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1. Introduction
In this paper we are interested in the following problem. Let S be a set, (R;);cr be a
family of subsets of S, C' = |J,; R; its union and R = (,.; R; its intersection. Given
amap f:C — R = [~00,00], is the equality

inf f(x) =sup inf f(x) (1)

TeR ic] TER;

iel

true? Of course, the inequality > is always satisfied.

We consider several settings. Our main results about equality (1) are obtained in the
case when S = V is a linear space, C' is a convex subset of V', f is a quasiconvex
function and the family (R;);c; satisfies certain conditions, basically R, N R; = R
(i # J).

If S = X is a normed space, C' C X is a convex subset and x € X is a given point, the
distance function d(z,-) : C' — R is convex, hence quasiconvex, and we can apply
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the above results. In this setting the problem can be formulated in the following way:
is the equality

d(z,R) =supd (z, R;) (2)

iel

true? Several authors have studied the validity of equality (2). A. Hoffmann [4]
obtains an upper estimate of the distance from a point to the intersection of two
convex sets. The papers [6, 8] consider the case of a family (R;);e; consisting of two
subsets; in [6] it is proved that, in the setting of metric spaces, (2) is true if and only
if C'is z-boundedly connected.

On the other hand, J.-E. Martinez-Legaz, A. M. Rubinov and I. Singer [7, 9, 10, 11]
have proved (2) for families of normal and downward subsets of the finite dimensional
space (% . In this paper, we obtain (2) for any family of downward subsets of £.

G. Chacén, V. Montesinos and A. Octavio [2] consider a nested sequence of subspaces
of a Banach space and prove that the space is reflexive if (2) is true for every such
sequence. J. M. F. Castillo and P. L. Papini [1] have also studied the validity of
equality (2) for a nested sequence of subsets of a Banach space. In this paper we
prove a result about nested sequences of subsets in complete metric spaces.

Besides the general results about quasiconvex functions and the distance function,
we consider the case S =R and f = I : C — R, the identity map; that is, we study
when the infimum of the intersection of a family of subsets of R coincides with the
supremum of the infimum of the sets of the family.

2. The infimum of a family of subsets of R

In this section the situation we study is S = E_and f=1:C— R, the identity
function. Recall that inf() = oo and inf A = inf A, where A is the closure of A C R.

We consider on R the usual distance d(z,y) = |arctanx — arctany|. For } # E C R,
we have

d(—o0, E) = inf |arctanx + E‘ = arctaninf £ + z,
ek 2 2
hence
inf £ = tan (d(—oo, E) - g) ;

note that this formula is also valid if E' = () and we put d(—oo,)) = 7, the diameter
of R.

The next result relates the validity of the equalities (1) for f = I and (2) for z = —o0.
Proposition 2.1. Let (E;)icr be a family of subsets of R. Consider the following
statements:

(1) supye;infE; € ;o) Ei

(2) inf(),c; Ei = sup;c; inf E;

(8)  d(=00,(Nies Ei) = sup;e; d(—o00, E;)

(4) XeRand (Vie I, [-00,\|NE; #0) = [—00,\] N, Ei # 0
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Then
(1)=(2) = (3) <= (4).

Moreover, if (\,.; E; # 0, then

(1) = (2) == (3) <= (4)

Proof. (1) = (2). The inequality inf(,.; E; > sup,c;inf E; is clear. Moreover, if
inf("),c; £i > sup,¢;inf Ej, then there exists A € R such that

mfﬂE > A\ > supinf F;,

el iel

hence [—00, A[ is an open set with sup,.; inf E; € [—o0, A[, but sup,.; inf E; ¢ .., Ei,
since inf("),c; B; ¢ [—00, A] and inf(),.; E; = infﬂiel E;.

(2) <= (3) We have that

infﬂEi:taﬂ< o0, () E:) —§>>tan(supd( 00, E;) — ;T)

iel iel =

el

= tansup (d(—oo, E;) — Z) = sup tan (d(—oo, E;) — f) =supinf E; .
i€l 2 i€l 2 i€l
Hence the equality
mfm E; = supinf E;

icl el

holds if and only if the equality

ﬂE = sup d(—o0, E;)

icl el

holds.

(2) = (4). Let A € R be such that, for every i € I, [—o0,A\| N E; # 0, hence
sup;er inf By < A By (2), given n € N, there exists z, € (,c; £ with z, <A+ 1/n

E;. Therefore [—o0o, \] N (,c; Ei # 0.

and liminf, .. z, € mzel

(4) = (2). If sup;c;inf E; < inf(",.; B; = inf("),.; Ej, then there exists A € R such
that
supinf B; < A < mfﬂ E;,

el icl

hence [—o00, A] N E; # 0, for every i € I, but [—oo, \| N (N,c; £i) = 0.
(2) = (1). It ;e; E; # 0, then
sup inf E; = infﬂEl- € (}EZ

el iel iel
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Now let S be a nonempty set. Let (R;);e; be a family of subsets of S. We write
i€l el
Let f: S — R be a map. For A C S we consider inf,c4 f(z) = inf f(A) € R.

We are interested in conditions for equality (1) to hold. We denote E = f(R) and

E; = f(R;) (i € I), hence E C (,¢; Es, and consequently, for every i € I,

inf f(x) = inf f(R) = inf E > inf( | E; > inf E; = inf f(z).

z€ER TER;
i€l
Then equality (1) implies
inf £ = infﬂ E; =supinf E; . (3)
i€l

el

Remark 2.2. It is possible that the three numbers in equation (3) be different. Let
S =R, f(z) = 2% R, = [1,v/2] U [2v2,3], Ry = [-4,—2] U {3}. Then we obtain
Ey = f(R1) =[1,2]U[8,9], B2 = f(R2) = [4,16], E1NEy = [8,9] and £ = {9}, hence
inf £ =9, inf(£, N Ey) = 8 and max{inf Fy, inf Ey} = 4.

Remark 2.3. Note that the equality

inf QEZ Szlél? inf E; (4)
does not imply equality (3), as seen in the following example. If we take S = R,
f(x) = 2% Ry = [1,3], Ry = [—4,—2] U {3}, then we obtain E; = f(R;) = [1,9],
Ey = f(Ry) = [4,16], E1NEy = [4,9] and inf(E) N Ey) = 4 = max{inf £, inf F» }, but
inf,ep nr, f(z) =9 >4 = max{inf,cp, f(z),inficr, f(x)}. In the case of f injective,
then inf f(R) = inf((,.; f(R;)) and the equalities (4) and (3) are equivalent.

3. The infimum of a quasiconvex function

In this section we prove several results about equality (1), f being a quasiconvex
function defined on a convex subset C' = | J,; R; of a vector space V and R = (., R;.

We basically consider two hypotheses: first, [r;,7;] N R; N R; # 0, for every r; € R;,
r; € R; (i # j); second, the sets R; are linearly closed in C. In several situations the
second hypothesis implies the first one.

Proposition 3.1. Let V be a vector space, C C V a convex set and f : C — R a
quasiconvex function. Let (R;);er be a family of subsets of C' satisfying [r;, ;] N R; N
R; # 0, for every r; € R; and r; € R; (i,j € I withi # j), and C = J,c; Ri. Let
R =\e; Ri and assume that R; N R; = R, fori,j € I withi # j. Then

3 1 1 inf = inf
helYkelk+#h, ;ng(:c) wleanf(:c), (5)

hence equality (1) holds.



J.-E. Martinez Legaz, A. Martinén / On the Infimum of a Function over an ... 691

Proof. Notice that, for every i € I, we have

inf f(z) < inf f(z) <sup inf f(x) < inf f(z).

zeC TER; icl TER; TER

Hence, if inf,co f(z) = infocg f(2), then (5) is clear. In the following we assume
that inf,cc f(z) < infegr f(x), hence, as infco f(z) = infier infycr, f(x), there exists
h € I such that

inf f(z) < inf f(z) < inf f(x).

zeC T xERy, T€ER

For each i € I, let A\; > inf,ep, f(x) and choose r; € R; such that

f(’f’z) < )\1 .
For every k € I with h # k, we choose r € [ry,rx] N R and we obtain, taking into
account that f is quasiconvex,

inf f(z) < f(r) < max{f(rn), f(rx)} <max{An, Ax}.

TER

Because of the arbitrariness of the \;’s we have, for every k € I with k # h,

inf f(x) < ;glgf(a:) < max {xier}%fh f(z), inf f(q:)} ;

TER, reERy

hence, for every k € I with k # h, we obtain

max{ inf f<x>’zieank f(:L‘)} = inf f(z),

zER), TERy

SO
inf f(z) < 1g£f(m) < inf f(x)

TERy, TERY,

and, consequently,
inf f(z) = inf f(x).

TER rERY,

From this we obtain the announced result. O]

Now we recall a definition:

Definition 3.2. Let V be a vector space and C' C V. The subset A C C' is said
linearly closed in C'if ANC'N L is closed in L, for every straight line L of V' endowed
with the natural topology.

In the next result the family (R;);es is at most countable and the R;’s are linearly
closed subsets.

Proposition 3.3. Let V be a vector space, C C V a convex set and f : C — R
a quasiconver function. Let (R;);en be a sequence of subsets of C' which are linearly
closed in C' and such that C = |J,cy Ri. Let R = (o Ri and assume that RN R; =
R, fori,j € N with i # j. Then condition (5) is satisfied, hence equality (1) holds.
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Proof. In view of Prop. 3.1, we only have to prove that if r;, € Ry and r, € R), with
h,k € N and h # k, then the segment [ry,, r;] satisfies [r,, 7] N R # 0. For i € N we
denote S; = R; N [y, 7). As [rp, 1] = U;en i s @ continuum (compact, connected
and Hausdorff topological space) and no continuum can be written as the union of
countably many disjoint closed sets [12, Problem 28E.2], we have S;NS; # () for some
i,j € N with i # 7, hence we obtain [ry, 7] N R = S5;NS; # 0. O

Remark 3.4. The above result is not true for an arbitrary infinite family of subsets
(R;). Consider X =R, C =[-1,1], R={1}, R, = {i—1,i,1} (0 < i< 1)and f(z) =
(1+ ). Then we have inf,cp f(z) = 4 and supg,. infrep, f(2) = supy;o; 7° = 1.

In the following proposition the family (R;);c; is finite, but it is only required that
RN R; = R with infyer, f(x) <infeeg, f(z) (j # h). Note that the condition R # ()
is obtained as conclusion.

Proposition 3.5. Let V be a vector space, C C V a convex set and f : C — R
a quasiconver function. Let Ry, R, ..., R, C C be nonempty and linearly closed in
C and such that C = \J,.,, Ri, and let R = (\,.;<,, Ri. Assume that, for certain
h=1,...n and for every j = 1,...,n with j # h, Ry N R; = R and

inf f(z) < inf f(x). (6)

rERy - CEGRJ'

Then R # 0 and
Vi=Liomii#h inf f) = inf f(z),

ZL‘GRj

hence equality (1) holds.

Proof. Let r € R, s € R; (1 < j <mn, j# h) and, assuming that r # s, let L be
the straight line that contains the segment [r,s] C C. Define

A=sup{A € [0,1]: (1 = A\)r+ s € R}

and t = (1 — \)r + As. We have t € R, If \=1,thent=s¢€[r,s]NR,NR;. Let
S = (Upygn ) N [r,s]. IE A < 1, for every p = 1,2,3... there exists y, € S such that

Yp = (1 = A\p)r + Aps, being X < A\, < A+ 1/p. As S is the finite union of the sets
Ry, N [r, s, there is a subsequence (yp,, )m>1 of (y,)p>1 contained in some Ry N [r, s|.
Since Ry N[r,s] is closed in C'N L, it is clear that ¢ is the limit of a sequence of points
of R N L and, consequently, ¢ € Ry; hence t € R, N Ry = R = R, N R;. We have
thus proved that [r,s] N R, N R; # 0, for every r € Ry, and s € R;. Therefore, by
(6), the inclusion R C R;, the equality R = R;, N R; and Proposition 3.1, for every

j=1..n,j#h,

inf f(z) < inf f(x) = inf f(x) =max< inf f(x), inf f(z), = inf f(x).

CEER]' z€ER $€RhﬂRj {IER}L IER]' } CEER]'

From this we obtain the result. O]
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Remark 3.6. The above proposition is not true for a countable family of subsets. In
fact, let V=R, C =[0,1], Ry ={0,1}, R, = [ L l] U{1} (n € N) and f(z) = x;

nt+l’'n
then R = {1} = RyN R, (n € N), inf,cr f(z) = 1, infer, f(x) =0, inf,er, f(z) =

n+_1 (n € N) and sup;>, infeer, f(v) = %; hence inf,cp f(z) > sup;s; infeer, f(2).

Remark 3.7. The proof of the preceding proposition is still valid if the assumption
C = U <<, Ri is replaced by the weaker condition that J,,., R; contains all seg-
ments one of whose endpoints is in R, and the other one is in R;. This condition
holds, in particular, when | J, .., R; contains the convex hull of R, U R; for every j.

In the above results we have considered a family (R;);c; of sets linearly closed with
intersection R and R;NR; = R (i # j); in Proposition 3.3 we have considered I = N,
and in Proposition 3.5 the set I is finite. The next proposition analyzes this type of
condition in a topological environment.

Proposition 3.8. Let C be a locally connected space, R C C' a closed set and (A;)ier
be a family of nonempty connected subsets of C' which are pairwise disjoint and such
that RN A; = 0 for everyi € I. Then

(1) If the components C; of C'\ R that contain A;, respectively, are all different,
then there exist a family (R;)icr of closed subsets of C' such that C' = J,c; R,
R = mieIRif A; C R; and RiﬂRj =R (Z;’é])

(2) If I is finite and there exists a family (R;)ie; of closed subsets of C' such that
C=URi, R=\je; Ri» Ai C R; for everyi €Il and R;NR; =R (i # j),
then the components C; of C'\ R that contain A;, respectively, are all different.

Proof. (1) Let R be a closed subset of C' such that J;.; 4; C C'\ R and the com-
ponents C; of C'\ R that contain A;, respectively, are all different: if ¢ # j, then
C; # Cj, hence C; N C; = (. Let Cy be the union of all the components of C'\ R
which are different from C; (i € I). We take R; = RU C; U Cy, for some fix j € I,
and, for i # j, R, = RUC;. As C is locally connected and C'\ R is open, we have
that each component of C'\ R is open and closed in C'\ R, and open in C. The sets
C'\ R; (i € I) are union of components of C'\ R, hence union of subsets of C'\ R
which are open in C'\ R and in C, so the sets R; are closed in C' and it is clear that
they satisfy the conditions of the statement.

(2) Suppose that R is the intersection of closed subsets R; such that C' = U;¢R;, the
sets R; \ R are pairwise disjoint and A; C R; \ R; for each i and every j # i. For
each i one has A; C R; \ R and A; N (R \ R) = 0 for every j #i. As (R, \ RR)
is closed in C'\ R and is disjoint with R; \ R, which is also closed in C'\ R, and
Ujer (Rj \ R) = C'\ R, we obtain that the component C; is contained in R; \ R,
hence, for ¢ # j, we have that C; # C}. ]

Remark 3.9. The statement (2) of the above proposition is not true for countable
families, as seen in the next example. Let C' be the set of all natural numbers endowed
with the cofinite topology (the closed subsets are C' and the finite sets). Note that
the intersection of two nonempty open sets is nonempty. From this we obtain that
every neighborhood of a point is open and connected, hence C' is a locally connected
space. Consider the sequence of connected subsets (A,,),>2, where A,, = {n}. The
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closed set R = {1} satisfies RN A,, = 0, for every n = 2,3.... Moreover, the closed
sets R, = A, UR (n = 2,3...) satisfy the following properties: C' = J, 5, R,
R =50 Bn, RiNR; = R (i # j), Ay, C Ry, and C'\ R is connected, hence it only

has one component.

Remark 3.10. Dovgoshey and Martio [3] proved the following result: let R be a
subspace of R with the usual metric; then the set R \ R is connected if and only if
the radius of every closed ball B(a,¢) in R is equal to its effective radius

r(B(a,e)) =sup{la—z|: z € R, |z —a| < e}.

Let C' be the space R with the usual metric. Given x,y € R with z < y, from the
above proposition we obtain that a subset R is the intersection of two closed sets R,
and Ry such that R = Ry URy, x € R1\ Ry and y € Ry \ R, if and only if R is closed,
z,y ¢ R and RNz, y[# 0. In this case, from the result by Dovgoshey and Martio,
there are a € R and € > 0 such that the r(B(a,¢)) < €.

To finish this section, we present a result on the particular case when the family
has only two members.

Proposition 3.11. Let X be a topological space, C' C X be a closed set and f :
X — R be an upper semicontinuous function. The following assertions are equiva-
lent:

(1)  The set C'N f~1(] — oo, A]) is connected for every A € R.
(ii) If R and S are nonempty closed subsets of X and RU S = C' then

z€RNS

g )= max{ inf 7 (o). nl ()} 7)

Proof. (i) = (i1). Let A > max{inf,er f (2),infes f (2)} and set U =
f71(] — o0, A]). By assumption, C' N U is connected; hence, as RN U and S N U
are closed in C' N U and nonempty and (RNU)U (SNU) = (RUS)NU =CNU,
we have RNSNU # (. Take y € RN SN U. Given that infuerns f(2) < f(y) < A,
we conclude that inf,cpng f () < max {inf,er f (z),inf.es f (z)}.

(it) = (i). Suppose that C N U, with U = f~' (] — oo, A[), is not connected for
some A € R. Then there exist two closed sets fi, S C X such that R nenu #0,
SNCNU # 0, (RUS)NCNU = CNU and RNSNCNU = . Define R = (RNC)U(C\U)
and S = (SNC)U(C\U). These sets are closed in C'; moreover, RNU = RNCNU # 0,
SNU =5NCNU £ 0, RUS = (RUS)NC)U(C\U) D ((RUS)NCNU)U(C\U) =
CNUU(C\U)=Cand RNSNU=RNSNCNU = 0. Takey € RNU and
z € SNU. We have inf.cp f(x) < f(y) < A and inf.es f(z) < f(2) < A; hence
max{inf,cr f(z),infes f(x)} < A. On the other hand, since RN SNU = @, for

every x € RN S one has x ¢ U, that is, f(z) > A; therefore inf,epns f(x) > A >
max{inf,er f(x),infrcs f(2)}, which contradicts (ii). O
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4. The distance to the intersection of a family of sets

Let X be a normed space and fix x € X. Consider the function f : X — R
given by f(y) = d(x,y) = ||z — y||, where || - || denotes the norm of X. The results
of the above section can be specialized to this environment, since f is convex and

d(xz,A) = inf,eca f(a).

Proposition 4.1. Let X be a normed space and C C X a convex set. Let (R;)ier
be a family of subsets of C' satisfying [ri,r;] N R; N R; # 0, for every r; € R; and
ri € Rj (i,j € I with i # j) and C = |J,c; Ri. Let R = (\,c; Ri and assume that
R,NR; =R, fori,j € I withi# j. Then, for every x € X,

dhel Vkel, k#h, dz, R)=d(z, Ry), (8)
hence equality (2) holds.

Proposition 4.2. Let X be a normed space and C C X a convezx set. Let (R;);en be
a sequence of subsets of C which are linearly closed in C' and such that C' = ;o R;.
Let R = (\;cn Ri and assume that B, N R; = R, fori,j € N withi # j. If R # 0,
then, for every x € X, condition (8) is satisfied, hence equality (2) holds.

From Proposition 3.5 we obtain

Proposition 4.3. Let X be a normed space and C C X a convex set. Let Ry, Ro, ...,
R, C C be nonempty and closed in C' and such that C = |J,.,.,, Ri, and let R =
MNy<icy, Ri- Assume that, for certain h = 1,...,n and for every j = 1,...,n with j # h,
Rh_ﬂ_Rj = R and

d(z, Ry) < d(z, R;). (9)

Then R # (0 and, for every x € X,
Vi=1,...,n;j #h, d(z,R)=d(z,R;)
hence equality (2) holds.

Example 4.4. Let X,Y be infinite dimensional Banach spaces. We denote by
L(X,Y) the class of all bounded linear operators from X into Y. For T' € L(X,Y),
N(T) is its null space and R(T) its range. The operator T € L(X,Y) is semi-
Fredholm (T € SF) if R(T) is a closed subspace of Y and N(7T') or Y/R(T) is finite
dimensional; its index is defined by

indT = dim N(T) — dimY/R(T) € Z = Z U {—o0, +c}.
For n € Z, we put
SF"={T € SF :indT = n}.

Acccording to [5, Proposition 2.c.9], the sets SF™ are open in L(X,Y), so SF° =
L(X,Y)\ SF is closed. Denote by R, = SF"USF¢ (n € Z) and R = SF°. Then
(Rn),ez 1s a countable family of closed subsets of L(X,Y’) and, moreover,

LX,Y)=|JR.; R.NRy=R (n#m); R={[)R,#0.

nez nez
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Fix T'e L(X,Y) and consider the distance d(7', H) from T to the class H C L(X,Y).
In view of Proposition 4.2 , there are two possibilities:

(1)  For every n € Z,
AT, L(X,Y)) = d(T, R,) = d(T, R).
As d(T,L(X,Y)) =0, we obtain T' € R; that is, T' ¢ SF.
(2)  There exists h € Z such that, for every k € Z, with k # h,
Then T' € Ry, but T' ¢ R, hence T' € SF),. Moreover,
d(T,R) = d(T, Ry,) = d(T, SF* U SF°) < d(T, SF*¥),
hence d(T, SF¢) < d(T,SF*).

5. The distance to the intersection of a family of downward sets

We now present a result about the real space /., of all bounded sequences of real
numbers with the supremum norm: ||z]|« = |[(Zn)n>1]lcc = SUP,>q |€n]. This result
states the validity of the formula (2) for a certain type of subsets of {,. The validity
of this formula for the finite dimensional space ¢¢ (R? endowed with the norm ||+ ||o)
was established in [7].

In {, we consider the following order: = = (2,)n>1 < ¥ = (Yn)n>1 if and only if
xn <y, for every n € N.

Definition 5.1. A subset A of / is said to be downward if v € A, y € (o and
y < x, implies y € A.

Given A C /l,, and z° € £, we write P4(2°) = {a € A: |ja — 2°||c = d(2°, A)}. The
constant sequence (1,1,1...) is denoted by 1.

Lemma 5.2. Let A C l be a nonempty closed downward set and z° € lo,. Then

a® = min Py (2°),

where a° = 2° —r1 and r = d(2°, A); hence Pa(x°) # 0.

Proof. If r = 0, then 2° € A and, consequently, 2° € P4(z°). Assume r > 0.
For each n = 1,2,3..., there exists a, € A such that |a, — 2° < 7+ L, hence
2° — (r+ )1 < a,. Then

a’ = lim [1:0 — (r + l) 1] < liminfa,, .
n

By definition we have that

liminfa, = lim inf ay ;

n—oo n—oo k>n
and as A is a downward set we obtain infy>, ar € A. Moreover liminf, .. a, € A
since A is closed. Thus a’ € A. As ||2°—a°|| = r, we obtain a” € P4(z"). Moreover,
if a € P4(2°) we have that ||a — 2% < 7, hence a® = 2° — r1 < a. Thus @ is the
minimum of Pa(x?). O
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Proposition 5.3. Let (R;)iec; be a family of closed downward subsets of ln,, and
R =\ Ri- Then, for every x € l,

d(z,R) = supd(z, R;).

i€l

Proof. The proof given in [7, Theorem 4] for the finite dimensional case is based
on [7, Corollary 2|, which is deduced from [7, Proposition 2]. If we apply the above
Lemma, then we obtain that [7, Proposition 2] is true in ¢, and, consequently, [7,
Corollary 2] is also true. O

6. The distance to the intersection of a nested sequence

We end with a simple result on nested sequences of subsets in complete metric spaces.
Our proof is based on the Cantor intersection property.

Proposition 6.1. Let M be a complete metric space with distance d. Let (R, )nen be
a sequence of non empty closed subsets whose diameters diam R,, satisfy diam R,, —
0 (n — o0) and such that R, D R,41 (n € N). Then, for every x € M,

d(zx, ﬂ R,) =supd(z, R,) = lim d(z,R,).

n—-mao~o
neN neN

Proof. The Cantor intersection theorem assures that there exists a € M such that
{a} = N,en Bn- It is obvious that d(x,a) > sup,cy d(z, Ry).

Let € > 0. We choose k € N such that diam Rj < ¢. For every y € Ry, we have that
d(z,0) < d(z,y) + d(y,a) < d(z,y) + =, hence

d(z,a) <d(z,Rg) +e <supd(z,R,) +¢.
neN

As ¢ > 0 is arbitrary, we finally obtain d(x,a) < sup,cyd(z, R,,). O
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