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Université Paris Diderot – Paris 7, U.F.R. de Mathématiques,
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We focus on the following irrigation problem introduced in [4]

minF(Σ) :=

∫

Ω

dist(x,Σ) dµ(x),

where Ω is an open subset of R2, µ is a probability measure and where the minimum is taken over all
the sets Σ ⊂ Ω such that Σ is compact, connected, and H1(Σ) ≤ α0 for a given positive constant α0.
In this paper we seek for some conditions to find in Σ some pieces of C1 (or more) regular curves.
We prove that it is the case in the ball B when Σ∩B contains no corner points. More generally we
prove that the Left and Right tangents half lines of Σ (that exist everywhere out of endpoints and
triple points) are semicontinuous. We also discuss how the regularity is linked with the pull back
measure ψ := k♯µ where k is the projection on Σ. In particular Σ∩B is C1,α when ψ is regular with
respect to H1 with density in a certain Lp. We also prove that Σ is locally a Lipschitz graph away
from triple points and endpoints, and that the mean curvature of Σ is a measure that is explicited
in terms of measure ψ.
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1. Introduction

Let Ω ⊂ R
2 be a bounded open set, α0 > 0 a fixed constant, and µ a given probability

measure on Ω. In this paper we study the regularity of the following minimization
problem

min
Σ∈A

F(Σ) :=

∫

Ω

dist(x,Σ) dµ(x) (1)

where the minimum is taken over the family A of all the compact and connected sets
Σ ⊂ Ω satisfying the length constraint H1(Σ) ≤ α0. This problem also known as the
“irrigation problem�, was introduced by G. Buttazzo, E. Oudet and E. Stepanov in
[4] and then in [5] in a more general formulation in terms of optimal mass transport
problem with “free Dirichlet regions�. In the sequel we will call Σ an optimal set for
the problem (1).

An easy interpretation of the Problem (1) is the following. One could consider Σ as
being a ressource of limited length (for instance some water in pipes) that one wants
to place in the domain Ω in such a way that the average cost for people living in Ω
to reach the resource Σ is minimal, according to the density of population given by
the measure µ. We refer to [5, 11, 9, 4, 3] for some more detailed interpretations of
Problem (1).

In [5], the topological description of minimizers is studied and it has been proved in
particular that Σ has no loops and is a finite union of Lipschitz arcs, that meet by
number of three at some finite number of triple junctions. Concerning the regularity,
it is only proved in [5] that Σ is Ahlfors-Regular.

Then in [10], F. Santambrogio and P. Tilli restrict themselves to the simpler formu-
lation (1), which in the end is not so restrictive according to some later results
[11], and they characterize the blow up limits of the minimal set Σ in order to
prove some regularity. They prove that any blow up sequence of the minimal set
Σr := 1

r
(Σ ∩ B(x, r) − x) converges in B(0, 1) when r → 0, and the limit could be

either a radius (x is an endpoint), a diameter (x is ordinary point), three radius
making angles of 120 degrees (x is a triple junction), or two radius making an angle
different from 180 degrees (x is a corner point).

F. Santambrogio and P. Tilli [10] also found a sufficient condition for having C1,1

regularity in a neighborhood of a point x ∈ Σ, involving the diameter of the set of
points that are projected on Σ ∩ B(x, r). Since this condition is satisfied in a small
enough neighborhood of any triple point, they obtain that any triple point admits a
small neighborhood in which the three pieces of curve of Σ are C1,1.

Very recently, P. Tilli [12] proved that for any C1,1 simple curve Σ of length less
than π times the inverse of the infimum of its curvature, one can find an open set
Ω containing Σ in such a way that Σ is a minimizer for the problem (1) in Ω with
µ equals to the Lebesgue measure. This fact implies that no further regularity is
possible for Σ and that C1,1 is optimal.

Recall that by “corner point� we mean a point in Σ for which the blow up limit is
a union of two radius with a strict angle (different from 180 degrees). Although it
is not difficult to find some examples of domains Ω where any minimizer Σ neces-
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sarily contains a triple point, it remains an open question as to whether a minimizer
could actually contain corner points. On the other hand in [2], the first order Euler-
Lagrange equation is computed (see Section 5 below) and the existence of stationary
sets Σ that contain corner points is shown.

Now let us describe the contributions of this paper. One of our main result is that
away from triple points, Σ is locally at least as regular as the graph of a convex fonc-
tion, namely that the Right and Left tangent maps admit some Right and Left limits
at every point and are semicontinuous. More precisely, for a given parametrization γ
of an injective Lipschitz arc Γ ⊂ Σ, by existence of blow up limits one can define the
Left and Right tangent half-lines at every point x ∈ Γ by

TR(x) := x+ R
+. lim

h→0+

γ(t0 + h)− γ(t0)

h

TL(x) := x+ R
+. lim

h→0+

γ(t0 − h)− γ(t0)

h

Then we have the following.

Theorem 1.1. Let Γ ⊂ Σ be an open injective Lipschitz arc. Then the Right and
Left tangent maps x 7→ TR(x) and x 7→ TL(x) are semicontinuous, i.e. for every
y0 ∈ Γ,

lim
y→y0
y<γy0

TL(y) = TL(y0) and lim
y→y0
y>γy0

TR(y) = TR(y0).

In addition the limit from the other side exists and we have

lim
y→y0
y>γy0

TL(y) = TR(y0) and lim
y→y0
y<γy0

TR(y) = TL(y0).

An interesting and immediate consequence is the following result.

Corollary 1.2. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains
neither corner points nor triple points. Then Γ is locally a C1 regular curve.

The strategy to prove Theorem 1.1 is to use on one hand that when the diameter
of transported set is small we have C1,1 regularity (thank to [10]), and on the other
hand when the diameter is big Σ stays under some very large “tangent circles� that
makes Σ similar to a convex set locally. The difficulty is to glue together all the
regions where we control the tangents from one argument or another. This is what
we do in Section 4.

In Section 5 and 6 we try to exploit the Euler Equation to get some regularity. In
[2], G. Buttazzo, E. Mainini and E. Stepanov give the first order equation for the
penalized functional

F(Σ) + λH1(Σ).

In Section 5 we prove the existence of a λ0 such that the Euler equation for the original
problem with length constraint is the same as the penalized one. The method, that
was already used by F. Santambrogio and P. Tilli to characterize the blow up limits
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in [10], is to estimate what we loose or win in the average distance functional by
adding or erasing a piece of curve at an endpoint. In particular we obtain an explicit
value for λ0 depending on the mass of transport rays arriving at any endpoint and
which corresponds to the “shape derivative� of F .

As an application of the Euler equation, in Section 6 we give a “tilt estimate�. In
other words, we obtain a local control on the oscillations of the tangent lines of Σ
with respect to a fixed line.

In Section 7 we apply Theorem 1.1 to find in Σ some Lipschitz graphs (see Theorem
7.2) and applying the Euler Equation and the tilt estimate on those graphs we obtain
some results that are summarized in the following statement.

Theorem 1.3. For every point x ∈ Σ which is neither an endpoint nor a triple
point, one can find a radius r, a line π ⊂ R

2 containing x and a 5-Lipschitz function
f : π → π⊥ such that

Σ ∩B(x, r/4) = {(x, f(x)), x ∈ π} ∩B(x, r/4), and

∫

π∩B(x, r
16

)

|f ′(t)|2dt ≤ Crψ(B(x, r))2.

Moreover, f ′ satisfies the equation

− d

dt

(

f ′

√

1 + |f ′|2

)

= ψ0

on B(x, r
16
) ∩ π. Here d

dt
is the derivative in the distributional sense and ψ0 is a

measure that verifies

|ψ0| ≤ (p ◦ k)♯µ

where p : R2 → π is the projection on π and k is a mesurable selection of the projection
multimap onto Σ.

As a complement of Theorem 1.3, we also discuss how the regularity is linked with
the behavior of the measure ψ. In particular we have the following.

Theorem 1.4. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains
no triple points and such that ψ|Γ is absolutely continuous with respect to H1 with
density in Lp(Γ, dH1). Then Γ is locally a C1,α curve with α = p−1

p
.

This last result is proved independently from all the other sections (in particular does
not use the Euler equation), and this is why Theorem 1.4 is actually proved at the
very beginning in Section 3. It can be seen as an introduction to understand why the
regularity of Σ is difficult to obtain. We also get a reverse statement, namely that if
Σ is C1,1 regular then ψ is absolutely continuous with respect to H1 with density in
L∞.
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2. Preliminaries

Throughout Σ will refer (as above) to an optimal set for the problem (1). The
existence of a minimizer is an easy consequence of Blaschke and Goła̧b Theorems and
is proved in [5]. It is also proved in [5] that it is not restrictive to assume that Ω is
convex. We will denote by d the euclidian distance in R

2 and by dH the Hausdorff
distance. With any minimizer Σ we associate a fixed measurable selection of the
projection multimap k : Ω → Σ, that is, for every x ∈ Ω

d(x,Σ) = d(x, k(x)).

Then we introduce the image measure ψ := k♯µ which is defined for any Borel set
A ⊂ R

2 by

ψ(A) := µ(k−1(A)).

By abuse of notation we will sometimes simply denote k−1(x) instead of k−1({x}).
For x ∈ Σ we will say that Rx is a transport ray ending at x if Rx is a segment in Ω
bounded by x, and having maximal length for the property that every point y ∈ Rx

satisfies dist(y,Σ) = dist(y, x).

Recall that we already know by [5] that Σ is a finite union of injective Lipschitz arcs
meeting at some finite number of triple points. We also know that for any endpoint
x of Σ it holds ψ(x) > c for a positive constant c. If we exclude the endpoints and
triple junctions, thank to [10] we have a characterization of the blow up limits at
point x in terms of ψ(x). Indeed, if x is neither an endpoint nor a triple junction,
then x is a corner point if and only if x is an atom for ψ, that is ψ(x) > 0. Otherwise
it is an “ordinary point� (i.e. the blow up limit is a diameter).

In the sequel we denote by TΣ the set of triple points of Σ and by EΣ its endpoints.

2.1. Standard facts on compact connected 1-dimensional sets

Here we recall some standard properties on compact connected 1-dimensional sets
that can be found in [6].

Proposition 2.1. Let Σ ⊂ R
N be a compact and connected set such that H1(Σ) <

+∞. Then there is a CN -Lipschitz surjective mapping f : [0, L] → Σ. As a conse-
quence, Σ is arcwise connected and rectifiable. Moreover, for each choice of x0, y0 ∈ Σ
with x0 6= y0, we can find an injective Lipschitz mapping f : [0, 1] → Σ such that
f(0) = x0 and f(1) = y0.

Thank to Proposition 2.1, our minimizer Σ is already rectifiable. Further, we will see
that Σ is actually “uniformly rectifiable� in the sense of David and Semmes. This
will follow from the fact that any minimizer Σ is Ahlfors-Regular as it is proved in
[5]. Let us give some more definitions.

Definition 2.2. A set Σ is said to be an Ahlfors-regular set (of dimension 1), if there
exists a constant C and a positive radius r0 such that for every point x ∈ Σ and every
r < r0,

rC−1 ≤ H1(Σ ∩B(x, r)) ≤ Cr.
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In [5] it is proved that any minimizer Σ is Ahlfors regular. More precisely, there is
an r0 > 0 such that for every x ∈ Σ and any r < r0,

r ≤ H1(Σ ∩B(x, r)) ≤ 3πr. (2)

There is a lot of equivalent definitions of Uniform rectifiability but we will choose the
one with Ahlfors-regular curves.

Definition 2.3. An Ahlfors-regular curve with constant ≤ C is a set of the form
Σ = z(I) where I ⊂ R is a closed interval (not reduced to one point) and z : I → R

N

is a Lipschitz function such that

|z(x)− z(y)| ≤ |x− y| for x, y ∈ I

and
H1({x ∈ I; z(x) ∈ B(y, r)}) ≤ Cr

for all y ∈ R
N and r > 0.

Definition 2.4. Let Σ ⊂ R
N be an Ahlfors-regular set of dimension 1. We say that

Σ is uniformly rectifiable when Σ is contained in some Ahlfors-regular curve.

Theorem 2.5 ([8]). Every 1 dimensional connected Ahlfors-regular set is uniformly
rectifiable.

We deduce the following fact that will be used in Section 3.2.

Corollary 2.6. Any minimizer Σ is uniformly rectifiable.

2.2. Useful estimates and standard assumptions

We will use some estimates that are proved in [10], and that come from comparing
Σ with a competitor made by replacing a piece of Σ by a segment.

Lemma 2.7 ([10]). There exist a constant C satisfying the following properties. Let
Γ ⊂ Σ be a closed injective arc, with endpoints x, y, such that Γ\{x, y} contains no
triple junctions of Σ and Cψ(Γ\{x, y}) < 1

2
. Then

H1(Γ) ≤ |x− y|+ Cψ(Γ\{x, y})dH(Γ, [x, y]),
dH(Γ, [x, y]) ≤ Cψ(Γ\{x, y})|x− y|,
H1(Γ) ≤ |x− y|(1 + Cψ(Γ\{x, y})2), (3)

H1(Γ) ≤ 2|x− y|. (4)

It will be convenient in the sequel to work in some balls where Σ ∩ ∂B(x, r) consists
in exactly 2 points. For this purpose, let us recall some results that are still contained
in [10].

For any x0 ∈ Σ consider a branch of Σ starting at x0 consisting of a Lipschitz curve
γ : [0, T ] → Σ, parameterized by arclength, such that γ(0) = x0 and γ(T ) is either
an endpoint or a triple point of Σ. We may also assume that γ contains neither
endpoints nor triple junctions in its relative interior.

Theorem 2.3 of [10] says the following.
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Lemma 2.8 ([10]). Consider x ∈ Σ and r > 0 such that B(x, r) contains no end-
point and triple junction other than, possibly, x itself. For any s < r, set

t1 := min{t ≥ 0; γ(t) ∈ ∂B(x, s)}, t2 := max{t ≤ T ; γ(t) ∈ ∂B(x, s)}.

If C1ψ(γ(0, t2]) < 1, then t1 = t2.

Lemma 2.8 is generally used together with the following fact which is Lemma 2.4 of
[10].

Lemma 2.9 ([10]). For any x ∈ Σ there exists r(x) > 0 such that for all r < r(x)
the ball B(x, r) contains no triple junction nor endpoint other than, possibly, x itself,
and C1ψ(γ((0, t2])) < 1.

In the sequel, for any x ∈ Σ we will denote r(x) the maximum radius satisfying
the assumptions of Lemma 2.9. In particular, for every x ∈ Σ\TΣ ∪ EΣ and for all
r < r(x) we have

♯Σ ∩ ∂B(x, r) = 2.

In [10], a uniform version of the above result is stated, saying that in fact one can take
a common radius r(x) = r0 for every x ∈ Σ1, where Σ1 ⊂ Σ is compactly contained
in the complement of atoms of mass at least (2C1)

−1 and of triple junctions and
endpoints, r0 depending now on Σ1. In this paper we will need this slightly different
version of the preceding results.

Proposition 2.10. For every compact set Σ1 compactly contained in Σ\TΣ, there
exists a constant C2 := C2(Σ1) and a radius r0 := r0(Σ1) such that for all x ∈ Σ1 and
r < r0,

ψ(B(x, r)) ≤ C2 ⇒ r ≤ r(x).

Proof. We argue by contradiction as in the proof of Lemma 2.5 of [10]. If the
proposition is not true, then there exists a sequence of points xn ∈ Σ1 and a sequence
of radii rn such that ψ(B(xn, rn)) tends to 0, rn tends to 0 and does not satisfy
the assumptions of Lemma 2.9. Observe that for n big enough, B(xn, rn) contains
no endpoints nor triple points. Indeed, it is easy to exclude endpoints as soon as
ψ(B(xn, rn)) gets smaller than min{ψ({x});x ∈ EΣ}. For triple points, it suffice
to wait until rn gets small enough with respect to dist(Σ1,TΣ) > 0. Possibly by
extracting a subsequence we may assume that xn converges to a point x in Σ1 and
since ψ(B(xn, rn)) → 0 we deduce that

ψ({x}) = 0. (5)

We also know that xn is never a triple junction. That means that for every xn, exactly
two branches of Lipschitz arcs are starting from xn and meet ∂B(xn, rn) at least once
and at different points (because Σ has no loops). Assume by contradiction that

♯{Σ ∩ ∂B(xn, rn)} > 2. (6)

We denote by γ1n and γ2n the two corresponding parameterizations and γ1n([0, t
1
2(n)])

and γ1n([0, t
2
2(n)]) the two branches of “first return� in B(xn, rn). From Lemma 2.8 we



956 A. Lemenant / About the Regularity of Average Distance Minimizers in R
2

know that one of the ψ(γin([0, t
i
2(n)])) is greater than C otherwise (6) would not be

true. By extracting a further subsequence we may assume that ψ(γ1n([0, t
1
2(n)])) > C

for all n and arguing as in the proof of [10] Theorem 2.5. we obtain that γ1n([0, t
1
2(n)])

converges for the Hausdorff distance to x which must be an atom of mass at least C
and contradicts (5).

Let us introduce a quantity which will measure the flatness of Σ in the ball B(x, r),
defined for x ∈ Σ\(TΣ ∪ EΣ) and r < r(x) by

β(x, r) :=
dH(Σ ∩B(x, r), [z, z′])

|z − z′|

where z and z′ are the two points of ∂B(x, r) ∩ Σ. The notation is given compared
to the well known P. Jones β-numbers.

For simplicity, when there is no possible confusion we will use the notation ψ(x, r)
instead of ψ(B(x, r)). By Lemma 2.7 we directly have

β(x, r) ≤ Cψ(x, r). (7)

Finally, we end this preliminary section by recalling the basic steps that lead to the
regularity result of [10] since we will also need the intermediate estimates. The next
proposition is a direct consequence of the proof of Lemma 2.10 of [10]. We let the
details to the reader.

Proposition 2.11 ([10]). For all x ∈ Σ and r such that there exists a line π ⊂ R
2

satisfying

dH(Σ ∩B(x, 2r), π ∩B(x, 2r)) ≤ r

100

we have

ψ(x, r) ≤ Cr diam(k−1(B(x, r0))) + Cr−1dH(Σ ∩B(x, 2r), π ∩B(x, 2r)). (8)

In particular if r < r(x) and ψ(x, r) is small enough then

ψ(x, r) ≤ C(r + β(x, 2r)).

As it is shown in [10] (Theorem 2.11.), the last estimate can be iterated in the case
when r < r(x) in order to obtain the following result which will be also needed later.

Proposition 2.12 ([10]). Let x ∈ Σ\(TΣ∪EΣ) and r < r(x). If diam(k−1(B(x, r0)))
< 1/(2C) then there exists r0 depending on Σ such that

ψ(x, r) ≤ Cr ∀r ≤ min(r0, r(x)) (9)

where C is a constant depending only on Σ, Ω and µ.

Observe that (9) together with (7) leads to some C1,1 regularity.
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3. The measure ψ

In the next sections we will see how ψ is linked with the mean curvature of Σ.
Therefore it is natural to think that some good control on ψ will give some regularity
on Σ. This is what we do in this section.

3.1. The regularity is equivalent to the behavior of ψ

Let us first prove that the regularity of Σ implies some decay on ψ(x, r).

Proposition 3.1. If Σ ∩ B(x0, r0) is a C1,α regular curve then there exists r1 ≤ r0
such that ψ(x, r) ≤ Crα for all x ∈ Σ ∩B(x0, r0/2) and r ≤ r1.

Proof. Assume that Σ′ := Σ ∩ B(x0, r0) is a C
1,α regular curve γ parameterized by

arclenght. Let x ∈ Σ ∩B(x0, r0/2) and r ≤ r0/2. Then for all y ∈ B(x, r) one has

γ(t)− γ(0) =

∫ t

0

γ′(s)ds

with γ(0) = x and γ(t) = y. Further,

γ(t)− γ(0) =

∫ t

0

γ′(s)− γ′(0)ds+

∫ t

0

γ′(0)ds,

|γ(t)− γ(0)− tγ′(0)| ≤
∫ t

0

|γ′(s)− γ′(0)|ds

≤ Ct1+α

which implies
dist(y, T (x)) ≤ C|x− y|1+α ≤ Cr1+α

where T (x0) is the tangent line at x0. Since y is an arbitrary point lying in Σ∩B(x, r),
by (8) we conclude that ψ(x, r) ≤ Crα for r small enough depending on r0 an other
constants.

Now we prove the reverse statement.

Proposition 3.2. Assume that x0 ∈ Σ and r0 > 0 are such that B(x0, r0) contains
no triple points nor endpoints and such that ψ(x, r) ≤ Crα for all x ∈ Σ∩B(x0, r0/2)
and r < r0/2. Then Σ ∩B(x0, r0/2) is a C

1,α regular curve.

Proof. We denote r0(Σ1) the radius given by Proposition 2.10 with Σ1 := Σ ∩
B(x0, r0). We also denote r2 ≤ min(r0(Σ1), r0/2) a radius such that Crα2 ≤ C2(Σ1)
in such a way that for all x ∈ Σ ∩ B(x0, r0/2), r2 ≤ r(x). Now from ψ(x, r) ≤ Crα

for all r ≤ r2 we obtain by (7) that β(x, r) ≤ Crα for all x ∈ Σ1 and r < r2.

For every x ∈ B(x0, r0/2) and r < r2, we denote πx,r the line through the two points
of Σ ∩ ∂B(x, r). We claim that πx,r converges to some tangent line πx at x when r
goes to 0. To see this, let us introduce for two lines πx,s1 and πx,s2 the distance

dist(πx,s1 , πx,s2) := dH(π̄x,s1 ∩B(0, 1), π̄x,s2 ∩B(0, 1))
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where dH the Hausdorff distance, and π̄x,r is the line parallel to πx,r through the
origin. In other words dist(πx,s1 , πx,s2) ≃ α(πx,s1 , πx,s2) where α is the smallest angle
between the two lines πx,s1 and πx,s2 thus endowed with this distance the set of lines
in R

2 centered at the origin is a complete metric space. Now since β(x, r) ≤ Crα we
claim that for any s1 < s2,

dist(πx,s1 , πx,s2) ≤ Csα2 . (10)

Indeed, for all s ≤ r2 it is clear that

dist(πx,s/2, πx,s) ≤ Csα. (11)

Now if k is such that 2−(k+1)s2 < s1 ≤ 2−ks2 we have

dist(πx,s1 , πx,s2) ≤ C
k
∑

j=0

dist(πx,2−(j+1)r2 , πx,2−jr2) ≤ C
k
∑

j=0

2−jαsα2 ≤ Csα2

which proves (10).

Now (10) says that π̄x,r is a Cauchy sequence and converges to some line π̄x centered
at the origin. Moreover, if πx denotes the line parallel to π̄x passing through x, for
all r < r0 we have that

dist(πx, πx,r) ≤ Crα

and

dH(Σ ∩B(x, r), πx ∩B(x, r)) ≤ 2dH(πx,r ∩B(x, r), πx ∩B(x, r)))

≤ 4r dist(πx,r, πx) ≤ Crα+1

thus πx is a tangent line at x.

So Σ ∩ B(x0, r0/2) admits a tangent line πx at every point x. To prove that Σ ∩
B(x, r0/2) is a C

1,α regular curve, it suffice to show that the map x 7→ πx is Hölder
regular. Let y and z be two different points of Σ ∩ B(x0, r0/2) and let ρ := |y − z|.
Assume first that ρ ≤ r2/10. We have that

dist(πy, πz) ≤ dist(πy, πy,2ρ) + dist(πy,2ρ, πz,2ρ) + dist(πz,2ρ, πz)

≤ Cρα + dist(πy,2ρ, πz,2ρ). (12)

Now observe that taking a point z′ between y and z and applying (10) at this point
with r = 4ρ we have that

dist(πy,2ρ, πz,2ρ) ≤ C[β(z′, 4ρ) + dist(πy,2ρ, πz′,4ρ) + dist(πz,2ρ, πz′,4ρ)] ≤ Cρα. (13)

Therefore, (12) and (13) imply

dist(πy, πz) ≤ C|y − z|α. (14)

Now if ρ ≥ r2/10 (14) is also true up to change C (depending on r2), which means

that Σ ∩B(x0, r0/2) is C
1,α.
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As an application we can state the following.

Theorem 3.3. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains
no triple points and such that ψ|Γ is absolutely continuous with respect to H1 with
density in Lp(Γ, dH1). Then Γ is locally a C1,α curve with α = p−1

p
.

Proof. Let x ∈ Γ. Since Γ is open, we may assume that there is a ball B(x, r) such
that r < r(x) and ψ|Σ∩B(x,r) is absolutely continuous with respect to H1 in B(x, r)
and its density belongs to Lp. Then for all x ∈ Σ∩B(x, r/2) Hölder inequality gives,
for all y ∈ B(x, r) and s < r/2,

ψ(y, s) := ψ(B(y, s)) ≤ ‖ψ‖pH1(Σ ∩B(y, s))
1
p′ ≤ Cs

1
p′

thus Proposition 3.2 applies which proves that Γ is C1,α
loc with α = 1− 1

p
.

As far as the reverse implication is concerned, we can prove the following.

Proposition 3.4. If Σ ∩B(x, r) is a C1,1 regular curve then ψ|Σr
is absolutely con-

tinuous with respect to H1 in B(x, r/2) and its density belongs to L∞.

Proof. According to Theorem 2.56 of [1], it is enough to find a constant M such
that for every y ∈ Σ ∩B(x, r/2),

lim sup
s→0

ψ(y, s)

s
≤M (15)

and this is the case when Σ∩B(x, r) is C1,1, because then arguing as for Proposition
3.1 we easily have that β(y, s) ≤ Cs for every y ∈ Σ∩B(x, r/2) and s < r2(Σ∩B(x, r))
thus ψ(y, s) ≤ Cr by (8).

3.2. ψ(x, t)dH1(x)dt
t
satisfies a Carleson measure condition

As Proposition 3.1 and 3.2 say, the regularity of Σ depends on the behavior of ψ(x, r)
with respect to r. The next proposition shows that in average, ψ(x, t)2 is very small
with respect to t at every scale, at least sufficiently small to make a certain integral
converging. In other words ψ(x, t)2χ[x,r(x)](t)dH1(x)dt

t
is a Carleson Measure.

Proposition 3.5. For all x ∈ Σ\(TΣ ∪ EΣ). Then there exists r0(x) ≤ r(x) such
that

∫

y∈Σ∩B(x,r)

∫

0<t<r

ψ(y, t)2dH1(y)
dt

t
≤ Cr ∀r ∈ (0, r0(x)).

Proof. Since Σ is a uniformly rectifiable set of dimension 1 in R
2, there is a constant

C (see [7]) such that

∫

y∈Σ∩B(x,r)

∫

0<t<r

β(y, t)2dH1(y)
dt

t
≤ Cr (16)

for x ∈ Σ and r ∈ (0, r0). Actually the β in (16) is normally the one of P. Jones
which is slightly different than our β but smaller than 2 times ours thus (16) holds.
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We denote by Σr := Σ∩B(x, r). Now possibly by taking a smaller r0 (depending on
r(x)) and using inequality (8) we compute

∫

y∈Σr

∫

0<t<r

ψ(y, t)2dH1(y)
dt

t

≤ C

∫

y∈Σr

∫

0<t<r

(t2 + tβ(y, t) + β(y, t)2)dH1(y)
dt

t
≤ Cr.

4. About the diameter of the transported set and applications

In [10], it is proved that Σ is C1,1 provided that the diameter of the transported set
is small. In the next section we are interested in the opposite situation, when the
diameter is very large. In this case Σ stays under some very large “tangent circles�
that makes it close to be a convex graph.

4.1. Considerations for large diameters

We first want to give a notion of Right and Left tangents at a point x ∈ Σ when its
blow up is a line or a corner. To do this, we need to give an orientation on Σ to say
in which direction Σ is followed.

Definition 4.1. For any injective parametrization γ : [0, T ] → Σ of a piece of Σ that
contains no triple point we define the Right and Left Tangent at point x = γ(t0) ∈
γ(]0, T [) associated to γ and denote by TR(x) and TL(x) the half lines

TR(x) := x+ R
+. lim

h→0+

γ(t0 + h)− γ(t0)

h
,

TL(x) := x+ R
+. lim

h→0+

γ(t0 − h)− γ(t0)

h
.

Remark 4.2. Notice that the existence of Right and Left tangents comes from the
existence of blow up limits (line or corner) at each points and that the dependance
on γ is only relying on orientation.

In the sequel we will prove that x 7→ TR(x) and x 7→ TL(x) admits some Left and
Right limits at every point (see Theorem 4.11) and are semi-continuous but let us
check first that it is the case in basic situations when the diameter of transported set
is under control.

For any parametrization γ : [0, T ] → Σ we will use the notation

x <γ y

to say that x = γ(t) and y = γ(t′) with t < t′.

Since our result is local, it is not restrictive to consider the situation in a small ball
B(x, r) around x := γ(t) ∈ Σ. We need to define a sort of local orientation on Σ.
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Recall that for every x ∈ Σ which is neither a triple point, nor an endpoint, Lemma
2.9 gives a radius r(x) such that ♯Σ∩∂B(x, r) = 2 for all r < r(x). It follows that for
all r < r(x), B(x, r)\Σ is cut by Σ in exactly two connected components. Suppose
now that x ∈ Σ and r ∈ (0, r(x)) are such that Σ ∩ B(x, r) = Γ ∩ B(x, r) where
Γ := γ([0, T ]). Let s < r be given and let γ(t1) and γ(t2) be the two points of
∂B(x, s) ∩ Γ. Assume in addition that t1 < t2. Then we denote ∂B(x, s)± the two
connected components of ∂B(x, s)\Γ, in such a way that ∂B(x, s)+ is corresponding
to the piece of circle obtained when we start at γ(t1) and follow the circle in the
clockwise sense as in the following picture.

x

∂B(x, s)−

∂B(x, s)+

γ(t2)

γ(t1)

�

Y

Γ

�

Then we define B(x, s)± as being the connected components of B(x, s)\Γ labeled in
such a way that the boundary of B(x, s)+ meets ∂B(x, s)+. Observe that by this way,
if s′ < s then ∂B(x, s′)+ ⊂ B(x, s)+. This follows from the fact that the points zs and
z′s lying on Σ∩∂B(x, s) are continuous with respect to s. It is worth mentioning that
the orientation does not depend on point x, in other words if B(x, s) and B(x′, s′)
are both contained in B(x0, r0) with r0 < r(x0), then B(x, s)+ ∩ B(x′, s′)− = ∅ and
viceversa.

General Assumptions 4.3. We will say that we are under General Assumptions
4.3 in B(x0, r0) when γ : [0, T ] → Σ is a given parametrization as in Definition 4.1,
Σ ∩ B(x0, r0) = γ[t1, t2] for some t1, t2 ∈ [0, T ] and γ([t1, t2]) contains neither triple
points nor endpoints. We also assume that r0 ≤ r(x0). In this situation we have
an orientation, namely B(x0, s)

± are well defined for all s ≤ r0. We also denote
Γ := γ([0, T ]).

Notice that for every x ∈ Σ\(TΣ ∪ EΣ) one can always find a parametrization γ and
a radius r in such a way that B(x, r) satisfies General Assumptions 4.3.

Definition 4.4. Assume that we are under General Assumptions 4.3 in B(x0, r0).
Then for every y ∈ Γ ∩ B(x0, r0) and for every transport ray Ry ending at y we say
that Ry is coming from above if Ry ∩ B(x0, r0)

+ 6= ∅ and we say that Ry is coming
from below if Ry ∩B(x0, r0)

− 6= ∅. If Ry and Rz are two different transport rays that
are both coming from below or both coming from above we will say that Ry and Rz

are coming from the same direction. We denote k−1(y)+ the family of transported
Rays ending at y and coming from above and k−1(y)− the ones coming from below.

Remark 4.5. Of course a non empty ray cannot comes from above and below at the
same time. The definition of Above and Below depends only on the orientation given
by γ.
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We will need this elementary fact which was already used in a slightly different version
in [10].

Proposition 4.6. Assume that Ω is convex and that we are under General As-
sumptions 4.3 in B(x0, r0). Then x 7→ diam(k−1(x)±) are upper-semicontinuous for
x ∈ Σ ∩B(x0, r0).

Proof. It is enough to prove the Proposition for diam(k−1(x)+). Assume the con-
trary. Namely, there exists δ > 0 and a sequence of points xn that converges to x∞
in Σ ∩B(x0, r0) and such that

diam(k−1(xn)
+) ≥ diam(k−1(x∞)+) + δ. (17)

Let yn be a sequence of points in k−1({xn})+ such that d(xn, yn) = diam(k−1(xn)
+).

Up to a subsequence we can assume that yn converges to a certain y∞, and by
continuity of x 7→ dist(x,Σ) we deduce that y∞ ∈ k−1(x∞). Moreover y∞ is still
coming from above. Then from (17) and

d(yn, xn) ≤ d(yn, x∞) + d(x∞, xn)

we obtain
diam(k−1(x∞)+) + δ ≤ d(yn, x∞) + d(x∞, xn),

thus passing to the limit it comes

diam(k−1(x∞)) + δ ≤ d(y∞, x∞)

which is a contradiction.

For all x ∈ Σ and Rx a transported ray arriving at x we will denote ν(Rx) the unit
“normal� vector oriented by Rx and defined by the identity

Rx = x+ [0,H1(Rx)].ν(Rx).

In most of our next arguments we will need the following “key lemma�.

Lemma 4.7. Assume that we have General Assumptions 4.3 in B(x0, r0) with x0 ∈ Σ
and a parametrization γ. Then for every C3 > r0 the following holds. Let t < t′ be
such that γ(t) and γ(t′) lie in B(x0, r0) and admit some transport rays Rt and Rt′

that are both coming from above and satisfying min(H1(Rt),H1(Rt′)) ≥ C3. Then:

Angle(ν(Rγ(t′)), ν(Rγ(t))) ≤ 2 arcsin

(

1

C3

|γ(t)− γ(t′)|
)

(18)

where Angle(v, w) denotes the oriented angle between the two vectors v and w.

Proof. Let t and t′ be as in the statement of the Lemma. We know that γ(t) is
under a circle of radius bigger than C3 “tangent� to γ(t′) and viceversa. Let us
assume without loss of generality that γ(t′) is the origin and R⊥

γ(t′) is the first axis.

Let Lt be the line containing the two points γ(t) and γ(t′) and let vt be the unit
vector orthogonal to Lt pointing in the “above� direction, which means pointing
in the clockwise sense on the circle B(γ(t′), |γ(t) − γ(t′)|). The only way for the
angle Angle(ν(Rγ(t′)), vt) to be positive is when γ(t) has negative first coordinate and
positive second coordinate as in the following picture
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γ(t′)

γ(t) 6

�

vt

Lt

ν(Rγ(t′))

and since γ(t) must be at the same time lying under the “tangent� circle associated
to γ(t′) we deduce that

Angle(ν(Rγ(t′)), vt) ≤ arcsin

[

1

C3

|γ(t)− γ(t′)|
]

.

By the same kind of argument considering this time the circle associated to γ(t) we
also have that

Angle(vt, ν(Rγ(t))) ≤ arcsin

[

1

C3

|γ(t)− γ(t′)|
]

which all together gives (18), and the Lemma is proved.

Now we can state a first regularity result.

Proposition 4.8. Assume that we have General Assumptions 4.3 in B(x0, r0) and
that

inf{diam(t−1(y)+); y ∈ Σ ∩B(x0, r0)} > 0. (19)

then x 7→ TR(x) and x 7→ TL(x) are semicontinuous, i.e. for every y0 ∈ B(x0, r0),

lim
y→y0
y<γy0

TL(y) = TL(y0) and lim
y→y0
y>γy0

TR(y) = TR(y0). (20)

In addition the limit from the other side exists and we have

lim
y→y0
y>γy0

TL(y) = TR(y0) and lim
y→y0
y<γy0

TR(y) = TL(y0). (21)

Proof. Up to change the orientation it is enough to prove the result for TL. For
any corner point y ∈ Σ ∩B(x, r) let us denote RR

y and RL
y the two transported Rays

orthogonal to TR(y) and TL(y) as in the following picture

y

RR
yRL

y

TR(y)
TL(y)

Σ
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Under assumption (19), if RR
y and RL

y are not empty they can only arrive from above.

We denote R1 the union of all the RR
y and RL

y for y a corner point in Σ ∩ B(x0, r0).

Then, for every ordinary point y ∈ Σ∩B(x0, r0) we denote R
+
y the single ray coming

from above and arriving at y and we denoteR2 the union of all the R+
y for all ordinary

point y. Finally, we denote R := R1 ∪R2.

We claim that (19) implies the following stronger condition

inf{H1(Ry);Ry ∈ R} ≥ δ/2 (22)

where
δ := inf{diam(t−1(y)+); y ∈ Σ ∩B(x, r)} > 0.

Indeed, if y is an ordinary point then diam(t−1(y)+) = H1(R+
y ) so the problem could

only occur at corner points. Now let y be a corner point and assume by contradiction
that H1(RR

y ) < δ/2 (the argument will work by the same way for RL
y ). Then by

semicontinuity of the length of transported rays (Proposition 4.8), all the transported
rays coming from above and arriving in a sufficiently small neigborhood at the right
hand side of y still has a length strictly less than δ. Now to get a contradiction with
(19) it suffice to choose an ordinary point z in this neighborhood for which we know
that the lenght of R+

z is exactly diam(t−1(z)+) ≥ δ. It is always possible to find such
a point z because ordinary points of Σ have full H1 measure.

Now to prove the existence of limit we will use the “key lemma�. Let y0 be a fixed
point in B(x0, r0). Since the result is local we can restrict ourself to B(y0, s) for a
radius s small as we want. For instance we can take s ≤ δ/100. Now by convention,
when y is an ordinary point we set RR

y = RL
y = R+

y and we define for y ∈ B(y0, s)
and y ≤γ y0 the function

θ(y) := Angle(ν(RL
y0
), ν(RL

y )).

We want to prove that θ(y) has a limit when y → y0, and y <γ y0. Let

M := sup{θ(y); y ∈ B(y0, s) and y <γ y0}.
It is clear that

lim sup
y→y0
y<γy0

θ(y) ≤M. (23)

Now by definition of M , for every ε > 0 one can find yε ∈ Σ ∩ B(y0, s) such that
θ(yε) ≥M − ε. On the other hand for all y >γ yε Lemma 4.7 implies

θ(yε) ≤ θ(y) + 2 arcsin

(

1

C3

|y − yε|
)

which leads to
M − ε ≤ lim inf

y→y0
y<γy0

θ(y)

and since ε is arbitrary, combining the last inequality with (23) and letting ε goes to
0 we obtain that the Left limit of θ(y) exists and is equal to M , which means that
the Left limit

lim
y→y0
y<γy0

TL(y)



A. Lemenant / About the Regularity of Average Distance Minimizers in R
2 965

exists. For the existence of Right limit of TL one can argue by the same way using
this time the infimum instead of supremum.

Let us prove now that
lim
y→y0
y<γy0

TL(y) = TL(y0). (24)

The proof of
lim
y→y0
y>γy0

TL(y) = TR(y0) (25)

will follow by the same argument.

We already know that
lim sup
y→y0
y<γy0

θ(y) ≤ θ(y0) = 0

so it is enough to prove the reverse inequality, for which we argue as follows. Let yk
be a sequence of points converging to y0 and let zk be a corresponding sequence of
points belonging to a transport Ray RL

yk
ending at yk. By continuity of x 7→ dist(x,Σ)

we obtain that the zk converges to a point z which belongs to k−1(y0)
+. This implies

that
lim sup
y→y0
y<γy0

θ(y) ≥ 0

which ends the proof.

Remark 4.9. A consequence of the proposition just proved is that if we assume Σ
to contain no corner points in B(x, r), then under assumption (19) Σ is C1 in B(x, r)
because in this case TL(x) = TR(x) at every point.

Now if (19) holds from above and below at the same time we have more regularity
as it is stated in the following proposition.

Proposition 4.10. Assume that we have General Assumption 4.3 in B(x0, r0). If

inf{min(diam(t−1(x)+), diam(t−1(x)−));x ∈ Σ ∩B(x, r)} > 0 (26)

then Σ is C1,1 in B(x0, r0/2).

Proof. Observe that under assumption (26), for every point y ∈ Σ ∩B(x0, r0/2) we
have that Σ is lying in the complement of two circles with radius uniformly bounded
from below and tangent to each other at y. From this fact one can find a radius
r1 such that β(y, r) ≤ Cr for all r < r1 and the proposition follows from the same
argument as for Proposition 3.2.

4.2. A regularity result

This paragraph is devoted to the proof of the following result.

Theorem 4.11. For any minimizer Σ and for every injective and open arc Γ ⊂ Σ,
the Right and Left Tangents TR(x) and TL(x) admit some Right and Left limits at
every point x ∈ Γ and are semicontinuous. More precisely (20) and (21) holds for
every point y0 ∈ Γ.
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To prove Theorem 4.11 we will first need a precision about the C1,1 regularity result
of [10].

Lemma 4.12. Let Σ1 be compactly contained in Σ\(TΣ ∪ EΣ). Let x ∈ Σ1 be such
that diam(k−1(x)) < min(C,C2(Σ1)) and let I ⊂ Σ be an “interval� in Σ1 (i.e. an
injective Lipschitz image of [0, 1]) containing x maximal for the property that

sup
y∈I

diam(k−1(y)) ≤ min(C,C2(Σ1))

and let z ∈ Ī\I. Then Σ is C1,1 regular up to z, with Lipschitz constant for the
derivative depending only on Σ, Ω and µ, in particular does not depend on I and x.

Proof. The Lemma is an easy consequence of the regularity result of [10] so let us
give only a sketch of the proof. Assume that Ī is parameterized by an injective map
γ : [0, 1] → Ī and assume that z = γ(0). We already know by the result of [10] that
γ is C1,1 in the interior of I. Moreover, by existence of blow up limits we know that
γ′ exists at 0. Denoting TR(z) the half tangent line at z, and using Lemma 2.7 we
have that

1

δ
sup
t∈[0,δ]

dist(γ(t), TR(z)) ≤ Cψ(γ((0, δ]).

On the other hand, one can easily prove the estimate

ψ(γ((0, δ]) ≤ Cr ∀δ < δ0 (27)

by a small modification of the proof of Proposition 2.12. Indeed, the only difference is
to find an analogous “one-sided� version of inequality (8). This is done by delimiting
one side of the domain k−1(γ(0, δ)) with exactly the same argument as for the original
proof of (8), and for the other side the rays are delimited by the line orthogonal to
the left tangent TL(z). Then the proof of (27) follows by the same way as the proof
of Proposition 2.12, the iteration still works since the diameter of transported set is
small enough for the points of γ((0, δ] by our assumptions. We left the details to the
reader.

Once (27) is proved, the desired C1,1 regularity follows by the same argument as in
the proof of Proposition 3.1.

We are now ready to prove our regularity result.

Proof of Theorem 4.11. We can assume that we are working on Σ1 compactly
contained in the complement of TΣ and EΣ since we already know by [10] that the
curves that compose Σ are C1,1 in a neighborhood of any triple point. Let C0 be
the constant depending on Ω, µ and Σ that comes from the regularity result of
[10] (i.e. that implies C1,1 regularity whenever diam(k−1({x})) < C0) and let C <
min(C0, C2(Σ1)). Since the result is local, when x0 is not an endpoint we can work
under General Assumption 4.3 in a ball B(x0, r0), and we can assume that r0 <
C/100.

Then let us decompose Γ ∩B(x0, r0) in a disjoint union

Γ ∩B(x0, r0) := O1 ∪ A+ ∪ A− ∪ F
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where
O1 := {x ∈ Γ ∩B(x0, r0); diam(t−1(x)) < C},

A+ := {x ∈ Γ ∩B(x0, r0); diam(t−1(x)−) < C/4 and diam(t−1(x)+) ≥ C/2},
A− := {x ∈ Γ ∩B(x0, r0); diam(t−1(x)+) < C/4 and diam(t−1(x)−) ≥ C/2},

F := Σ ∩B(x0, r0)\(O1 ∪ A+ ∪ A−).

In particular in F , all the points have very big transported sets from above and below.
By semicontinuity of the diameter of transported set (Proposition 4.6), we get that
O1, O1 ∪A+ and O1 ∪A− are relatively open sets in Γ∩B(x0, r0) thus F is relatively
closed by definition. We will first prove that taken separately in the interior of all the
above sets, Σ is C1 regular. Indeed by definition of constant C, from [10] we directly

know that O1 is C1,1
loc , which means that the maps TL and TR are continuous (even

Lipschitz) in O1. In the interior of F , A+ and A−, we know that the maps TL and TR
are semicontinuous by Proposition 4.8. Now we have to glue together those sets to
prove that TL and TR are semicontinuous everywhere. Up to a change of orientation
it is enough to prove the result for only TL.

Let us consider O1 as a countably union of disjoints “intervals� like

O1 :=
∑

i∈N

γ(]ti, ti+1[)

with ti < ti+1. We already know that γ is C1,1 in each of the Ii := γ([ti, ti+1]) (also up
the the boundaries of each interval thanks to Lemma 4.12). Now we will enlarge the
set of points in which TL is semicontinuous to progressively achieve the semicontinuity
everywhere. Let us start with the open set A+ ∪ O1. Let y0 ∈ A+\O1 (otherwise γ
is C1,1 in the neighborhood of x and we have nothing to prove). For r small enough
we know that B(x, r) ∩ Σ ⊂ A+ ∪ O1. We want to prove that TL(y) tends to TL(y0)
when y → y0 and y <γ y0. We use the same notations as for the proof of Proposition
4.8, i.e. we denote the oriented angle

θ(y) := Angle(ν(RL
y0
), ν(RL

y ))

and we want to prove that θ(y) tends to θ(y0) = 0.

First of all, since y0 ∈ A+, for all subsequence yn → y0 with yn <γ y0 and such that
for all n > 0, yn ∈ A+ ∩ B(y0, r) we can prove that θ(yn) converges to θ(y0) = 0
arguing exactly as for Proposition 4.8. This means that for every ε > 0 there exists
rε < r such that

sup{|θ(y)|; y ∈ A+ ∩B(y0, rε) and y <γ y0} < ε. (28)

Now we have to control the angle for points in O1. Since y0 ∈ A+, we deduce that

Ii ∩B(y0, rε) 6= ∅ ⇒ Ii ⊂ {y; y <γ y0} or Ii ⊂ {y; y >γ y0}.

Then by Lemma 4.12, for all y ∈ Ii with Ii ⊂ O1 ∩ {y; y <γ y0} ∩ B(y0, rε), one can
estimate (possibly taking a smaller rε)

|θ(y)− θ(yi)| ≤ CH1(I) ≤ ε
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where yi is the right hand side bound of the interval Ii, in other words the point
maximal in Ii for the order <γ. Then it comes, for all y ∈ O1 ∩B(x, rε)∩ {y <γ y0},

|θ(y)| ≤ |θ(y)− θ(yi)|+ |θ(yi)| ≤ 2ε

because in particular yi ∈ A+ so that we can apply (28) to estimate |θ(yi)|, and finally
we have proved that

lim
y→y0
y<γy0

θ(y) = 0

which implies the semicontinuity of TL in O1 ∪ A+.

By a similar argument we can also prove that for every y0 ∈ O1 ∪ A+,

lim
y→y0
y>γy0

TR(y) = TR(y0). (29)

Thus reversing the orientation and applying (29) we obtain the semicontinuity for TL,
when y <γ y0 at every point y0 of A− ∪ O1 as well. Since A± ∪ O1 are open sets we
have proved that TL is semicontinuous in O1 ∪A+ ∪A−. To have the semicontinuity
of TL everywhere it remains to prove the semicontinuity at points of F .

We already know that TL is semicontinuous in the interior of F (Σ is even C1,1 in
this case by Lemma 4.10). So it is enough to prove semicontinuity at point y0 ∈
F ∩ A+ ∪O1 ∪ A−. But this will be done by the same arguments as before. All we
have to prove is that for rε small enough and for all points y ∈ B(y0, rε)∩ {y <γ y0},
we have that |θ(y)| ≤ ε. Since the point y0 ∈ F is achieved by two large transport
rays from above and below at the same time, we can control the angle of tangents for
every point y ∈ B(y0, rε)∩{y <γ y0} by considering the four different cases whenever
y lie in O1, A

+, A− or F . Indeed, in each situation between O1, A
+ and A− we

can use one of the arguments that we already used before to prove semicontinuity in
O1 ∪A+ ∪A−, and for points of F we can use either the argument associated to A+

or the one of A−.

In conclusion we have proved that (20) holds at every point of Γ, and the proof of
(21) works by the same way.

As an immediate consequence of Theorem 4.11 we can state the following interesting
result.

Corollary 4.13. Let Σ be an optimal set for the problem (1) and let B be a ball such
that Σ ∩B contains only ordinary points. Then Σ ∩B is locally a C1 regular curve.

5. Euler-Lagrange equation

We will need the equation of first derivative that one can find in [2]. We refer for
instance to [1] page 355 for the definition and classical properties of the tangential

divergence divΣΦ.

Proposition 5.1 ([2]). For every compact and connected set Σ ⊂ Ω and for every
Φ ∈ C∞

0 (R2,R2) one has

d

dε
F((Id + εΦ)(Σ))

∣

∣

∣

ε=0
=

∫

R2

〈

Φ(k(x)),
k(x)− x

|k(x)− x|

〉

dµ(x). (30)
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As a consequence, for a given λ > 0, if Σ is a minimizer for the functional

G(Σ′) :=

∫

Ω

d(x,Σ′) dµ(x) + λH1(Σ′) (31)

over all compact and connected sets Σ′ ⊂ Ω, then for all Φ ∈ C∞
0 (R2,R2) one has

∫

R2

〈

Φ(k(x)),
k(x)− x

|k(x)− x|

〉

dµ(x) + λ

∫

Ω

divΣΦ dH1 = 0. (32)

We would like to apply equation (32) to the minimizers of our functional F defined
in (1) with length constraint instead of the penalized functional G. The following
Proposition was suggested to the Author by F. Santambrogio and says that one can
find a λ0 such that the two first order equations for the two minimizing problems are
the same. To get a similar result one could also try to apply the classical Lagrange
multipliers theorem on a suitable Banach space of diffeomorphisms to the functional
J(ϕ) := F(ϕ(Σ)) but the Fréchet differentiability of such functional at ϕ0 := Id
is not clear. Moreover, despite of the technical difficulties of the proof of the next
proposition, the idea is very intuitive and perhaps more instructive as well since it
gives the explicit value of λ0 in terms of measure ψ at any endpoint x0.

To be more precise, let x0 be an endpoint of Σ that we will assume, up to a translation,
being the origin. Following [10], let us denote by ν the image measure of µxk−1({x0})
by the application x 7→ x

‖x‖
and define the vector

v̄ :=

∫

S1

v dν(v).

By [10] Theorem 3.2. we know that Σ admits a tangent line at x0 which direction is
given by the vector −v̄. Now we define the constant

λ0 :=

∫

S1

v.
v̄

‖v̄‖ dν(v) = ‖v̄‖. (33)

Proposition 5.2. Let Σ be a minimizer for the problem (1) and x0 be one of its
endpoint. Then Equation (32) holds with λ = λ0 defined in (33) and for every
Φ ∈ C∞

0 (R2,R2) compactly supported in the complement of {x0}.

The idea is to quantify how much one can win or loose in the functional adding a
piece of segment of size r starting at the endpoint x0 or erasing a piece of curve of
size r from the same endpoint. We will prove that the two operations have a cost
in λ0r + o(r) and this is the purpose of the two next lemmas. Actually one can
find similar computations in the proof of Theorem 3.5 of [10] (with a more elliptic
redaction) but we would like to re-write here the arguments in full details for the
convenience of the reader.

Let x0 be an endpoint of Σ that we still assume being the origin, and let Φ ∈
C∞

0 (R2,R2) be a given diffeomorphism supported in a compact K contained in the
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complement of {0}. We denote C∞
K the family of diffeomorphisms ϕ ∈ C∞

0 (R2,R2)
supported in K satisfying ϕ(K) ⊂ K. Let us define

ϕε := Id + εΦ.

Notice that if ε is small enough, then ϕε ∈ C∞
K . For every ε we denote kε a measurable

selection of the projection multimap onto Σε := ϕε(Σ).

Let us define now νε the image measure of µxk−1
ε ({0}) by the application x 7→ x

‖x‖

and introduce the constant

λε :=

∫

S1

v.
v̄

‖v̄‖ dνε(v).

It is not difficult to see that λε → λ0 when ε→ 0.

Lemma 5.3. One can find an r0 such that for every r < r0 there exists a set Σr
ε such

that

Σr
ε ∩K = Σε, H1(Σr

ε) = H1(Σε) + r and

F(Σε)−F(Σr
ε) = rλε + o(r) (34)

where o(r) depends on Φ but not on ε.

Proof. Up to a rotation we can assume that v̄ = e1. Defining the line L := R
−.v̄,

by [10] we know that

1

r
dH(Σ ∩B(x0, r), L ∩B(x0, r)) → 0

when r → 0, and this is the same for ϕ(Σ) for all ϕ ∈ C∞
K since they do not move

any points near the origin. Let P+ be the half space

P+ := {(x, y) ∈ R
2;x ≥ 0}. (35)

We claim that for all ε,
k−1
ε ({0}) ⊆ P+.

Indeed, suppose the contrary, namely that there exists a point x such that kε(x) = 0
and x 6∈ P+. Then, since {0} admits R

−e1 as left-tangent line it would be better
for x to be projected onto a point y ∈ Σ ∩ ∂B(0, s) for s small enough which is a
contradiction.

We define
Σr

ε := Σε ∪ L+
r

where L+
r := [0, r] × {0}. We have to compute the winning in the functional F in

terms of r but independently from ε small enough, say less than ε0.

Let Dr := (L+
r × R) ∩ Ω. For every point x ∈ P+\Dr one has d(x, L+

r ) = d(x, xr)
where xr := (r, 0). Then, a simple computation yields, for r → 0

‖x− xr‖2 = ‖x‖2 − 2〈x, xr〉+ o(r) = ‖x‖2
(

1− 2

〈

x

‖x‖2 , xr
〉

+ o(r)

)

. (36)
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Therefore, we obtain that for all x ∈ k−1
ε ({0})\Dr,

d(x,Σε)− d(x,Σr
ε) = ‖x‖ − ‖x− xr‖ = r

〈

x

‖x‖ , e1
〉

+ o(r)

where o(r) does not depend on ε. On the other hand, let us define

Aε
r :=

{

x ∈ Ω\k−1
ε ({0}); d(x,Σr

ε) = d(x, L+
r )
}

and
Ar :=

⋃

ε≤ε0

Aε
r.

We claim that

sup
ε≤ε0

∫

Aε
r

d(x,Σε)− d(x,Σr
ε) dµ(x) = o(r). (37)

To see this, observe that Aε
r ⊂ P+ thus, using (36), for x ∈ Aε

r we have

0 ≤ d(x,Σε)− d(x,Σr
ε) ≤ ‖x‖ − d(x,Σr

ε) = ‖x‖ − d(x, xr) = r

〈

x

‖x‖ , e1
〉

+ o(r)

where o(r) does not depend on ε. Then

∣

∣

∣

∣

∫

Aε
r

d(x,Σε)− d(x,Σr
ε) dµ(x)

∣

∣

∣

∣

≤ rµ(Aε
r) + o(r) ≤ rµ(Ar) + o(r)

and we conclude by observing that µ(Ar) → 0 thus (37) is true.

Finally, since
∫

Dr
d(x,Σε)− d(x,Σr

ε) = o(r) we have

F(Σε)−F(Σr
ε) =

∫

k−1
ε ({0})\Dr

d(x,Σε)− d(x,Σr
ε) dµ(x)

+

∫

Aε
r

d(x,Σε)− d(x,Σr
ε) dµ(x) + o(r)

= λεr + o(r)

which proves the Lemma.

Now we want to do the same while removing this time from Σε a piece of size r, and
estimate the loss in terms of r independently from ε. Compared to Lemma 5.3 we
will this time prove only an inequality which will be enough to prove Proposition 5.2.

Lemma 5.4. One can find an r0 such that for every r < r0 there exists a set Σr
ε such

that

Σr
ε ∩K = Σε, H1(Σr

ε) = H1(Σε)− r and

F (Σr
ε)− F (Σε) ≤ rλε + o(r) (38)

where o(r) depends on Φ but not on ε.
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Proof. The proof is very similar to the one of Lemma 5.3. The only difference is
that here we don’t consider a piece of segment but a piece of curve that converges to
a segment with speed o(r).

Let γ : [0, T ] → R
2 be a parametrization by arclength of the Lipschitz curve starting

at x0, such that γ(0) = x0 and γ(T ) is a triple point or endpoint. By [10], for t small
enough, we know that

♯{∂B(x0, t) ∩ Σ} = 1.

We deduce the existence of a radius tr defined by Σ∩∂B(x0, tr) = γ(r) and satisfying
γ([0, r]) = Σ ∩ B(x0, tr). Moreover since the blow up limit at x0 is a radius we also
know that r = tr + o(r) when r → 0. We assume r0 small enough in such a way that
B(x, tr) ∩K = ∅ for all r < r0 and we define

Σr
ε := Σε\γ([0, r]).

By construction we automatically get H1(Σr
ε) = H1(Σε)− r.

Now we want to compute what we have lost in the functional F . We still suppose
x0 = {0} and the tangent line at x0 being R

−.e1. We denote P+ the half space defined
in (35). As before, we know that for every ε small enough, k−1

ε ({0}) ⊂ P+. Let us
denote xr := Σ ∩ ∂B(0, tr) and x̄r = p1(xr) where p1 is the projection on the first
axis. We know that ‖xr − x̄r‖ = o(r) and ‖x̄r‖ = tr = r − o(r). By a computation
similar to (36) and using that o(r) = o(tr) we obtain that for all x ∈ P+,

‖x− x̄r‖2 = ‖x‖2
(

1− 2

〈

x

‖x‖2 , x̄r
〉

+ o(r)

)

which implies

‖x− x̄r‖ − ‖x‖ = r

〈

x

‖x‖ , e1
〉

+ o(r).

Then, since ‖xr − x̄r‖ = o(r) we deduce

‖x− xr‖ − ‖x‖ = r

〈

x

‖x‖ , e1
〉

+ o(r).

Now we compute

F(Σr
ε)−F(Σε) =

∫

k−1
ε (B(0,tr))

d(x,Σr
ε)− d(x,Σε) dµ(x)

≤
∫

k−1
ε ({0})

d(x, xr)− d(x, 0) dµ(x) + r

∫

k−1
ε (B(0,tr)\{0})

dµ(x)

≤
∫

k−1
ε ({0})

‖x− xr‖ − ‖x‖ dµ(x) + rψ(B(0, tr)\{0})

≤ rλε + o(r)

which ends the proof.

We are now ready to prove Proposition 5.2.
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Proof of Proposition 5.2. Let Φ be given and consider Σε := ϕε(Σ) where as
before ϕε = Id + εΦ. Assume first that H1(Σε)−H1(Σ) = −rε < 0. Then, denoting
Σ+

ε the set given by Lemma 5.3 applied with r := rε and using that Σ is a minimizer
for F we obtain that

F(Σ) ≤ F(Σ+
ε )

= F(Σε)− λεrε − o(rε)

= F(Σε) + λε[H1(Σε)−H1(Σ)] + o(rε).

Now if H1(Σε) −H1(Σ) = rε > 0 we can use Lemma 5.4 to find a set Σ−
ε satisfying

the length constraint so by minimality of Σ,

F(Σ) ≤ F(Σ−
ε )

≤ F(Σε) + λεrε + o(rε)

≤ F(Σε) + λε[H1(Σε)−H1(Σ)] + o(rε).

In conclusion, using that rε = O(ε) and that λε → λ0 we have proved for every ε,

F(Σ)−F(Σε) + λ0[H1(Σ)−H1(Σε)] ≤ o(ε).

Now dividing by ±ε and passing to the limit, we obtain

d

dε

[

F(Σε) + λ0H1(Σε)
]

∣

∣

∣

ε=0
= 0

and we conclude using (30) and the classical fact that the derivative of H1(Σε) is the
mean curvature.

Remark 5.5. The constant λ0 does not depend on the choice of endpoint x0. Indeed,
if the constant λ1 associated to a different endpoint x1 6= x0 was greater or lower, one
could get a contradiction with the minimality of Σ adding or erasing a little piece of
curve at one endpoint and do the opposite operation at the other endpoint in order
to diminish the functional F .

6. Tilt estimate

In this section we control the oscillation of the tangent lines πx to Σ with respect to
a fixed line π, also called “the tilt�. When π1 and π2 are two lines in R

2, we denote
by α(π1, π2) ∈ [0, π

2
] the smallest angle between them.

For any x ∈ Σ\(TΣ ∪ EΣ) and r < r(x) we denote by πx,r the line that contains the
segment [z, z′], where z and z′ are, as usual, the two points of ∂B(x, r) ∩Σ. For H1-
a.e. y ∈ Σ we also denote by πy the approximate tangent line centered at y. Finally,
we denote α(y) := α(πy, πx,r). The definition of α(y) depends in particular on x and
r but we do not make it explicit to lighten the notations. A first easy estimate is the
following

∫

Σ∩B(x,r)

1− cos(α(y)) dH1(y) ≤ Crψ(x, r)β(x, r). (39)



974 A. Lemenant / About the Regularity of Average Distance Minimizers in R
2

Indeed, let γ : [−T, T ] be a parametrization of Σr := Σ ∩ B(x, r). Assume without
loss of generality that the segment S := [z, z′] is contained in the first axis of R2 and
that γ(−T ) = z, γ(T ) = z′ with z < z′. Then by setting γ(t) := (x(t), y(t)), using
Lemma 2.7 we have

∫ T

−T

√

x′(t)2 + y′(t)2 − x′(t)dt = H1(Σr)− (z′ − z)

= H1(Σr)−H1(S)

≤ Cψ(x, r)dH(Σr, S)

≤ Crψ(x, r)β(x, r).

On the other hand the area formula shows that

∫ T

−T

√

x′(t)2 + y′(t)2 − x′(t) dt =

∫ T

−T

(

1− x′(t)
√

x′(t)2 + y′(t)2

)

√

x′(t)2 + y′(t)2 dt

=

∫

Σr

(1− 〈τ(y), e1〉) dH1(y)

≥
∫

Σ∩B(x,r)

1− cos(α(y)) dH1(y)

where τ(y) is the unit tangent vector at point x (oriented by the parametrization γ)
and e1 is the first vector of basis, so (39) follows.

The next proposition gives a slightly better estimate than (39) proved by a variational
argument.

Proposition 6.1. For all τ ∈ (0, 1), x ∈ Σ\(TΣ ∪ EΣ) and r < r(x) we have

∫

Σ∩B(x,τr)

sin2(α(y)) dH1(y) ≤ C(τ)rψ(x, r)β(x, r)

where α(y) is the angle between πy and πx,r.

Proof. Without loss of generality we may assume that π := πx,r is the first axis. Let

us choose Φ(z) := η(z)2(π⊥(z)), where π⊥ is the projection on the second axis and
where η ∈ C1

c (B(x, r)), 0 ≤ η ≤ 1, η = 1 on B(τr) and |∇η| ≤ 2/r(1− τ).

For every line π′ let eπ′ be a unit vector in the direction of π′ and denote by Mπ′ the
orthogonal projection on Reπ′ . We maintain that

‖Mπ −Mπ′‖ = sin(α(π′, π)) (40)

where the norm in the left side is the euclidian norm of linear operators and α(π′, π) ∈
[0, π

2
] is, as usual, the smallest angle between the lines π̄′ and π. To show (40), let

z ∈ R
2 be of unit norm and let (a, b) be its coefficients in the orthonormal basis

{eπ, eπ⊥}. Then ‖Mπ′(z)−Mπ(z)‖2 = ‖a(Mπ′(eπ)−eπ)+bMπ′(eπ⊥)‖2 = ‖bMπ′(eπ⊥)−
aMπ′⊥(eπ)‖2 = (a2 + b2)‖Mπ′(eπ⊥)‖2 = 〈eπ′ , eπ⊥〉2 = cos2(α(π′, π⊥)) = sin2(α(π′, π)),
so (40) holds.
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Now let us compute the tangential divergence of Φ. Since the first component of Φ
is 0 and the second is equal to η(z)2z2 we have

divπ
′

Φ(z) = 〈∇π′

(η(z)2z2), e2〉

and

∇π′

(η(z)2z2) = [2η(z)z2〈∇η(z), eπ′〉+ η(z)2〈e2, eπ′〉].eπ′ .

Thus

divπ
′

Φ(z) = 2η(z)z2〈∇η(z), eπ′〉〈e2, eπ′〉+ η(z)2〈e2, eπ′〉2

= 2η(z)〈Mπ′(∇η(z)), π⊥(z)〉+ η(z)2 sin2(α(π, π′))

= 2η(z)〈(Mπ′ −Mπ)(∇η(z)), π⊥(z)〉+ η(z)2 sin2(α(π, π′))

≥ η(z)2 sin2(α(π, π′))−
[

1

t
η(z)2‖Mπ′ −Mπ‖2‖∇η(z)‖2 + t|π⊥(z)|2

]

hence setting t := 2‖∇η(z)‖2 and using (40) we get

divπ
′

Φ(z) ≥ 1

2
η(z)2 sin2(α(π, π′))− 8

r2(1− τ)2
‖π⊥(z)‖2. (41)

Therefore, applying the above inequality with π′ the approximate tangent line at
point x and recalling (by 2) that H1(B(x, r) ∩ Σ) ≤ 3πr we obtain

∫

B(x,τr)

sin2(α(z)) dH1 ≤ 2

∫

B(x,r)∩Σ

divΣΦ dH1 +
C

(1− τ)2
rβ(x, r)2

≤ 2

∫

B(x,r)∩Σ

divΣΦ dH1 + C(τ)rβ(x, r)ψ(x, r)

by (7). On the other hand, since B(x, r) does not contain any endpoint, by Proposi-
tion 5.2 we have that

∫

Ω

divΣΦ dH1 ≤ 1

λ0

∫

R2

∣

∣

∣

∣

〈

Φ(k(z)),
k(z)− z

|k(z)− z|

〉
∣

∣

∣

∣

dµ(x)

≤
∫

k−1(B(x,r))

η(k(z))2‖π⊥(k(z))‖ dµ(z)

≤ Crβ(x, r)ψ(x, r)

so the proof is complete.

7. Σ is locally a Lipschitz graph

In this last section we prove that away from triple points Σ is locally a graph. We
begin with some precisions about corner points.
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7.1. About the aperture of corners

Using the first order equation, one can rely the aperture of any corner point x0 in
terms of measure ψ. Following the notations of Section 6.1, for any atom x ∈ Σ for
the measure ψ (i.e. x is either a corner point of endpoint) we define νx the image

measure of µxk−1(x) by the application y 7→ y−x
‖y−x‖

and the vector

v̄(x) :=

∫

S1+x

(v − x) dνx(v).

Then we denote
λ(x) := ‖v̄(x)‖.

It is clear that λ(x) ≤ ψ({x}) and recall that λ0 := λ(x0) where x0 is any endpoint
of Σ. For any corner point x let us denote θ(x) the smallest angle between the two
rays of the bow up limit at point x. Then, by the proof of Theorem 3.7 of [10] we
have the following very nice identity:

λ0 cos

(

θ(x)

2

)

= λ(x).

The next proposition gives a lower bound on the aperture of any corner point and
will be needed to find some pieces of graphs. This is probably a well known fact but
as far as the author knows, it was never explicitly written before in the literature.

Proposition 7.1. For any corner point x of Σ it holds θ(x) ≥ 2π
3
.

Proof. The proof is fairly simple, relying on the fact that if the aperture is too small,
one can replace Σ by a suitable Steiner connection to win some length. Indeed, let x
be a corner point with aperture θ := θ(x) < 2π

3
. For any r ∈ (0, r(x)) let zr and z′r

be the two points of Σ ∩ ∂B(x, r) and let Sr be the Steiner minimal set connecting
the points zr, z

′
r and x.

x

zr
z′r z )Sr

Σ

Since the blow up limit converges to a union of two rays of aperture θ < 2π
3
, we

deduce that
H1(Σ ∩B(x, r)) = 2r + o(r)

and
H1(Sr) = l(θ)r + o(r)

where l(θ) is the length of the Steiner connection corresponding to an exact angle of
aperture θ in the unit ball. In particular l(θ) < 2, and for r small enough we have
that H1(Σ ∩B(x, r)) > H1(Sr). This allows us to take as a competitor for Σ the set

Σr := Σ\B(x, r) ∪ Sr ∪ L+
r
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where L+
r is a piece of segment added at any endpoint of Σ as in the proof of Lemma

5.3, and satisfying

H1(L+
r ) = H1(Σ ∩B(x, r))−H1(Sr) = (2− l(θ))r + o(r).

Then it comes

F(Σ) ≤ F(Σr)

≤ F(Σ) + rψ(B(x, r)\{x})− λ0[2− l(θ)]r + o(r),

λ0[2− l(θ)]r ≤ rψ(B(x, r)\{x}) + o(r)

which implies a contradiction for r small enough because ψ(B(x, r)\{x}) tends to
0.

7.2. Construction of the graph

A consequence of Theorem 4.11, is that Σ is locally a graph. We still denote TΣ the
set of triple points. For any ordinary point we denote πy the tangent line at y (which
is defined H1-a.e. on Σ), and when y is a corner point we also denote πy the line
through y orthogonal to the mediatrice of the corner resulting from taking the blow
up limit at y.

Proposition 7.2. For all x ∈ Σ\(TΣ ∪EΣ) there exists r depending on x, and there
exists a 5-Lipschitz function f : πx → R with graph denoted by Γf := {(t, f(t)); t ∈
πx} which has the following properties

Σ ∩B(x, r/4) = Γf ∩B(x, r/4), (42)
∫

πx∩B(x, r
16

)

|f ′(t)|2dt ≤ Crψ(x, r)2. (43)

Proof. Let γ := [−T, T ] → R
2 be a parametrization of Σr := Σ ∩ B(x, r), where

r < r(x) the usual radius given by Lemma 2.9. Assume without loss of generality
that πx is the first axis of R2 x is the origin. We denote p1 the orthogonal projection
on the first axis, and (γ1, γ2) the coordinates of γ.

For H1-a.e. y ∈ Σ ∩ B(x, r) we denote α(y) the smallest non oriented angle between
the lines πy and πx. In particular by the area formula one has

∫

γ(a,b)

sin(α(y))2dH1(y) =

∫ b

a

γ′2(t)
2

√

γ′1(t)
2 + γ′2(t)

2
dt.

From Theorem 4.11 we know that for every ε > 0 there exists a radius r such that

∣

∣

∣

∣

sin2 (α(y))− sin2

(

π − θ(x)

2

)
∣

∣

∣

∣

≤ ε for H1 a.e. y ∈ Σ ∩B(x, r)

which implies using Proposition 7.1 that

sin2 (α(y)) ≤ 3

4
+ ε for H1 a.e. y ∈ Σ ∩B(x, r).
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Let us choose ε = 1/400. Since Σ admits two half tangent lines at x, up to a smaller
choice of r we may assume that γ([−T, 0]) ∩B(x, r) ⊂ R

−
∗ ×R, γ([0, T ]) ∩B(x, r) ⊂

R
+
∗ × R and γ([−T, T ]) ∩ {0} × R = {x}. Taking if necessary a smaller radius r we

may also assume that Cψ(γ([−T, T ]\{0}))2 ≤ 1/400 and dH(γ([−T, T ], L∩B(x, r)) ≤
r/400 where L := TR(x) ∪ TL(x) is the blow up limit at point x. Then using (3), for
every a, b ∈ [0, T ] such that γ([a, b]) ⊂ B(x, r) we have

∫ b

a

γ′2(t)
2

√

γ′1(t)
2 + γ′2(t)

2
dt =

∫

γ([a,b])

sin(α(y))2H1(y)

≤ (3/4 + 1/400)H1(γ([a, b]))

≤ (8/10)|γ(a)− γ(b)|. (44)

because under our assumptions, H1(γ([a, b])) ≤ (1+ 1
400

)|γ(a)−γ(b)|. Now we denote

F := Σ ∩B(x, r/4). We claim that

♯{z′ ∈ F ; p1(z) = p1(z
′)} = 1 ∀z ∈ F. (45)

Let us denote F− := γ([−T, 0])∩B(x, r/4) and F+ := γ([0, T ])∩B(x, r/4). To prove
(45), it is enough to prove that

♯{z′ ∈ F±; p1(z) = p1(z
′)} = 1 ∀z ∈ F±.

It suffice to consider the case of F+ (the proof for F− will follow by the same way).
Assume the contrary, namely that there is z, z′ ∈ F+ such that p1(z) = p1(z

′). Let
I ⊂ [0, T ] be such that γ(I) is the arc that goes from z to z′ and fix r0 := |z−z′| ≤ r/2.
We know that γ(I) ∩ ∂B(z, r0) = z′, in particular γ(I) is contained in B(z, r0), and
we have

∫

I

|γ′2(t)|dt ≥ r0. (46)

On the other hand by (44), (3)

∫

I

|γ′2(t)|dt ≤
(
∫

I

√

γ′21 (t) + γ′2(t)
2dt

)
1
2

(

∫

I

|γ′2(t)|2
√

γ′21 (t) + γ′2(t)
2
dt

)
1
2

≤ H1(γ(I))
1
2

(
∫

γ(I)

sin(α(y))2 dH1(y)

)
1
2

≤ r0

√

401

400
.
8

10

≤ 9

10
r0 (47)

which gives a contradiction with (46). Therefore, one can define the application
f : p1(F ) → R such that (t, f(t)) ∈ F for all t ∈ p1(F ).

Further, using a similar argument as before we claim that for all t and t′ in p1(F ) we
have that

|f(t)− f(t′)| ≤ 5|t− t′|. (48)



A. Lemenant / About the Regularity of Average Distance Minimizers in R
2 979

Indeed assume by contradiction that (48) is not true, thus there is t and t′ such that
|f(t) − f(t′)| > |t − t′|. It is enough to consider the case when t, t′ ≤ 0 or t, t′ ≥ 0
(the general case follows from taking 0 as an intermediate point between t and t′).

We denote z := (t, f(t)), z′ := (t′, f(t′)), and r1 := |z − z′| ≥
√
6|t − t′|. As before,

let J ⊂ [0, T ] be such that γ(J) is the arc that goes from z to z′. We know that
γ(J) ∩ ∂B(z, r1) = z′, in particular γ(J) is contained in B(z, r1) ⊂ B(x, 3r/4), and
we have

∫

J

|γ′2(t)|dt ≥
√

r21 − |t− t′|2 ≥
√

5

6
r1 >

9

10
r1. (49)

On the other hand arguing as for (47),

∫

J

|γ′2(t)|dt ≤
9

10
r1 (50)

which gives a contradiction with (49) so (48) is proved.

Therefore, by a standard extension argument one can find a 5-Lipschitz function f̃
on R that is equal to f on p1(F ), that satisfies (42) and that we will still denote by

f instead of f̃ .

It remains to prove (43). Observe that by our assumptions since x = 0, dH(γ([−T, T ]∩
B(x, r), T ∩ B(x, r)) ≤ r/400, using Proposition 7.1 and the fact that Σ ∩ B(x, r/4)
is connected we also have that

p1(Σ ∩B(x, r/4)) ⊇
[

− r

16
,
r

16

]

.

On the other hand since

dH(Σ ∩B(x, r), L ∩B(x, r)) ≤ Crψ(B(x, r)\{x}),

we deduce that
α(πx, πx,r) ≤ Cψ(B(x, r)\{x}). (51)

Now since f is 5-Lipschitz, applying Proposition 6.1 with τ = 1
4
, using (7) and (51)

we get
∫

[− r
16

, r
16

]

f ′(t)2dt ≤
√
6

∫

[− r
16

, r
16

]

f ′(t)2
√

1 + f ′(t)2
dt

≤
√
6

∫

F∩B(x, 1
4
r)

sin2(α(y)) dH1(y)

≤ Crψ(x, r)2

thus (43) holds and the proposition is proved.

7.3. The equation of curvature

To complete the proof of Theorem 1.3 we will give some further remarks about the
first order equations applied to f .
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Given η, let us take Φ(x, y) := (0, η(x)χ(y)) with χ ∈ C1
0([−δ, δ]), χ = 1 on (− δ

2
, δ
2
)

and δ > 0 is chosen in such a way that supp(Φ) ⊂ supp(η)× (−δ, δ) ⊂ B(x0, r0). By
applying Proposition 5.2 with this choice of diffeomorphism Φ we obtain that

∫

Ω

divΣΦ dH1 =
1

λ0

∫

R2

〈

Φ(k(y)),
y − k(y)

|y − k(y)|

〉

dµ(y) (52)

Now for H1 a.e. x ∈ Σ ∩ Γ, a direct computation gives

divΣΦ(z) =
η′(z)f ′(z)

1 + |f ′(z)|2

thus by the area formula we obtain

∫

I

η′(z)f ′
n(z)

√

1 + |f ′
n(z)|2

dH1 =
1

λ0

∫

R2

η(π(k(y)))

〈

e2,
y − k(y)

|y − k(y)|

〉

dµ(y). (53)

An immediate consequence of the above equation is that the derivative of t 7→
f ′(t)√

1+|f ′(t)|2
in the distributional sense is a measure. Indeed, we can also write this

equation in a more natural form using disintegration. Consider the linear form T
that associate for every η ∈ Cc(I) the quantity

T (η) :=

∫

R2

η(π(k(y)))

〈

e2,
y − k(y)

|y − k(y)|

〉

dµ(y)

Since |T (η)| ≤ C‖η‖∞ by the Riesz theorem one can find a measure ψ0 on I such
that T (η) =

∫

I
η(t) dψ0(t). Then (53) becomes

− d

dt

(

f ′(t)
√

1 + |f ′(t)|2

)

= ψ0

Furthermore it is interesting to link ψ0 with ψ. Actually, we easily have that

|ψ0| ≤ π♯ψ.

In particular, f ′(t)√
1+|f ′(t)|2

∈ BV (I) and the jump set is concentrated on corner points

so that we have

− d

dt

(

f ′(t)
√

1 + |f ′(t)|2

)

= H(t)dt+
∑

(t,f(t))∈Corner

ctδt +HCant

where HCant is the cantor part, ‖H(t)‖L1(I) ≤ ψ(B(x, r)) and |ct| ≤ ψ({(t, f(t))}) for
any atom (t, f(t)) of ψ.
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