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A subset of Rn is said to be evenly convex if it is the intersection of some family (possibly empty)
of open halfspaces. This class of convex sets was introduced by Fenchel in 1952 in order to extend
the polarity theory to nonclosed convex sets. This paper deals with functions with evenly convex
epigraphs, the so-called evenly convex functions. We study the main properties of this class of
convex functions that contains the important class of lower semicontinuous convex functions. In
particular, a characterization of even convexity in terms of lower semicontinuity is given. We also
show that the class of evenly convex functions is closed under the main operations.
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Introduction

Frequently, the study of different classes of functions, considered within convex and
quasiconvex analysis, can be reduced to the study of the basic sets considered in
this field. So, for example, properties of convex sets are often used to study convex
and quasiconvex functions because these classes of functions are characterized by the
convexity of their epigraphs and sublevel sets, respectively.

In this sense, in the eighties, Mart́ınez-Legaz [11] and Passy and Prisman [13], inde-
pendently, started to use evenly convex sets (i.e., intersections of open halfspaces) in
quasiconvex programming, defining the evenly quasiconvex functions as those having
evenly convex sublevel sets. In this paper, we consider extended real-valued functions
defined on R

n, f : Rn → R := R∪{±∞}, with evenly convex epigraphs, the so-called
evenly convex functions.

The paper is organized as follows. Section 1 contains the necessary notation and
some basic results on evenly convex sets to be used later. In Section 2, we introduce
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the new concept of evenly convex function and study the main properties of this
class of convex functions that contains the important class of lower semicontinuous
convex functions. In particular, a characterization of even convexity in terms of lower
semicontinuity is given. Finally, in Section 3, we show that the class of evenly convex
functions is closed under the main operations.

1. Preliminaries: Evenly convex sets

All the vectors in R
n will be interpreted as column vectors. The inner product

of two vectors u and x will be denoted by 〈u, x〉. Moreover, we shall denote by
‖ · ‖, 0n and B(x; r) the Euclidean norm, the zero vector and the open ball with
radius r > 0 and center x in R

n. Given a set X ⊂ R
n, convX, clX, rintX

and rbdX denote the convex hull, closure, relative interior and relative bound-
ary of X, respectively. If X 6= ∅ is convex, the recession cone of X is given by
O+X := {v ∈ R

n | x+ µv ∈ X, for all x ∈ X and for all µ ≥ 0}. Given X, Y ⊂ R
n,

the cartesian product of X and Y is denoted by X × Y .

A set is said to be evenly convex (in [2]) if it is the intersection of a family (possibly
empty) of open halfspaces. From the definition, it is easy to see that the intersection
of a family of evenly convex sets is also evenly convex. We shall use the following
characterizations of evenly convex sets.

Proposition 1.1 ([4, Proposition 3.1]). Given C ⊂ R
n such that ∅ 6= C 6= R

n,

the following conditions are equivalent to each other:

(i ) C is evenly convex;

(ii ) C is a convex set and for each x ∈ R
n\C there exists a hyperplane H such that

x ∈ H and H ∩ C = ∅;
(iii ) C is the result of eliminating from a closed convex set the union of a certain

family of its exposed faces;

(iv) C is a convex set and for any convex set K contained in (clC) \C, there exists

a hyperplane containing K and not intersecting C.

Observe that the second part in condition (ii ) always holds for any x ∈ R
n\ (clC),

since clC is a closed convex set and it can always be strongly separated from any
outside point by a hyperplane. So, we only have to prove this condition for each
x ∈ (clC) \C. According to this, it is obvious that any closed convex set is evenly
convex. On the other hand, as a consequence of Proposition 1.1 and [15, Theorem
11.2], any relatively open convex set is also evenly convex. In particular, it is obvious
that, for any convex set in R, condition (ii ) holds and, therefore, it is evenly convex.

The evenly convex hull of X [2], denoted by ecoX, is the smallest evenly convex set
which contains X (i.e., it is the intersection of all the open halfspaces which contain
X). Obviously, X is evenly convex if and only if ecoX = X. It is known that ecoX
is obtained by eliminating from cl (convX) those exposed faces which do not contain
points of X [6, Proposition 2.1]. From the definition, given x̄ ∈ R

n, x̄ /∈ ecoX if and
only if there exists z ∈ R

n such that 〈z, x− x̄〉 > 0 for all x ∈ X.

The following result will be frequently used in this paper.
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Proposition 1.2. Let C ⊂ R
n and D ⊂ R

m be two non-empty sets. Then, C × D
is evenly convex if and only if C and D are evenly convex.

Proof. Suppose that C ×D is evenly convex. According to [6, Proposition 2.3], we
have

(ecoC)× (ecoD) = eco (C ×D) = C ×D

and we can deduce that C and D are necessarily evenly convex. We can see the
converse in [4, Proposition 3.6].

Given a function f : Rn → R, its effective domain, graph, epigraph and sublevel set

for r ∈ R, are

dom f = {x ∈ R
n | f(x) < +∞},

gph f =

{(

x
f(x)

)

| x ∈ R
n, f(x) ∈ R

}

,

epi f =

{(

x
λ

)

∈ R
n × R | x ∈ dom f, f(x) ≤ λ

}

and

L(f, r) = {x ∈ R
n | f(x) ≤ r},

respectively. The function f is said to be proper if dom f 6= ∅ and epi f does not
contain vertical lines, i.e., f does not take on the value −∞. In other case, we say
that f is improper.

We shall say that f is lower semicontinuous, lsc in breaf, (upper semicontinuous, usc
in breaf) at x̄ ∈ R

n if for any λ ∈ R, λ < f(x̄) (resp. λ > f(x̄)), there exists a
neigbourhood of x̄, Vx̄, such that λ < f(x) (resp. λ > f(x)) for all x ∈ Vx̄. Any
convex function f is always lsc except perhaps at relative boundary points of dom f
(see [15, Theorems 7.2 and 7.4]). Moreover, it is well-known that a function is lsc at
any point of Rn if and only if its epigraph is closed.

Given a function f : Rn → R, we define the lsc hull function of f , denoted by f̄ , as
the greatest lsc function majorized by f . It is well-known that epi f̄ = cl(epi f) and
f is lsc at x̄ if and only if f(x̄) = f̄(x̄). Moreover, if f is a convex function, then f̄
is a convex function too.

The next proposition is a geometrical interpretation of the subdifferentiability of a
proper convex function on the relative interior of its effective domain [15, Theorem
23.4].

Proposition 1.3. Let f : Rn → R be a proper convex function and x̄ ∈ rint (dom f).
Then, there exists u ∈ R

n such that

〈u, x− x̄〉+ (xn+1 − f (x̄)) ≥ 0

for all
(

x
xn+1

)

∈ epi f .
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2. Evenly convex functions

A function f : R
n → R is said to be evenly convex if its epigraph is an evenly

convex set. Obviously, any evenly convex function is convex and, since any closed
convex set is evenly convex, lsc convex functions constitute a subclass of evenly convex
functions. In particular, any finite-valued convex function is evenly convex. The next
two examples show that not every convex function is evenly convex and not every
evenly convex function is a lsc convex function, respectively.

Example 2.1. Consider the function f : R → R defined by

f (x) =











x2 if − 1 ≤ x < 1,

3 if x = 1,

+∞ otherwise.

(1)

Obviously, its epigraph is a convex set, but it is not evenly convex. In fact, considering
x̄ =

(

1
2

)

∈ R
2\ (epi f), we have that, for any hyperplane H containing x̄, H∩(epi f) 6=

∅.

Example 2.2. Consider the function f : R → R defined by

f (x) =

{

x2 if x > −1,

+∞ if x ≤ −1.

It is easy to see that the epigraph of f is evenly convex but it is not closed, so f is
an evenly convex function but it is not lsc.

It is well-known that sublevel sets are convex for convex functions, although a function
whose sublevel sets are all convex need not be convex. On the other hand, closedness
of sublevel sets characterizes the class of lsc functions. Next we show that all the
sublevel sets of an evenly convex function are evenly convex.

Proposition 2.3. If f : R
n → R is an evenly convex function, then f is evenly

quasiconvex.

Proof. It is well-known that, for any r ∈ R, L (f, r) × {r} = (epi f) ∩ (Rn × {r}).
Since epi f is evenly convex and R

n × {r} is a closed convex set (evenly convex too),
we obtain that the cartesian product L (f, r) × {r} is an evenly convex set and, by
Proposition 1.2, L (f, r) is evenly convex, for all r ∈ R.

The converse of Proposition 2.3 is not true in general, even though f is convex (recall
Example 2.1).

Concerning the effective domain, we know that it is a convex set when f is a convex
function, since it is the projection on R

n of the convex set epi f . Nevertheless, the
projection of an evenly convex set is not, in general, evenly convex (see [9, Example
3.1]). The following example shows an evenly convex function with non-evenly convex
domain.
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Example 2.4. Let f : R2 → R defined by

f (x) =











x1 ln
x1

x2
if x ∈ E,

0 if x = 02,

+∞ otherwise,

where E = {x ∈ R
2 | 0 < x1 ≤ 1, 0 < x2 ≤ x1}. Observe that dom f = E ∪ {02} is

not evenly convex, although, as we shall see, f is a lsc convex function and, therefore,
it is evenly convex.

Consider the function g : R
2
++ → R defined by g (x) = x1 ln

x1

x2
, where R

2
++ =

(]0,+∞[)2. Since g is a twice continuously differentiable real-valued function on
the open convex set R

2
++ and its Hessian matrix is positive semi-definite for every

x ∈ R
2
++, according to [15, Theorem 4.5], we have that g is a convex function on

R
2
++. On the other hand, both functions f and g coincide on the convex subset E

of R2
++ and, hence, f is convex on E. The convexity of f on dom f = E ∪ {02} can

be easily proved showing that f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) for x ∈ E,
y = 02 and 0 < λ < 1. So, f is a convex function.

Since every convex function is always lsc except perhaps at relative boundary points
of its domain, we only have to prove that f is lsc on rbd (dom f).

Since g is a finite-valued convex function on R
2
++, g is lsc at any x ∈ R

2
++, i.e., for

all λ < g (x̄), there exists a neighbourhood of x̄, Vx̄, in R
2
++ such that λ < g (x)

for all x ∈ Vx̄. Then, given x̄ ∈ rbd (dom f) ∩ E ⊂ R
2
++, we have that, for all

λ < f (x̄) = g (x̄), there exists a neighbourhood of x̄, Vx̄, in R
2
++ ⊂ R

2 such that
λ < g (x) = f (x) for all x ∈ Vx̄ ∩ E. Obviously, if x ∈ Vx̄ ∩ (R2\E) ⊂ R

2\ (dom f),
then f (x) = +∞ > λ, so that f is lsc at x̄.

On the other hand, lower semicontinuity of f at 02 is a direct consequence of f (x) ≥
0 = f (02) for all x ∈ R

2.

Finally, for x̄ ∈ ]0, 1]× {0}, we have f (x̄) = +∞ > λ for all λ ∈ R. Moreover, since

lim
x→x̄
x∈E

f (x) = lim
x→x̄
x∈E

g (x) = +∞,

we have that, given any λ ∈ R, there exists a neighbourhood of x̄, Vx̄, in R
2\ {02}

such that f (x) > λ, for all x ∈ Vx̄∩E, and f (x) = +∞ > λ, for all x ∈ Vx̄∩ (R2\E).
Then, f is also lsc on ]0, 1]× {0}.

The function f in Example 2.4 is a proper evenly convex function. Now, we shall
consider improper functions with non-empty domain (a function with empty domain
has empty epigraph and it is trivially evenly convex) and we shall obtain necessary
and sufficient conditions for even convexity. One of these conditions will be even
convexity of the effective domain.

Lemma 2.5. Let f : Rn → R be an evenly convex function such that f (x0) = −∞
for some x0 ∈ R

n. Then f (x) = −∞ for all x ∈ dom f .
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Proof. Since f is an improper convex function, according to [15, Theorem 7.2],
f (x) = −∞ for all x ∈ rint (dom f). Suppose that there exists

x̄ ∈ (dom f) \ rint (dom f) ⊂ rbd (dom f)

such that f (x̄) ∈ R. Then
(

x̄
f(x̄)−1

)

/∈ epi f and, by the even convexity of epi f , there

exists
(

z
γ

)

∈ (Rn × R) \ {0n+1} such that

〈(

z

γ

)

,

(

x− x̄

xn+1 − f (x̄) + 1

)〉

> 0, (2)

for all
(

x
xn+1

)

∈ epi f .

On the other hand, since x̄ ∈ rbd (dom f), we can consider
{

xk
}

⊂ rint (dom f) such

that limk→∞ xk = x̄. Then, for any k ∈ N, f
(

xk
)

= −∞ and
(

xk

λ

)

∈ epi f , for all
λ ∈ R. In particular, taking λ = f (x̄)− 2, we obtain

〈(

z

γ

)

,

(

xk − x̄

−1

)〉

=
〈

z, xk − x̄
〉

− γ > 0, (3)

for all k ∈ N. Similarly, taking λ = f (x̄), we have

〈(

z

γ

)

,

(

xk − x̄

1

)〉

=
〈

z, xk − x̄
〉

+ γ > 0, (4)

for all k ∈ N. Taking limits as k → ∞ in (3) and (4), we can conclude that γ = 0.
Hence, (2) becomes to

〈z, x− x̄〉 > 0,

for all
(

x
xn+1

)

∈ epi f and this contradicts
(

x̄
f(x̄)

)

∈ epi f . Therefore, f (x) = −∞ for
all x ∈ dom f .

Theorem 2.6. Let f : Rn → R be an improper function such that f (x0) = −∞ for

some x0 ∈ R
n. Then, f is evenly convex if and only if dom f is evenly convex and

f (x) = −∞ for all x ∈ dom f .

Proof. If f is an evenly convex function, then, by Lemma 2.5, f (x) = −∞ for all
x ∈ dom f , so that epi f = dom f ×R and, since epi f is evenly convex, dom f is also
an evenly convex set, according to Proposition 1.2.

Conversely, if f (x) = −∞ for all x ∈ dom f , we have that epi f = dom f × R and
epi f is evenly convex as a consequence of the even convexity of dom f and R.

So, any improper evenly convex function has evenly convex domain (if f ≡ +∞ then
dom f = ∅ that is trivially evenly convex). Nevertheless, this property is not exclusive
for improper functions.

Proposition 2.7. Let f : R
n → R be a proper evenly convex function. If f is

bounded from above on dom f , then dom f is an evenly convex set.
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Proof. If f is a bounded function on its domain, then there exists M ∈ R such that
f (x) ≤ M for all x ∈ dom f , so that

dom f ⊂ L (f,M) ⊂ dom f.

Therefore, dom f = L (f,M) and this set is evenly convex as a consequence of Propo-
sition 2.3.

According to Proposition 2.7, even convexity of the domain is a necessary condition
for even convexity of proper functions which are bounded from above. Next, we shall
see that it is not a sufficient condition.

Example 2.8. Consider the proper convex function f defined in Example 2.1.
f is bounded on dom f = [−1, 1] that is a closed convex set (and, therefore, evenly
convex), but f is not an evenly convex function.

Up to now, we know that the class of evenly convex functions is between the class of lsc
convex functions and the class of convex functions (that are always lsc except perhaps
at relative boundary points of their domains). Now, we shall show a characterization
of proper evenly convex functions in terms of lower semicontinuity.

Theorem 2.9. Let f : Rn → R be a proper function. Then, f is evenly convex if

and only if f is a convex function and f is lsc on eco (dom f).

Proof. Assume that f is a proper evenly convex function. Since f is a proper convex
function, dom f is a non-empty convex set and f is lsc on rint (dom f). So, we only
have to prove lower semicontinuity on eco (dom f) \ rint (dom f) ⊂ rbd (dom f).

Suppose that f is not lsc at x̄ ∈ eco (dom f) \ rint (dom f). Then, there exist λ ∈ R,
λ < f (x̄), and xk ∈ Bk := B (x̄; 1/k), for any k ∈ N, such that f

(

xk
)

≤ λ. Observe
that limk→∞ xk = x̄. Taking µ ∈ R such that λ < µ < f (x̄), we have that

(

x̄
µ

)

/∈ epi f

and, since epi f is an evenly convex set, there exits
(

z
γ

)

∈ (Rn × R) \ {0n+1} such that

〈(

z

γ

)

,

(

x− x̄

xn+1 − µ

)〉

> 0, (5)

for all
(

x
xn+1

)

∈ epi f . In particular,
(

xk

µ+1

)

∈ epi f , for any k ∈ N, so that

〈

z, xk − x̄
〉

+ γ > 0, (6)

for all k ∈ N. In the same way, we obtain

〈

z, xk − x̄
〉

+ γ

(

λ− µ

2

)

> 0, (7)

for all k ∈ N, replacing
(

x
xn+1

)

with
(

xk

(λ+µ)/2

)

∈ epi f in (5). Taking limits as k → ∞
in (6) and (7), we conclude that γ = 0 and (5) becomes to

〈z, x− x̄〉 > 0,
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for all x ∈ dom f , and this entails x̄ /∈ eco (dom f) that is a contradiction. So, f is
lsc at any point of eco (dom f).

Conversely, assume that f is a proper convex function and it is lsc on eco (dom f).
We shall prove that epi f is evenly convex by Proposition 1.1(ii).

First, epi f is a convex set because f is a convex function. Now, let us consider
(

x̄
λ̄

)

/∈ epi f .

If x̄ ∈ rint (dom f), then, by Proposition 1.3, there exists u ∈ R
n such that

〈u, x− x̄〉+ (xn+1 − f (x̄)) ≥ 0,

for all
(

x
xn+1

)

∈ epi f . Since
(

x̄
λ̄

)

/∈ epi f , we have f (x̄) > λ̄ and, therefore,

〈u, x− x̄〉+
(

xn+1 − λ̄
)

> 〈u, x− x̄〉+ (xn+1 − f (x̄)) ≥ 0,

for all
(

x
xn+1

)

∈ epi f , so that we can conclude that

〈(

u

1

)

,

(

x− x̄

xn+1 − λ̄

)〉

> 0,

for all
(

x
xn+1

)

∈ epi f .

If x̄ /∈ eco (dom f), then we can consider z ∈ R
n\ {0n} such that 〈z, x− x̄〉 > 0, for

all x ∈ dom f . So, we can again conclude that

〈(

z

0

)

,

(

x− x̄

xn+1 − λ̄

)〉

> 0,

for all
(

x
xn+1

)

∈ epi f .

Finally, if x̄ ∈ eco (dom f) \ rint (dom f), given β ∈ R such that λ̄ < β < f (x̄),
since f is lsc at x̄, there exists δ > 0 such that f (x) > β for all x ∈ R

n with
‖x− x‖ < δ. Let us consider B := B

((

x̄
λ̄

)

; ε
)

with ε := min
{

δ, β − λ̄
}

. We shall
prove that B ∩ epi f = ∅ that entails

(

x̄
λ̄

)

/∈ cl (epi f) and, since cl (epi f) is evenly
convex, we can again conclude that there exists a hyperplane H ⊂ R

n+1 such that
(

x̄
λ̄

)

∈ H and H ∩ epi f ⊂ H ∩ cl (epi f) = ∅.
Let us consider

(

x
λ

)

∈ B ∩ epi f . Taking into account that

‖x− x̄‖ ≤
∥

∥

∥

∥

(

x

λ

)

−
(

x̄

λ̄

)
∥

∥

∥

∥

< ε ≤ δ,

we get λ ≥ f (x) > β. On the other hand, we can obtain the opposite inequality from

∣

∣λ− λ̄
∣

∣ ≤
∥

∥

∥

∥

(

x

λ

)

−
(

x̄

λ̄

)
∥

∥

∥

∥

< ε ≤ β − λ̄.
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Corollary 2.10. Let f : Rn → R be an evenly convex function with closed convex

domain. Then, f is a convex lsc function.

Proof. Obviously, the result is true if f is identically +∞, since epi f = ∅. Otherwise,
if f is improper, by Lemma 2.5, f is identically −∞ on dom f and epi f = dom f ×R

that is a closed convex set. Therefore, f is a lsc convex function.

Finally, if f is a proper evenly convex function, by Theorem 2.9, f is a convex
function and it is lsc on dom f = cl (dom f). Since every proper convex function is
lsc on R

n\ cl (dom f), we can conclude that f is a lsc convex function.

It is well-known that any convex function f : R
n → R is continuous relative to

rint(dom f) (see [15, Theorem 10.1]). Moreover, if f is a proper evenly convex func-
tion, then f is lsc on the greater set eco(dom f). When we ask whether any proper
convex function f can be assumed usc on rbd(dom f)∩ dom f relative to dom f , the
answer is no in general (see [15, page 83]). However, it is easy to prove that this
property holds for univariate functions. As a consequence of this, we consider the
concept of upper semicontinuity along lines (as in [10]).

Given a non-empty convex set A ⊂ R
n, a function f : Rn → R is said to be upper

(resp. lower) semicontinuous along lines on A if, for every x̄, ȳ ∈ A, the function
ϕ : [0, 1] → R, given by ϕ(t) = f(x̄+ t(ȳ− x̄)), is usc (resp. lsc) at t relative to [0, 1],
for any t ∈ [0, 1]. Moreover, f is said to be continuous along lines on A, if f is usc
and lsc along lines on A.

For any proper convex function f , dom f is a non-empty convex set and, for every
x̄, ȳ ∈ dom f , ϕ, defined from [0, 1] to R, is a univariate convex function and, therefore,
it is usc relative to [0, 1]. As a consequence of this, any proper convex function is usc
along lines on its domain.

Furthermore, it is easy to prove that any proper convex function f that is lsc on a
non-empty convex set A ⊂ dom f , is also lsc along lines on A.

Proposition 2.11. Any proper evenly convex function is continuous along lines on

its domain.

Proof. Let f : Rn → R be a proper evenly convex function. As a consequence of
Theorem 2.9, f is lsc convex on the non-empty convex set dom f and, therefore, f is
lsc along lines on its domain. Since any proper convex function is usc along lines on
its domain, we obtain the result.

Proposition 2.12. Let f : Rn → R be a proper evenly convex function. Then, the

image of f , given by

Im f := {f(x) | x ∈ dom f} ,
is a convex set.

Proof. Let us consider a, b ∈ Im f and x, y ∈ dom f such that a = f(x) and b =
f(y). Since, by Proposition 2.11, ϕ(t) := f(x + t(y − x)) is continuous relative to
[0, 1], applying the Intermediate Value Theorem to the function ϕ, we obtain that
[a, b] ⊂ Im f .
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Given a non-empty set C ⊂ R
n+1, we can consider the function whose graph is the

lower boundary of C, that is, f : Rn → R defined by f(x) = inf
{

a ∈ R |
(

x
a

)

∈ C
}

. By
[15, Theorem 5.3], we know that if C is a convex set, the function f is also convex.
Moreover, if C is a closed convex set, then f is a lsc convex function. However,
this result is not true, in general, when we replace lsc convexity by even convexity
(consider the evenly convex set in [9, Example 3.1]). In the next proposition, we shall
see that the condition

(

0n
1

)

∈ O+C is sufficient for this result to become true.

Proposition 2.13. Let C ⊂ R
n+1 be a non-empty evenly convex set such that

(

0n
1

)

∈ O+C. Then the function f(x) = inf
{

a ∈ R |
(

x
a

)

∈ C
}

is evenly convex and

epi f = C ∪ gph f .

Proof. Obviously, C ∪ gph f ⊂ epi f . Conversely, given
(

x
λ

)

∈ epi f , if f(x) = λ,
then

(

x
λ

)

∈ gph f . Otherwise, there exists a ∈ R, f(x) ≤ a < λ, such that
(

x
a

)

∈ C

and, since
(

0n
1

)

∈ O+C, we have

(

x
a

)

+ (λ− a)

(

0n
1

)

=

(

x
λ

)

∈ C.

Hence, epi f = C ∪ A, where A := gph f . Now, we shall see that C ∪ A is an evenly
convex set and, therefore, f is evenly convex.

As C is evenly convex, by Proposition 1.1(iii), we know that

C = clC\
(

⋃

t∈U

Ct

)

,

where Ct is an exposed face of clC, for each t ∈ U . Moreover, it is clear that
clC = cl (C ∪ A), so proving that

C ∪ A = clC\
(

⋃

t∈V

Ct

)

, (8)

where V = {t ∈ U | Ct ∩ A = ∅}, and applying Proposition 1.1(iii) again, we will
obtain that C ∪ A is evenly convex. Let us then prove (8).

First, since V ⊂ U , it is obvious that

C ⊂ clC\
(

⋃

t∈V

Ct

)

. (9)

On the other hand, as A ⊂ (C ∪ A) ⊂ cl(C ∪A) = clC and Ct ∩A = ∅ for all t ∈ V ,
we have

A ⊂ clC\
(

⋃

t∈V

Ct

)

. (10)
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From (9) and (10), we obtain the inclusion

C ∪ A ⊂ clC\
(

⋃

t∈V

Ct

)

. (11)

Conversely, assume that
(

x̄
λ̄

)

∈ clC\
(
⋃

t∈V Ct

)

and
(

x̄
λ̄

)

/∈ C∪A. As C is a non-empty
evenly convex set, by [4, Proposition 3.3], we have O+C = O+(clC) and, therefore,
(

0n
1

)

∈ O+(clC) and
(

x̄
λ̄+ε

)

∈ clC, for all ε ≥ 0.

Now, consider the non-empty convex set

X :=

{(

x̄
λ̄

)

+ ε

(

0n
1

)

, ε ∈ R

}

∩ clC.

This set satisfies that X ∩ (C ∪ A) = ∅. In fact, for any ε ≤ 0,
(

x̄
λ̄+ε

)

∈ C ∪A implies

that f(x̄) ≤ λ̄+ ε ≤ λ̄ and, therefore,
(

x̄
λ̄

)

∈ C ∪ A, that is a contradiction.

On the other hand, for any ε > 0, if
(

x̄
λ̄+ε

)

∈ C ∪ A, we can take a := λ̄ + ε, if
(

x̄
λ̄+ε

)

∈ C or a > λ̄+ ε = f(x̄) with
(

x̄
a

)

∈ C, otherwise. Taking into account that C

is evenly convex,
(

x̄
λ̄

)

∈ clC and
(

x̄
a

)

∈ C, by [2, statement 3.5], we obtain that

(1− t)

(

x̄
λ̄

)

+ t

(

x̄
a

)

∈ C,

for all t ∈]0, 1]. Therefore, f(x̄) ≤ λ̄ and
(

x̄
λ̄

)

∈ C ∪ A again.

By Proposition 1.1(iv), there exists a hyperplane H such that X ⊂ H and H∩C = ∅.
Since X is a vertical semiline, H is a vertical hyperplane, and since H ∩C = ∅, then
H∩A = ∅. Consider the setH∩clC. It satisfiesX ⊂ (H ∩ clC) and (H ∩ clC)∩C =
∅. Hence H ∩ clC is an exposed face of clC that does not intersect C. So, there
exists t ∈ U such that H ∩ clC = Ct and Ct ∩ A = (H ∩ clC) ∩ A = ∅. Then, t ∈ V
and (x̄, λ̄)′ ∈ X ⊂ Ct ⊂

⋃

t∈V Ct, which is a contradiction. So, we can conclude that

clC\
(

⋃

t∈V

Ct

)

⊂ C ∪ A. (12)

From (11) and (12), we obtain (8).

Corollary 2.14. Let f : Rn → R be a function. If its strict epigraph

epiS f :=

{(

x
λ

)

∈ R
n × R | x ∈ dom f, f(x) < λ

}

is an evenly convex set, then f is an evenly convex function.

Proof. It is a consequence of Proposition 2.13 and the expression

f(x) = inf

{

a ∈ R |
(

x
a

)

∈ epiS f

}

.
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It is easy to see that not every evenly convex function has evenly convex strict epi-
graph. We can consider, for example, the evenly convex function f : R → R defined
by

f(x) =

{

−
√
1− x2 if − 1 ≤ x ≤ 1,

+∞ otherwise.

3. Functional operations preserving even convexity

It is well-known that convexity and lower semicontinuity are preserved by the most
important functional operations. In this section, we shall see that the same thing
happens to even convexity.

Proposition 3.1. Let f : Rn → R be an evenly convex function and let α > 0. Then
αf is an evenly convex function.

Proof. Since f is a convex function, we know that αf is also a convex function.
Assume that

(

x̄
ā

)

/∈ epi(αf). Then, since
(

x̄
ā

α

)

/∈ epi f and epi f is evenly convex, there

exists
(

z
t

)

6= 0n+1 such that

〈(

z

t

)

,

(

x− x̄

a− ā
α

)〉

> 0, (13)

for all
(

x
a

)

∈ epi f . From (13) we obtain

〈(

αz

t

)

,

(

x− x̄

b− ā

)〉

> 0,

for all
(

x
b

)

∈ epi(αf) and, by Proposition 1.1, αf is an evenly convex function.

Proposition 3.2. Let
{

fi : R
n → R, i ∈ I

}

be a family of evenly convex functions

and let f := supi∈I fi. Then, f is evenly convex.

Proof. It is a consequence of the fact that the intersection of a collection of evenly
convex sets is evenly convex and the epigraph of f is the intersection of those of the
functions fi.

Now, we shall consider the sum of two evenly convex functions. It is well-known that,
given two extended real-valued functions f and g, dom(f+g) = (dom f)∩(dom g). In
the following, we shall assume, without loss of generality, that this set is non-empty.

Proposition 3.3. Let f, g : Rn → R be two proper evenly convex functions. Then,

f + g is also an evenly convex function.

Proof. According to Theorem 2.9, f and g are convex and lsc on eco(dom f) and
eco(dom g), respectively. Since the class of convex functions is closed for the sum, we
have that f + g is convex. On the other hand, the sum of proper lsc functions at a
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point is also lsc at this point, so f + g is lsc on eco(dom f) ∩ eco(dom g). Due to the
expression,

eco(dom(f + g)) = eco((dom f) ∩ (dom g)) ⊂ eco(dom f) ∩ eco(dom g),

we have that f + g is lsc on eco(dom( f + g)) and, by Theorem 2.9 again, f + g is an
evenly convex function.

In general, the last result is not true when one of the functions is not proper.

Example 3.4. Let f, g : R2 → R, where f is the proper evenly convex function
defined in Example 2.4 and g is the improper evenly convex function defined by

g(x) =

{

−∞ if x ∈ [0, 1]2,

+∞ otherwise.

Obviously, dom(f + g) = (dom f) ∩ (dom g) = dom f , that is not an evenly convex
set, and, in particular,

(f + g)(x) =

{

−∞ if x ∈ dom f,

+∞ otherwise,

so f + g is not an evenly convex function by Theorem 2.6.

Proposition 3.5. Let f, g : Rn → R be two evenly convex functions and assume that

f is not proper. Then f + g is an evenly convex function if and only if dom(f + g)
is an evenly convex set.

Proof. As we are assuming that (dom f) ∩ (dom g) 6= ∅, then dom f 6= ∅ and,
therefore, there exists x0 ∈ R

n such that f(x0) = −∞. Since f is evenly convex,
according to Lemma 2.5, we have that f ≡ −∞ on dom(f + g) ⊂ dom f . On the
other hand, g(x) < +∞ for all x ∈ dom(f + g) ⊂ dom g, so f + g ≡ −∞ on its
domain and

epi(f + g) = dom(f + g)× R. (14)

Finally, we obtain the result applying Proposition 1.2 on (14).

As a consequence of the fact that the intersection of evenly convex sets is an evenly
convex set and the equality dom(f + g) = (dom f)∩ (dom g), we obtain the following
results, applying Proposition 3.5.

Corollary 3.6. Let f, g : Rn → R be two improper evenly convex functions. Then

f + g is evenly convex.

Corollary 3.7. Let f, g : Rn → R be two evenly convex functions. If f is improper

and g is proper with evenly convex domain, then f + g is evenly convex.

Corollary 3.8. Let f, g : Rn → R be two evenly convex functions such that f is

improper and g is proper and bounded on its domain. Then f + g is evenly convex.
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Given a function f : R
n → R, we define its evenly convex hull, denoted by f ec,

as the largest evenly convex function minorizing f . Obviously, since the pointwise
supremum of a family of evenly convex functions is evenly convex, f ec coincides with
the pointwise supremum of all the evenly convex functions minorizing f . Moreover,
we shall say that a function f is evenly convex at x̄ ∈ R

n if f(x̄) = f ec(x̄).

Lemma 3.9. Let f :Rn →R be a function with epi f 6= ∅. Then,
(

0n
1

)

∈O+ (eco(epi f)).

Proof. Given
(

x̄
λ̄

)

∈ epi f , we have that
(

x̄
λ̄+ε

)

∈ epi f ⊂ eco(epi f), for all ε ≥ 0.

Then, according to [4, Proposition 3.4], we obtain
(

0n
1

)

∈ O+ (eco(epi f)).

Proposition 3.10. Let f : Rn → R be a function and let x ∈ R
n. Then

f ec(x) = inf

{

a ∈ R |
(

x
a

)

∈ eco(epi f)

}

(15)

and eco(epi f) ⊂ epi f ec.

Proof. When epi f = ∅, the result is obvious. So, we can suppose that epi f 6= ∅.
According to Lemma 3.9, we have that

(

0n
1

)

∈ O+ (eco(epi f)) and, since eco(epi f) is
a non-empty evenly convex set, by Proposition 2.13, we obtain that

g(x) := inf

{

a ∈ R |
(

x
a

)

∈ eco(epi f)

}

is an evenly convex function. Moreover, as epi f ⊂ eco(epi f),
(

x
f(x)

)

∈ eco(epi f), for

all x ∈ R
n, and, consequently, g(x) ≤ f(x), for all x ∈ R

n. Hence, g is an evenly
convex function minorizing f and, therefore, g ≤ f ec.

On the other hand, since f ec ≤ f and f ec is an evenly convex function, we have

eco(epi f) ⊂ eco(epi f ec) = epi f ec

and, considering

f ec(x) = inf

{

a ∈ R |
(

x
a

)

∈ epi f ec

}

,

it is obvious that f ec ≤ g.

Proposition 3.11. Let f : R
n → R be a convex function. Then, the following

statements hold:

(i ) epiS f
ec ⊂ eco(epi f) ⊂ epi f ec.

(ii ) f̄ ≤ f ec ≤ f .

(iii ) dom f ⊂ dom f ec ⊂ dom f̄ ⊂ cl(dom f).

(iv) dom f ec ⊂ eco(dom f) ⊂ cl(dom f).

(v) rint(dom f ec) = rint(dom f).
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Proof. The statements are trivial when f ≡ +∞. Otherwise, we can suppose that
epi f 6= ∅ and dom f 6= ∅.
(i ) Let

(

x̄
λ̄

)

∈ epiS f
ec. Then, f ec(x̄) < λ̄ and, by (15), there exists a ∈ R such that

(

x̄
a

)

∈ eco(epi f) and f ec(x̄) ≤ a < λ̄. According to Lemma 3.9, we can conclude that

(

x̄
λ̄

)

=

(

x̄
a

)

+ (λ̄− a)

(

0n
1

)

∈ eco(epi f).

The second inclusion has been obtained in Proposition 3.10.

(ii ) As f is convex, f̄ is a lsc convex function. Then, f̄ is an evenly convex function
minorizing f and, therefore, f̄ ≤ f ec ≤ f.

(iii ) As a consequence of (ii ), we have that dom f ⊂ dom f ec ⊂ dom f̄ . Moreover,
denoting by proy

Rn the projection of Rn+1 onto R
n given by proy

Rn

(

x
r

)

= x, by [15,
Theorem 6.6], we have that proy

Rn(cl(epi f)) ⊂ cl(proy
Rn(epi f)), so that

dom f̄ = proy
Rn(epi f̄) = proy

Rn(cl(epi f)) ⊂ cl(proy
Rn(epi f)) = cl(dom f).

(iv) In the same way, applying [6, Proposition 2.4], we obtain

dom f ec = proy
Rn epi f ec = proy

Rn eco(epi f) ⊂ eco(proy
Rn epi f)

= eco(dom f) ⊂ cl(dom f).

(v) Since rint(dom f) ⊂ dom f ⊂ dom f ec ⊂ cl(dom f), by [15, Corollary 6.3.1], we
obtain rint(dom f ec) = rint(dom f).

The following two results characterize even convexity at a point. Similar characteri-
zations are given in [1] for pointwise even quasiconvexity using sublevel sets instead
of epigraphs.

Proposition 3.12. A function f : Rn → R is evenly convex at x̄ ∈ R
n if and only

if, for any a < f(x̄),
(

x̄
a

)

/∈ eco(epi f).

Proof. If f is evenly convex at x̄ ∈ R
n, then f ec(x̄) = f(x̄) and, given a < f(x̄), we

have that
(

x̄
a

)

/∈ epi f ec and, therefore,
(

x̄
a

)

/∈ eco(epi f).

Conversely, if
(

x̄
a

)

/∈ eco(epi f) for every a < f(x̄), then, by Proposition 3.10, we have
that f ec(x̄) ≥ f(x̄) and f is evenly convex at x̄.

Corollary 3.13. Let f : Rn → R be a function. Then, the following statements hold:

(i ) f is evenly convex at x̄ ∈ R
n if and only if, for any a < f(x̄), there exists

q ∈ R
n+1 such that

〈

q,

(

x
λ

)

−
(

x̄
a

)〉

> 0,

for all
(

x
λ

)

∈ epi f .

(ii ) f is evenly convex if and only if it is evenly convex at every x̄ ∈ R
n.
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Proof. (i ) It is a consequence of Proposition 3.12 and Proposition 1.1(ii).

(ii ) If f is an evenly convex function, then eco(epi f) = epi f and, by 15, we obtain
f ec(x̄) = f(x̄), for all x̄ ∈ R

n. Conversely, if f is evenly convex at every x̄ ∈ R
n

and we take a point
(

x
a

)

/∈ epi f , as a < f(x), applying statement (i), we obtain a
hyperplane H ⊂ R

n+1 such that
(

xa
∈

)

H and H ∩ epi f = ∅. Finally, as a consequence
of Proposition 1.1(ii), f is evenly convex.
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