
Journal of Convex Analysis

Volume 18 (2011), No. 3, 687–698

On the Infimum of a Quasiconvex

Function over an Intersection.

Application to the Distance Function

Juan-Enrique Mart́ınez-Legaz∗

Departament d’Economia i d’Història Econòmica,
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1. Introduction

In this paper we are interested in the following problem. Let S be a set, (Ri)i∈I be a
family of subsets of S, C =

⋃
i∈I Ri its union and R =

⋂
i∈I Ri its intersection. Given

a map f : C −→ R = [−∞,∞], is the equality

inf
x∈R

f(x) = sup
i∈I

inf
x∈Ri

f(x) (1)

true? Of course, the inequality ≥ is always satisfied.

We consider several settings. Our main results about equality (1) are obtained in the
case when S = V is a linear space, C is a convex subset of V , f is a quasiconvex
function and the family (Ri)i∈I satisfies certain conditions, basically Ri ∩ Rj = R
(i 6= j).

If S = X is a normed space, C ⊂ X is a convex subset and x ∈ X is a given point, the
distance function d(x, ·) : C −→ R is convex, hence quasiconvex, and we can apply
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the above results. In this setting the problem can be formulated in the following way:
is the equality

d (x,R) = sup
i∈I

d (x,Ri) (2)

true? Several authors have studied the validity of equality (2). A. Hoffmann [4]
obtains an upper estimate of the distance from a point to the intersection of two
convex sets. The papers [6, 8] consider the case of a family (Ri)i∈I consisting of two
subsets; in [6] it is proved that, in the setting of metric spaces, (2) is true if and only
if C is x-boundedly connected.

On the other hand, J.-E. Mart́ınez-Legaz, A. M. Rubinov and I. Singer [7, 9, 10, 11]
have proved (2) for families of normal and downward subsets of the finite dimensional
space ℓd∞. In this paper, we obtain (2) for any family of downward subsets of ℓ∞.

G. Chacón, V. Montesinos and A. Octavio [2] consider a nested sequence of subspaces
of a Banach space and prove that the space is reflexive if (2) is true for every such
sequence. J. M. F. Castillo and P. L. Papini [1] have also studied the validity of
equality (2) for a nested sequence of subsets of a Banach space. In this paper we
prove a result about nested sequences of subsets in complete metric spaces.

Besides the general results about quasiconvex functions and the distance function,
we consider the case S = R and f = I : C −→ R, the identity map; that is, we study
when the infimum of the intersection of a family of subsets of R coincides with the
supremum of the infimum of the sets of the family.

2. The infimum of a family of subsets of R

In this section the situation we study is S = R and f = I : C −→ R, the identity
function. Recall that inf ∅ = ∞ and infA = infA, where A is the closure of A ⊂ R.

We consider on R the usual distance d(x, y) = | arctanx− arctan y|. For ∅ 6= E ⊂ R,
we have

d(−∞, E) = inf
x∈E

∣∣∣arctanx+
π

2

∣∣∣ = arctan infE +
π

2
,

hence

infE = tan
(
d(−∞, E)− π

2

)
;

note that this formula is also valid if E = ∅ and we put d(−∞, ∅) = π, the diameter
of R.

The next result relates the validity of the equalities (1) for f = I and (2) for x = −∞.

Proposition 2.1. Let (Ei)i∈I be a family of subsets of R. Consider the following
statements:

(1) supi∈I infEi ∈
⋂

i∈I Ei

(2) inf
⋂

i∈I Ei = supi∈I infEi

(3) d(−∞,
⋂

i∈I Ei) = supi∈I d(−∞, Ei)

(4) λ ∈ R and (∀i ∈ I, [−∞, λ] ∩ Ei 6= ∅) =⇒ [−∞, λ] ∩⋂i∈I Ei 6= ∅
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Then
(1 ) =⇒ (2 ) ⇐⇒ (3 ) ⇐⇒ (4 ).

Moreover, if
⋂

i∈I Ei 6= ∅, then

(1 ) ⇐⇒ (2 ) ⇐⇒ (3 ) ⇐⇒ (4 ).

Proof. (1 ) =⇒ (2 ). The inequality inf
⋂

i∈I Ei ≥ supi∈I infEi is clear. Moreover, if
inf
⋂

i∈I Ei > supi∈I infEi, then there exists λ ∈ R such that

inf
⋂

i∈I

Ei > λ > sup
i∈I

infEi,

hence [−∞, λ[ is an open set with supi∈I infEi ∈ [−∞, λ[, but supi∈I infEi /∈
⋂

i∈I Ei,

since inf
⋂

i∈I Ei /∈ [−∞, λ] and inf
⋂

i∈I Ei = inf
⋂

i∈I Ei.

(2 ) ⇐⇒ (3 ) We have that

inf
⋂

i∈I

Ei = tan

(
d(−∞,

⋂

i∈I

Ei)−
π

2

)
≥ tan

(
sup
i∈I

d(−∞, Ei)−
π

2

)

= tan sup
i∈I

(
d(−∞, Ei)−

π

2

)
= sup

i∈I

tan
(
d(−∞, Ei)−

π

2

)
= sup

i∈I

infEi .

Hence the equality

inf
⋂

i∈I

Ei = sup
i∈I

infEi

holds if and only if the equality

d(−∞,
⋂

i∈I

Ei) = sup
i∈I

d(−∞, Ei)

holds.

(2 ) =⇒ (4 ). Let λ ∈ R be such that, for every i ∈ I, [−∞, λ] ∩ Ei 6= ∅, hence
supi∈I infEi ≤ λ. By (2), given n ∈ N, there exists zn ∈ ⋂i∈I Ei with zn < λ + 1/n

and lim infn→∞ zn ∈ ⋂i∈I Ei. Therefore [−∞, λ] ∩⋂i∈I Ei 6= ∅.

(4 ) =⇒ (2 ). If supi∈I infEi < inf
⋂

i∈I Ei = inf
⋂

i∈I Ei, then there exists λ ∈ R such
that

sup
i∈I

infEi < λ < inf
⋂

i∈I

Ei ,

hence [−∞, λ] ∩ Ei 6= ∅, for every i ∈ I, but [−∞, λ] ∩ (
⋂

i∈I Ei) = ∅.
(2 ) =⇒ (1 ). If

⋂
i∈I Ei 6= ∅, then

sup
i∈I

infEi = inf
⋂

i∈I

Ei ∈
⋂

i∈I

Ei .
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Now let S be a nonempty set. Let (Ri)i∈I be a family of subsets of S. We write

R =
⋂

i∈I

Ri , C =
⋃

i∈I

Ri .

Let f : S → R be a map. For A ⊂ S we consider infx∈A f(x) = inf f(A) ∈ R.

We are interested in conditions for equality (1) to hold. We denote E = f(R) and
Ei = f(Ri) (i ∈ I), hence E ⊂ ⋂i∈I Ei, and consequently, for every i ∈ I,

inf
x∈R

f(x) = inf f(R) = infE ≥ inf
⋂

i∈I

Ei ≥ infEi = inf
x∈Ri

f(x) .

Then equality (1) implies

infE = inf
⋂

i∈I

Ei = sup
i∈I

infEi . (3)

Remark 2.2. It is possible that the three numbers in equation (3) be different. Let
S = R, f(x) = x2, R1 = [1,

√
2] ∪ [2

√
2, 3], R2 = [−4,−2] ∪ {3}. Then we obtain

E1 = f(R1) = [1, 2]∪ [8, 9], E2 = f(R2) = [4, 16], E1∩E2 = [8, 9] and E = {9}, hence
infE = 9, inf(E1 ∩ E2) = 8 and max{infE1, infE2} = 4.

Remark 2.3. Note that the equality

inf
⋂

i∈I

Ei = sup
i∈I

infEi (4)

does not imply equality (3), as seen in the following example. If we take S = R,
f(x) = x2, R1 = [1, 3], R2 = [−4,−2] ∪ {3}, then we obtain E1 = f(R1) = [1, 9],
E2 = f(R2) = [4, 16], E1∩E2 = [4, 9] and inf(E1∩E2) = 4 = max{infE1, infE2}, but
infx∈R1∩R2

f(x) = 9 > 4 = max{infx∈R1
f(x), infx∈R2

f(x)}. In the case of f injective,
then inf f(R) = inf(

⋂
i∈I f(Ri)) and the equalities (4) and (3) are equivalent.

3. The infimum of a quasiconvex function

In this section we prove several results about equality (1), f being a quasiconvex
function defined on a convex subset C =

⋃
i∈I Ri of a vector space V and R =

⋂
i∈I Ri.

We basically consider two hypotheses: first, [ri, rj] ∩ Ri ∩ Rj 6= ∅, for every ri ∈ Ri,
rj ∈ Rj (i 6= j); second, the sets Ri are linearly closed in C. In several situations the
second hypothesis implies the first one.

Proposition 3.1. Let V be a vector space, C ⊂ V a convex set and f : C −→ R a
quasiconvex function. Let (Ri)i∈I be a family of subsets of C satisfying [ri, rj] ∩Ri ∩
Rj 6= ∅, for every ri ∈ Ri and rj ∈ Rj (i, j ∈ I with i 6= j), and C =

⋃
i∈I Ri. Let

R =
⋂

i∈I Ri and assume that Ri ∩Rj = R, for i, j ∈ I with i 6= j. Then

∃h ∈ I,∀k ∈ I, k 6= h, inf
x∈R

f(x) = inf
x∈Rk

f(x), (5)

hence equality (1) holds.



J.-E. Mart́ınez Legaz, A. Martinón / On the Infimum of a Function over an ... 691

Proof. Notice that, for every i ∈ I, we have

inf
x∈C

f(x) ≤ inf
x∈Ri

f(x) ≤ sup
i∈I

inf
x∈Ri

f(x) ≤ inf
x∈R

f(x).

Hence, if infx∈C f(x) = infx∈R f(x), then (5) is clear. In the following we assume
that infx∈C f(x) < infx∈R f(x), hence, as infx∈C f(x) = infi∈I infx∈Ri

f(x), there exists
h ∈ I such that

inf
x∈C

f(x) ≤ inf
x∈Rh

f(x) < inf
x∈R

f(x).

For each i ∈ I, let λi > infx∈Ri
f(x) and choose ri ∈ Ri such that

f(ri) < λi .

For every k ∈ I with h 6= k, we choose r ∈ [rh, rk] ∩ R and we obtain, taking into
account that f is quasiconvex,

inf
x∈R

f(x) ≤ f(r) ≤ max{f(rh), f(rk)} < max {λh, λk} .

Because of the arbitrariness of the λi’s we have, for every k ∈ I with k 6= h,

inf
x∈Rh

f(x) < inf
x∈R

f(x) ≤ max

{
inf

x∈Rh

f(x), inf
x∈Rk

f(x)

}
;

hence, for every k ∈ I with k 6= h, we obtain

max

{
inf

x∈Rh

f(x), inf
x∈Rk

f(x)

}
= inf

x∈Rk

f(x),

so
inf

x∈Rh

f(x) < inf
x∈R

f(x) ≤ inf
x∈Rk

f(x)

and, consequently,
inf
x∈R

f(x) = inf
x∈Rk

f(x).

From this we obtain the announced result.

Now we recall a definition:

Definition 3.2. Let V be a vector space and C ⊂ V . The subset A ⊂ C is said
linearly closed in C if A∩C ∩L is closed in L, for every straight line L of V endowed
with the natural topology.

In the next result the family (Ri)i∈I is at most countable and the Ri’s are linearly
closed subsets.

Proposition 3.3. Let V be a vector space, C ⊂ V a convex set and f : C −→ R

a quasiconvex function. Let (Ri)i∈N be a sequence of subsets of C which are linearly
closed in C and such that C =

⋃
i∈N Ri. Let R =

⋂
i∈N Ri and assume that Ri ∩Rj =

R, for i, j ∈ N with i 6= j. Then condition (5) is satisfied, hence equality (1) holds.
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Proof. In view of Prop. 3.1, we only have to prove that if rh ∈ Rh and rk ∈ Rk with
h, k ∈ N and h 6= k, then the segment [rh, rk] satisfies [rh, rk] ∩ R 6= ∅. For i ∈ N we
denote Si = Ri ∩ [rh, rk]. As [rh, rk] =

⋃
i∈N Si is a continuum (compact, connected

and Hausdorff topological space) and no continuum can be written as the union of
countably many disjoint closed sets [12, Problem 28E.2], we have Si∩Sj 6= ∅ for some
i, j ∈ N with i 6= j, hence we obtain [rh, rk] ∩R = Si ∩ Sj 6= ∅.

Remark 3.4. The above result is not true for an arbitrary infinite family of subsets
(Ri). ConsiderX = R, C = [−1, 1], R = {1}, Ri = {i−1, i, 1} (0 ≤ i < 1) and f(x) =
(1 + x)2. Then we have infx∈R f(x) = 4 and sup0≤i<1 infx∈Ri

f(x) = sup0≤i<1 i
2 = 1.

In the following proposition the family (Ri)i∈I is finite, but it is only required that
Rh∩Rj = R with infx∈Rh

f(x) ≤ infx∈Rj
f(x) (j 6= h). Note that the condition R 6= ∅

is obtained as conclusion.

Proposition 3.5. Let V be a vector space, C ⊂ V a convex set and f : C −→ R

a quasiconvex function. Let R1, R2, ..., Rn ⊂ C be nonempty and linearly closed in
C and such that C =

⋃
1≤i≤nRi, and let R =

⋂
1≤i≤nRi. Assume that, for certain

h = 1, ..., n and for every j = 1, ..., n with j 6= h, Rh ∩Rj = R and

inf
x∈Rh

f(x) ≤ inf
x∈Rj

f(x). (6)

Then R 6= ∅ and

∀j = 1, ..., n; j 6= h, inf
x∈R

f(x) = inf
x∈Rj

f(x),

hence equality (1) holds.

Proof. Let r ∈ Rh, s ∈ Rj (1 ≤ j ≤ n, j 6= h) and, assuming that r 6= s, let L be
the straight line that contains the segment [r, s] ⊂ C. Define

λ = sup{λ ∈ [0, 1] : (1− λ)r + λs ∈ Rh}

and t = (1− λ)r + λs. We have t ∈ Rh. If λ = 1, then t = s ∈ [r, s] ∩ Rh ∩ Rj. Let
S = (

⋃
k 6=h Rk) ∩ [r, s]. If λ < 1, for every p = 1, 2, 3... there exists yp ∈ S such that

yp = (1 − λp)r + λps, being λ < λp ≤ λ + 1/p. As S is the finite union of the sets
Rk ∩ [r, s], there is a subsequence (ypm)m≥1 of (yp)p≥1 contained in some Rk ∩ [r, s].
Since Rk ∩ [r, s] is closed in C ∩L, it is clear that t is the limit of a sequence of points
of Rk ∩ L and, consequently, t ∈ Rk; hence t ∈ Rh ∩ Rk = R = Rh ∩ Rj. We have
thus proved that [r, s] ∩ Rh ∩ Rj 6= ∅, for every r ∈ Rh and s ∈ Rj. Therefore, by
(6), the inclusion R ⊂ Rj, the equality R = Rh ∩ Rj and Proposition 3.1, for every
j = 1, ..., n, j 6= h,

inf
x∈Rj

f(x) ≤ inf
x∈R

f(x) = inf
x∈Rh∩Rj

f(x) = max

{
inf

x∈Rh

f(x), inf
x∈Rj

f(x)

}
= inf

x∈Rj

f(x).

From this we obtain the result.
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Remark 3.6. The above proposition is not true for a countable family of subsets. In
fact, let V = R, C = [0, 1], R0 = {0, 1}, Rn =

[
1

n+1
, 1

n

]
∪ {1} (n ∈ N) and f(x) = x;

then R = {1} = R0 ∩ Rn (n ∈ N), infx∈R f(x) = 1, infx∈R0
f(x) = 0, infx∈Rn

f(x) =
1

n+1
(n ∈ N) and supi≥1 infx∈Ri

f(x) = 1

2
; hence infx∈R f(x) > supi≥1 infx∈Ri

f(x).

Remark 3.7. The proof of the preceding proposition is still valid if the assumption
C =

⋃
1≤i≤nRi is replaced by the weaker condition that

⋃
1≤i≤nRi contains all seg-

ments one of whose endpoints is in Rh and the other one is in Rj. This condition
holds, in particular, when

⋃
1≤i≤nRi contains the convex hull of Rh ∪Rj for every j.

In the above results we have considered a family (Ri)i∈I of sets linearly closed with
intersection R and Ri∩Rj = R (i 6= j); in Proposition 3.3 we have considered I = N,
and in Proposition 3.5 the set I is finite. The next proposition analyzes this type of
condition in a topological environment.

Proposition 3.8. Let C be a locally connected space, R ⊂ C a closed set and (Ai)i∈I
be a family of nonempty connected subsets of C which are pairwise disjoint and such
that R ∩ Ai = ∅ for every i ∈ I. Then

(1) If the components Ci of C \ R that contain Ai, respectively, are all different,
then there exist a family (Ri)i∈I of closed subsets of C such that C =

⋃
i∈I Ri,

R =
⋂

i∈I Ri, Ai ⊂ Ri and Ri ∩Rj = R (i 6= j).

(2) If I is finite and there exists a family (Ri)i∈I of closed subsets of C such that
C =

⋃
i∈I Ri, R =

⋂
i∈I Ri, Ai ⊂ Ri for every i ∈ I and Ri ∩ Rj = R (i 6= j),

then the components Ci of C \R that contain Ai, respectively, are all different.

Proof. (1) Let R be a closed subset of C such that
⋃

i∈I Ai ⊂ C \ R and the com-
ponents Ci of C \ R that contain Ai, respectively, are all different: if i 6= j, then
Ci 6= Cj, hence Ci ∩ Cj = ∅. Let C0 be the union of all the components of C \ R
which are different from Ci (i ∈ I). We take Rj = R ∪ Cj ∪ C0, for some fix j ∈ I,
and, for i 6= j, Ri = R ∪ Ci. As C is locally connected and C \ R is open, we have
that each component of C \R is open and closed in C \R, and open in C. The sets
C \ Ri (i ∈ I) are union of components of C \ R, hence union of subsets of C \ R
which are open in C \R and in C, so the sets Ri are closed in C and it is clear that
they satisfy the conditions of the statement.

(2) Suppose that R is the intersection of closed subsets Ri such that C = ∪i∈IRi, the
sets Ri \ R are pairwise disjoint and Ai ⊂ Ri \ Rj for each i and every j 6= i. For
each i one has Ai ⊂ Ri \ R and Ai ∩ (Rj \ R) = ∅ for every j 6= i. As

⋃
j 6=i(Rj \ R)

is closed in C \ R and is disjoint with Ri \ R, which is also closed in C \ R, and⋃
j∈I (Rj \R) = C \ R, we obtain that the component Ci is contained in Ri \ R,

hence, for i 6= j, we have that Ci 6= Cj.

Remark 3.9. The statement (2) of the above proposition is not true for countable
families, as seen in the next example. Let C be the set of all natural numbers endowed
with the cofinite topology (the closed subsets are C and the finite sets). Note that
the intersection of two nonempty open sets is nonempty. From this we obtain that
every neighborhood of a point is open and connected, hence C is a locally connected
space. Consider the sequence of connected subsets (An)n≥2, where An = {n}. The



694 J.-E. Mart́ınez Legaz, A. Martinón / On the Infimum of a Function over an ...

closed set R = {1} satisfies R ∩ An = ∅, for every n = 2, 3.... Moreover, the closed
sets Rn = An ∪ R (n = 2, 3...) satisfy the following properties: C =

⋃
n≥2

Rn,
R =

⋂
n≥2

Rn, Ri ∩ Rj = R (i 6= j), An ⊂ Rn, and C \ R is connected, hence it only
has one component.

Remark 3.10. Dovgoshey and Martio [3] proved the following result: let R be a
subspace of R with the usual metric; then the set R \ R is connected if and only if
the radius of every closed ball B(a, ε) in R is equal to its effective radius

r(B(a, ε)) = sup{|a− z| : z ∈ R, |z − a| ≤ ε}.

Let C be the space R with the usual metric. Given x, y ∈ R with x < y, from the
above proposition we obtain that a subset R is the intersection of two closed sets R1

and R2 such that R = R1∪R2, x ∈ R1 \R2 and y ∈ R2 \R1 if and only if R is closed,
x, y /∈ R and R∩]x, y[6= ∅. In this case, from the result by Dovgoshey and Martio,
there are a ∈ R and ε > 0 such that the r(B(a, ε)) < ε.

To finish this section, we present a result on the particular case when the family I
has only two members.

Proposition 3.11. Let X be a topological space, C ⊂ X be a closed set and f :
X −→ R be an upper semicontinuous function. The following assertions are equiva-
lent:

(i) The set C ∩ f−1 (]−∞, λ[) is connected for every λ ∈ R.

(ii) If R and S are nonempty closed subsets of X and R ∪ S = C then

inf
x∈R∩S

f (x) = max

{
inf
x∈R

f (x) , inf
x∈S

f (x)

}
. (7)

Proof. (i) =⇒ (ii). Let λ > max {infx∈R f (x) , infx∈S f (x)} and set U =
f−1 (]−∞, λ[) . By assumption, C ∩ U is connected; hence, as R ∩ U and S ∩ U
are closed in C ∩ U and nonempty and (R ∩ U) ∪ (S ∩ U) = (R ∪ S) ∩ U = C ∩ U,
we have R ∩ S ∩ U 6= ∅. Take y ∈ R ∩ S ∩ U. Given that infx∈R∩S f (x) ≤ f (y) < λ,
we conclude that infx∈R∩S f (x) ≤ max {infx∈R f (x) , infx∈S f (x)} .
(ii) =⇒ (i). Suppose that C ∩ U, with U = f−1 (]−∞, λ[) , is not connected for

some λ ∈ R. Then there exist two closed sets R̃, S̃ ⊂ X such that R̃ ∩ C ∩ U 6= ∅,
S̃∩C∩U 6= ∅, (R̃∪S̃)∩C∩U = C∩U and R̃∩S̃∩C∩U = ∅.DefineR = (R̃∩C)∪(C\U)

and S = (S̃∩C)∪(C\U). These sets are closed in C; moreover, R∩U = R̃∩C∩U 6= ∅,
S∩U = S̃∩C∩U 6= ∅, R∪S = ((R̃∪ S̃)∩C)∪(C \U) ⊃ ((R̃∪ S̃)∩C∩U)∪(C \U) =

C ∩ U ∪ (C \ U) = C and R ∩ S ∩ U = R̃ ∩ S̃ ∩ C ∩ U = ∅. Take y ∈ R ∩ U and
z ∈ S ∩ U. We have infx∈R f(x) ≤ f(y) < λ and infx∈S f(x) ≤ f(z) < λ; hence
max{infx∈R f(x), infx∈S f(x)} < λ. On the other hand, since R ∩ S ∩ U = ∅, for
every x ∈ R ∩ S one has x /∈ U, that is, f(x) ≥ λ; therefore infx∈R∩S f(x) ≥ λ >
max{infx∈R f(x), infx∈S f(x)}, which contradicts (ii).
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4. The distance to the intersection of a family of sets

Let X be a normed space and fix x ∈ X. Consider the function f : X −→ R

given by f(y) = d(x, y) = ‖x − y‖, where ‖ · ‖ denotes the norm of X. The results
of the above section can be specialized to this environment, since f is convex and
d(x,A) = infa∈A f(a).

Proposition 4.1. Let X be a normed space and C ⊂ X a convex set. Let (Ri)i∈I
be a family of subsets of C satisfying [ri, rj] ∩ Ri ∩ Rj 6= ∅, for every ri ∈ Ri and
rj ∈ Rj (i, j ∈ I with i 6= j) and C =

⋃
i∈I Ri. Let R =

⋂
i∈I Ri and assume that

Ri ∩Rj = R, for i, j ∈ I with i 6= j. Then, for every x ∈ X,

∃h ∈ I,∀k ∈ I, k 6= h, d(x,R) = d(x,Rk), (8)

hence equality (2) holds.

Proposition 4.2. Let X be a normed space and C ⊂ X a convex set. Let (Ri)i∈N be
a sequence of subsets of C which are linearly closed in C and such that C =

⋃
i∈N Ri.

Let R =
⋂

i∈N Ri and assume that Ri ∩ Rj = R, for i, j ∈ N with i 6= j. If R 6= ∅,
then, for every x ∈ X, condition (8) is satisfied, hence equality (2) holds.

From Proposition 3.5 we obtain

Proposition 4.3. Let X be a normed space and C ⊂ X a convex set. Let R1, R2, ...,
Rn ⊂ C be nonempty and closed in C and such that C =

⋃
1≤i≤nRi, and let R =⋂

1≤i≤nRi. Assume that, for certain h = 1, ..., n and for every j = 1, ..., n with j 6= h,
Rh ∩Rj = R and

d(x,Rh) ≤ d(x,Rj). (9)

Then R 6= ∅ and, for every x ∈ X,

∀j = 1, ..., n; j 6= h, d(x,R) = d(x,Rj)

hence equality (2) holds.

Example 4.4. Let X, Y be infinite dimensional Banach spaces. We denote by
L(X, Y ) the class of all bounded linear operators from X into Y . For T ∈ L(X, Y ),
N(T ) is its null space and R(T ) its range. The operator T ∈ L(X, Y ) is semi-
Fredholm (T ∈ SF ) if R(T ) is a closed subspace of Y and N(T ) or Y/R(T ) is finite
dimensional; its index is defined by

indT = dimN(T )− dimY/R(T ) ∈ Z = Z ∪ {−∞,+∞}.

For n ∈ Z, we put
SF n = {T ∈ SF : indT = n}.

Acccording to [5, Proposition 2.c.9], the sets SF n are open in L(X, Y ), so SF c =
L(X, Y ) \ SF is closed. Denote by Rn = SF n ∪ SF c (n ∈ Z) and R = SF c. Then
(Rn)n∈Z is a countable family of closed subsets of L(X, Y ) and, moreover,

L(X, Y ) =
⋃

n∈Z

Rn ; Rn ∩Rm = R (n 6= m); R =
⋂

n∈Z

Rn 6= ∅.



696 J.-E. Mart́ınez Legaz, A. Martinón / On the Infimum of a Function over an ...

Fix T ∈ L(X, Y ) and consider the distance d(T,H) from T to the class H ⊂ L(X, Y ).
In view of Proposition 4.2 , there are two possibilities:

(1) For every n ∈ Z,
d(T, L(X, Y )) = d(T,Rn) = d(T,R).

As d(T, L(X, Y )) = 0, we obtain T ∈ R; that is, T /∈ SF .

(2) There exists h ∈ Z such that, for every k ∈ Z, with k 6= h,

d(T, L(X, Y )) = d(T,Rh) < d(T,Rk) = d(T,R).

Then T ∈ Rh, but T /∈ R, hence T ∈ SFh. Moreover,

d(T,R) = d(T,Rk) = d(T, SF k ∪ SF c) ≤ d(T, SF k),

hence d(T, SF c) ≤ d(T, SF k).

5. The distance to the intersection of a family of downward sets

We now present a result about the real space ℓ∞ of all bounded sequences of real
numbers with the supremum norm: ‖x‖∞ = ‖(xn)n≥1‖∞ = supn≥1 |xn|. This result
states the validity of the formula (2) for a certain type of subsets of ℓ∞. The validity
of this formula for the finite dimensional space ℓd∞ (Rd endowed with the norm ‖ ·‖∞)
was established in [7].

In ℓ∞ we consider the following order: x = (xn)n≥1 ≤ y = (yn)n≥1 if and only if
xn ≤ yn for every n ∈ N.

Definition 5.1. A subset A of ℓ∞ is said to be downward if x ∈ A, y ∈ ℓ∞ and
y ≤ x, implies y ∈ A.

Given A ⊂ ℓ∞ and x0 ∈ ℓ∞, we write PA(x
0) = {a ∈ A : ‖a− x0‖∞ = d(x0, A)}. The

constant sequence (1, 1, 1...) is denoted by 1.

Lemma 5.2. Let A ⊂ ℓ∞ be a nonempty closed downward set and x0 ∈ ℓ∞. Then

a0 = minPA(x
0),

where a0 = x0 − r1 and r = d(x0, A); hence PA(x
0) 6= ∅.

Proof. If r = 0, then x0 ∈ A and, consequently, x0 ∈ PA(x
0). Assume r > 0.

For each n = 1, 2, 3..., there exists an ∈ A such that ‖an − x0‖∞ ≤ r + 1

n
, hence

x0 − (r + 1

n
)1 ≤ an. Then

a0 = lim
n→∞

[
x0 −

(
r +

1

n

)
1

]
≤ lim inf

n→∞
an .

By definition we have that

lim inf
n→∞

an = lim
n→∞

inf
k≥n

ak ;

and as A is a downward set we obtain infk≥n ak ∈ A. Moreover lim infn→∞ an ∈ A
since A is closed. Thus a0 ∈ A. As ‖x0−a0‖∞ = r, we obtain a0 ∈ PA(x

0). Moreover,
if a ∈ PA(x

0) we have that ‖a − x0‖∞ ≤ r, hence a0 = x0 − r1 ≤ a. Thus a0 is the
minimum of PA(x

0).
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Proposition 5.3. Let (Ri)i∈I be a family of closed downward subsets of ℓ∞, and
R =

⋂
i∈I Ri. Then, for every x ∈ ℓ∞,

d(x,R) = sup
i∈I

d(x,Ri).

Proof. The proof given in [7, Theorem 4] for the finite dimensional case is based
on [7, Corollary 2], which is deduced from [7, Proposition 2]. If we apply the above
Lemma, then we obtain that [7, Proposition 2] is true in ℓ∞ and, consequently, [7,
Corollary 2] is also true.

6. The distance to the intersection of a nested sequence

We end with a simple result on nested sequences of subsets in complete metric spaces.
Our proof is based on the Cantor intersection property.

Proposition 6.1. Let M be a complete metric space with distance d. Let (Rn)n∈N be
a sequence of non empty closed subsets whose diameters diamRn satisfy diamRn −→
0 (n −→ ∞) and such that Rn ⊃ Rn+1 (n ∈ N). Then, for every x ∈ M ,

d(x,
⋂

n∈N

Rn) = sup
n∈N

d(x,Rn) = lim
n−→∞

d(x,Rn).

Proof. The Cantor intersection theorem assures that there exists a ∈ M such that
{a} =

⋂
n∈N Rn. It is obvious that d(x, a) ≥ supn∈N d(x,Rn).

Let ε > 0. We choose k ∈ N such that diamRk < ε. For every y ∈ Rk, we have that
d(x, a) ≤ d(x, y) + d(y, a) < d(x, y) + ε, hence

d(x, a) ≤ d(x,Rk) + ε ≤ sup
n∈N

d(x,Rn) + ε .

As ε > 0 is arbitrary, we finally obtain d(x, a) ≤ supn∈N d(x,Rn).
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