$; hence $\inf_{x \in R} f(x) > \sup_{i \ge 1} \inf_{x \in R_i} f(x)$.

Remark 3.7. The proof of the preceding proposition is still valid if the assumption $C = \bigcup_{1 \leq i \leq n} R_i$ is replaced by the weaker condition that $\bigcup_{1 \leq i \leq n} R_i$ contains all segments one of whose endpoints is in R_h and the other one is in R_j . This condition holds, in particular, when $\bigcup_{1 \leq i \leq n} R_i$ contains the convex hull of $R_h \cup R_j$ for every j.

In the above results we have considered a family $(R_i)_{i\in I}$ of sets linearly closed with intersection R and $R_i \cap R_j = R$ $(i \neq j)$; in Proposition 3.3 we have considered $I = \mathbb{N}$, and in Proposition 3.5 the set I is finite. The next proposition analyzes this type of condition in a topological environment.

Proposition 3.8. Let C be a locally connected space, $R \subset C$ a closed set and $(A_i)_{i \in I}$ be a family of nonempty connected subsets of C which are pairwise disjoint and such that $R \cap A_i = \emptyset$ for every $i \in I$. Then

- (1) If the components C_i of $C \setminus R$ that contain A_i , respectively, are all different, then there exist a family $(R_i)_{i \in I}$ of closed subsets of C such that $C = \bigcup_{i \in I} R_i$, $R = \bigcap_{i \in I} R_i$, $A_i \subset R_i$ and $R_i \cap R_j = R$ $(i \neq j)$.
- (2) If I is finite and there exists a family $(R_i)_{i\in I}$ of closed subsets of C such that $C = \bigcup_{i\in I} R_i$, $R = \bigcap_{i\in I} R_i$, $A_i \subset R_i$ for every $i \in I$ and $R_i \cap R_j = R$ $(i \neq j)$, then the components C_i of $C \setminus R$ that contain A_i , respectively, are all different.
- **Proof.** (1) Let R be a closed subset of C such that $\bigcup_{i \in I} A_i \subset C \setminus R$ and the components C_i of $C \setminus R$ that contain A_i , respectively, are all different: if $i \neq j$, then $C_i \neq C_j$, hence $C_i \cap C_j = \emptyset$. Let C_0 be the union of all the components of $C \setminus R$ which are different from C_i ($i \in I$). We take $R_j = R \cup C_j \cup C_0$, for some fix $j \in I$, and, for $i \neq j$, $R_i = R \cup C_i$. As C is locally connected and $C \setminus R$ is open, we have that each component of $C \setminus R$ is open and closed in $C \setminus R$, and open in C. The sets $C \setminus R_i$ ($i \in I$) are union of components of $C \setminus R$, hence union of subsets of $C \setminus R$ which are open in $C \setminus R$ and in C, so the sets R_i are closed in C and it is clear that they satisfy the conditions of the statement.
- (2) Suppose that R is the intersection of closed subsets R_i such that $C = \bigcup_{i \in I} R_i$, the sets $R_i \setminus R$ are pairwise disjoint and $A_i \subset R_i \setminus R_j$ for each i and every $j \neq i$. For each i one has $A_i \subset R_i \setminus R$ and $A_i \cap (R_j \setminus R) = \emptyset$ for every $j \neq i$. As $\bigcup_{j \neq i} (R_j \setminus R)$ is closed in $C \setminus R$ and is disjoint with $R_i \setminus R$, which is also closed in $C \setminus R$, and $\bigcup_{j \in I} (R_j \setminus R) = C \setminus R$, we obtain that the component C_i is contained in $R_i \setminus R$, hence, for $i \neq j$, we have that $C_i \neq C_j$.
- **Remark 3.9.** The statement (2) of the above proposition is not true for countable families, as seen in the next example. Let C be the set of all natural numbers endowed with the cofinite topology (the closed subsets are C and the finite sets). Note that the intersection of two nonempty open sets is nonempty. From this we obtain that every neighborhood of a point is open and connected, hence C is a locally connected space. Consider the sequence of connected subsets $(A_n)_{n\geq 2}$, where $A_n = \{n\}$. The

closed set $R = \{1\}$ satisfies $R \cap A_n = \emptyset$, for every n = 2, 3... Moreover, the closed sets $R_n = A_n \cup R$ (n = 2, 3...) satisfy the following properties: $C = \bigcup_{n \geq 2} R_n$, $R = \bigcap_{n \geq 2} R_n$, $R_i \cap R_j = R$ $(i \neq j)$, $A_n \subset R_n$, and $C \setminus R$ is connected, hence it only has one component.

Remark 3.10. Dovgoshey and Martio [3] proved the following result: let R be a subspace of \mathbb{R} with the usual metric; then the set $\mathbb{R} \setminus \overline{R}$ is connected if and only if the radius of every closed ball $B(a, \varepsilon)$ in R is equal to its effective radius

$$r(B(a,\varepsilon)) = \sup\{|a-z| : z \in R, |z-a| \le \varepsilon\}.$$

Let C be the space \mathbb{R} with the usual metric. Given $x, y \in \mathbb{R}$ with x < y, from the above proposition we obtain that a subset R is the intersection of two closed sets R_1 and R_2 such that $\mathbb{R} = R_1 \cup R_2$, $x \in R_1 \setminus R_2$ and $y \in R_2 \setminus R_1$ if and only if R is closed, $x, y \notin R$ and $R \cap]x, y \not \in \emptyset$. In this case, from the result by Dovgoshey and Martio, there are $a \in R$ and $\varepsilon > 0$ such that the $r(B(a, \varepsilon)) < \varepsilon$.

To finish this section, we present a result on the particular case when the family I has only two members.

Proposition 3.11. Let X be a topological space, $C \subset X$ be a closed set and $f: X \longrightarrow \mathbb{R}$ be an upper semicontinuous function. The following assertions are equivalent:

- (i) The set $C \cap f^{-1}(]-\infty,\lambda[)$ is connected for every $\lambda \in \mathbb{R}$.
- (ii) If R and S are nonempty closed subsets of X and $R \cup S = C$ then

$$\inf_{x \in R \cap S} f(x) = \max \left\{ \inf_{x \in R} f(x), \inf_{x \in S} f(x) \right\}. \tag{7}$$

Proof. (i) \Longrightarrow (ii). Let $\lambda > \max \{\inf_{x \in R} f(x), \inf_{x \in S} f(x)\}$ and set $U = f^{-1}(]-\infty, \lambda[)$. By assumption, $C \cap U$ is connected; hence, as $R \cap U$ and $S \cap U$ are closed in $C \cap U$ and nonempty and $(R \cap U) \cup (S \cap U) = (R \cup S) \cap U = C \cap U$, we have $R \cap S \cap U \neq \emptyset$. Take $y \in R \cap S \cap U$. Given that $\inf_{x \in R \cap S} f(x) \leq f(y) < \lambda$, we conclude that $\inf_{x \in R \cap S} f(x) \leq \max \{\inf_{x \in R} f(x), \inf_{x \in S} f(x)\}$.

4. The distance to the intersection of a family of sets

Let X be a normed space and fix $x \in X$. Consider the function $f: X \longrightarrow \mathbb{R}$ given by f(y) = d(x,y) = ||x-y||, where $||\cdot||$ denotes the norm of X. The results of the above section can be specialized to this environment, since f is convex and $d(x,A) = \inf_{a \in A} f(a)$.

Proposition 4.1. Let X be a normed space and $C \subset X$ a convex set. Let $(R_i)_{i \in I}$ be a family of subsets of C satisfying $[r_i, r_j] \cap R_i \cap R_j \neq \emptyset$, for every $r_i \in R_i$ and $r_j \in R_j$ $(i, j \in I \text{ with } i \neq j)$ and $C = \bigcup_{i \in I} R_i$. Let $R = \bigcap_{i \in I} R_i$ and assume that $R_i \cap R_j = R$, for $i, j \in I$ with $i \neq j$. Then, for every $x \in X$,

$$\exists h \in I, \forall k \in I, k \neq h, \quad d(x, R) = d(x, R_k), \tag{8}$$

hence equality (2) holds.

Proposition 4.2. Let X be a normed space and $C \subset X$ a convex set. Let $(R_i)_{i \in \mathbb{N}}$ be a sequence of subsets of C which are linearly closed in C and such that $C = \bigcup_{i \in \mathbb{N}} R_i$. Let $R = \bigcap_{i \in \mathbb{N}} R_i$ and assume that $R_i \cap R_j = R$, for $i, j \in \mathbb{N}$ with $i \neq j$. If $R \neq \emptyset$, then, for every $x \in X$, condition (8) is satisfied, hence equality (2) holds.

From Proposition 3.5 we obtain

Proposition 4.3. Let X be a normed space and $C \subset X$ a convex set. Let $R_1, R_2, ..., R_n \subset C$ be nonempty and closed in C and such that $C = \bigcup_{1 \leq i \leq n} R_i$, and let $R = \bigcap_{1 \leq i \leq n} R_i$. Assume that, for certain h = 1, ..., n and for every j = 1, ..., n with $j \neq h$, $R_h \cap R_j = R$ and

$$d(x, R_h) \le d(x, R_i). \tag{9}$$

Then $R \neq \emptyset$ and, for every $x \in X$,

$$\forall j = 1, ..., n; j \neq h, \quad d(x, R) = d(x, R_j)$$

hence equality (2) holds.

Example 4.4. Let X, Y be infinite dimensional Banach spaces. We denote by L(X, Y) the class of all bounded linear operators from X into Y. For $T \in L(X, Y)$, N(T) is its null space and R(T) its range. The operator $T \in L(X, Y)$ is semi-fredholm $(T \in SF)$ if R(T) is a closed subspace of Y and N(T) or Y/R(T) is finite dimensional; its index is defined by

$$\operatorname{ind} T = \dim N(T) - \dim Y / R(T) \in \overline{\mathbb{Z}} = \mathbb{Z} \cup \{-\infty, +\infty\}.$$

For $n \in \overline{\mathbb{Z}}$, we put

$$SF^n = \{ T \in SF : \text{ind } T = n \}.$$

According to [5, Proposition 2.c.9], the sets SF^n are open in L(X,Y), so $SF^c = L(X,Y) \setminus SF$ is closed. Denote by $R_n = SF^n \cup SF^c$ $(n \in \overline{\mathbb{Z}})$ and $R = SF^c$. Then $(R_n)_{n \in \overline{\mathbb{Z}}}$ is a countable family of closed subsets of L(X,Y) and, moreover,

$$L(X,Y) = \bigcup_{n \in \mathbb{Z}} R_n ; \qquad R_n \cap R_m = R \ (n \neq m); \qquad R = \bigcap_{n \in \mathbb{Z}} R_n \neq \emptyset.$$

Fix $T \in L(X, Y)$ and consider the distance d(T, H) from T to the class $H \subset L(X, Y)$. In view of Proposition 4.2, there are two possibilities:

(1) For every $n \in \overline{\mathbb{Z}}$,

$$d(T, L(X,Y)) = d(T,R_n) = d(T,R).$$

As d(T, L(X, Y)) = 0, we obtain $T \in R$; that is, $T \notin SF$.

(2) There exists $h \in \overline{\mathbb{Z}}$ such that, for every $k \in \overline{\mathbb{Z}}$, with $k \neq h$,

$$d(T, L(X, Y)) = d(T, R_h) < d(T, R_k) = d(T, R).$$

Then $T \in R_h$, but $T \notin R$, hence $T \in SF_h$. Moreover,

$$d(T,R) = d(T,R_k) = d(T,SF^k \cup SF^c) \le d(T,SF^k),$$

hence $d(T, SF^c) \le d(T, SF^k)$.

5. The distance to the intersection of a family of downward sets

We now present a result about the real space ℓ_{∞} of all bounded sequences of real numbers with the supremum norm: $||x||_{\infty} = ||(x_n)_{n\geq 1}||_{\infty} = \sup_{n\geq 1} |x_n|$. This result states the validity of the formula (2) for a certain type of subsets of ℓ_{∞} . The validity of this formula for the finite dimensional space ℓ_{∞}^d (\mathbb{R}^d endowed with the norm $||\cdot||_{\infty}$) was established in [7].

In ℓ_{∞} we consider the following order: $x = (x_n)_{n \geq 1} \leq y = (y_n)_{n \geq 1}$ if and only if $x_n \leq y_n$ for every $n \in \mathbb{N}$.

Definition 5.1. A subset A of ℓ_{∞} is said to be downward if $x \in A$, $y \in \ell_{\infty}$ and $y \leq x$, implies $y \in A$.

Given $A \subset \ell_{\infty}$ and $x^0 \in \ell_{\infty}$, we write $P_A(x^0) = \{a \in A : ||a - x^0||_{\infty} = d(x^0, A)\}$. The constant sequence (1, 1, 1...) is denoted by **1**.

Lemma 5.2. Let $A \subset \ell_{\infty}$ be a nonempty closed downward set and $x^0 \in \ell_{\infty}$. Then

$$a^0 = \min P_A(x^0),$$

where $a^0 = x^0 - r\mathbf{1}$ and $r = d(x^0, A)$; hence $P_A(x^0) \neq \emptyset$.

Proof. If r = 0, then $x^0 \in A$ and, consequently, $x^0 \in P_A(x^0)$. Assume r > 0. For each n = 1, 2, 3..., there exists $a_n \in A$ such that $||a_n - x^0||_{\infty} \le r + \frac{1}{n}$, hence $x^0 - (r + \frac{1}{n})\mathbf{1} \le a_n$. Then

$$a^0 = \lim_{n \to \infty} \left[x^0 - \left(r + \frac{1}{n} \right) \mathbf{1} \right] \le \liminf_{n \to \infty} a_n$$
.

By definition we have that

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \inf_{k \ge n} a_k ;$$

and as A is a downward set we obtain $\inf_{k\geq n} a_k \in A$. Moreover $\liminf_{n\to\infty} a_n \in A$ since A is closed. Thus $a^0 \in A$. As $||x^0 - a^0||_{\infty} = r$, we obtain $a^0 \in P_A(x^0)$. Moreover, if $a \in P_A(x^0)$ we have that $||a - x^0||_{\infty} \leq r$, hence $a^0 = x^0 - r\mathbf{1} \leq a$. Thus a^0 is the minimum of $P_A(x^0)$.

Proposition 5.3. Let $(R_i)_{i\in I}$ be a family of closed downward subsets of ℓ_{∞} , and $R = \bigcap_{i\in I} R_i$. Then, for every $x \in \ell_{\infty}$,

$$d(x,R) = \sup_{i \in I} d(x,R_i).$$

Proof. The proof given in [7, Theorem 4] for the finite dimensional case is based on [7, Corollary 2], which is deduced from [7, Proposition 2]. If we apply the above Lemma, then we obtain that [7, Proposition 2] is true in ℓ_{∞} and, consequently, [7, Corollary 2] is also true.

6. The distance to the intersection of a nested sequence

We end with a simple result on nested sequences of subsets in complete metric spaces. Our proof is based on the Cantor intersection property.

Proposition 6.1. Let M be a complete metric space with distance d. Let $(R_n)_{n\in\mathbb{N}}$ be a sequence of non empty closed subsets whose diameters diam R_n satisfy diam $R_n \longrightarrow 0$ $(n \longrightarrow \infty)$ and such that $R_n \supset R_{n+1}$ $(n \in \mathbb{N})$. Then, for every $x \in M$,

$$d(x, \bigcap_{n \in \mathbb{N}} R_n) = \sup_{n \in \mathbb{N}} d(x, R_n) = \lim_{n \to \infty} d(x, R_n).$$

Proof. The Cantor intersection theorem assures that there exists $a \in M$ such that $\{a\} = \bigcap_{n \in \mathbb{N}} R_n$. It is obvious that $d(x, a) \ge \sup_{n \in \mathbb{N}} d(x, R_n)$.

Let $\varepsilon > 0$. We choose $k \in \mathbb{N}$ such that diam $R_k < \varepsilon$. For every $y \in R_k$, we have that $d(x, a) \leq d(x, y) + d(y, a) < d(x, y) + \varepsilon$, hence

$$d(x, a) \le d(x, R_k) + \varepsilon \le \sup_{n \in \mathbb{N}} d(x, R_n) + \varepsilon$$
.

As $\varepsilon > 0$ is arbitrary, we finally obtain $d(x, a) \leq \sup_{n \in \mathbb{N}} d(x, R_n)$.

References

- [1] J. M. F. Castillo, P. L. Papini: Approximation of the limit distance function in Banach spaces, J. Math. Anal. Appl. 328 (2007) 577–589.
- [2] G. Chacón, V. Montesinos, A. Octavio: A note on the intersection of Banach subspaces, Publ. Res. Inst. Math. Sci. 40 (2004) 1–6.
- [3] O. Dovgoshey, O. Martio: Blow up of balls and coverings in metric spaces, Manuscr. Math. 127 (2008) 89–120.
- [4] A. Hoffmann: The distance to the intersection of two convex sets expressed by the distance to each of them, Math. Nachr. 157 (1992) 81–98.
- [5] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces I, Springer, Berlin (1977).
- [6] J.-E. Martínez-Legaz, A. Martinón: Boundedly connected sets and the distance to the intersection of two sets, J. Math. Anal. Appl. 332 (2007) 400–406.
- [7] J.-E. Martínez-Legaz, A. M. Rubinov, I. Singer: Downward sets and their separation and approximation properties, J. Glob. Optim. 23 (2002) 111–137.

- 698 J.-E. Martínez Legaz, A. Martinón / On the Infimum of a Function over an ...
- [8] A. Martinón: Distance to the intersection of two sets, Bull. Aust. Math. Soc. 70 (2004) 329–341.
- [9] A. M. Rubinov: Distance to the solution set of an inequality with an increasing function, in: Equilibrium Problems and Variational Models (Erice, 2000), P. Danilele et al. (ed.), Kluwer, Boston (2003) 417–431.
- [10] A. M. Rubinov, I. Singer: Best approximation by normal and conormal sets, J. Approx. Theory 107 (2000) 212–243.
- [11] A. M. Rubinov, I. Singer: Distance to the intersection of normal sets and applications, Numer. Funct. Anal. Optim. 21 (2000) 521–535.
- [12] S. Willard: General Topology, Addison-Wesley, Reading (1970).