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We establish fundamental connections between the convexity of a set K in R
n, its local simplicity,

and its reduced boundary in the sense of geometric measure theory. One of the most important
results in convex analysis asserts that a closed set with non-empty interior is convex if and only if
it has a supporting hyperplane through each topological boundary point. More generally, requiring
only non-empty measure-theoretic interior, we prove that a proper closed subset of Rn is convex if
and only if it is locally simple and has a supporting hyperplane at each point of its reduced boundary,
so that the convexity information about a closed setK is essentially encoded in its reduced boundary.

We also use techniques of geometric measure theory to refine and generalize other principal theorems
about convex sets, standard results on separation and representation which have found significant
applications in functional analysis, economics, optimization, control theory, and other areas. Because
convexity is closely related to many other topics, our main theorem helps establish connections
between reduced boundaries and these other concepts and results as well.
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1. Introduction

The following is one of the most important and fundamental results in convex analysis:

Theorem 1.1 (cf. [11] Theorem 5.4, [13] Theorem 1.3.3 and Corollary 1.3.5,
[14] Theorem 2.4.12). Suppose K ⊂ R

n is closed, with non-empty interior K◦.
Then K is convex if and only if K has a supporting hyperplane through each point of
its topological boundary, ∂topK.

This theorem is quite surprising since it establishes an unexpected connection between
the topological boundary and the convexity of a set. Indeed, R. Webster ([14], p. 71)
calls it “arguably the single most important property of convex sets.�

In this paper, we use techniques from geometric measure theory to refine and general-
ize this theorem, as well as standard results concerning separation and representation
which have found significant applications in functional analysis, economics, optimiza-
tion, control theory, and other areas ([13], [15]).
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Our main theorem establishes a surprising connection between the convexity ofK and
the reduced boundary ∂∗K of K, as defined by E. De Giorgi (see [4], [5], [6]). It also
relates the convexity ofK and the local simplicity ofK, a density condition introduced
by the author in the context of sets of finite perimeter in [3], and formulated more
generally below (see Definition 3.1). It is surprising that we may deduce the convexity
of K without even considering supporting hyperplanes through points in the set
∂topK \ ∂∗K.

Theorem 1.1 (Main Theorem). Suppose K is a Lebesgue measurable proper sub-
set of Rn. Suppose either K is closed or Clmeas(K) = K. Suppose K has non-empty
measure-theoretic interior, Intmeas (K) (or suppose K has non-empty interior, K◦).
Then K is convex if and only if K is locally simple and has a supporting hyperplane
at each point p of its reduced boundary ∂∗K.

After giving some preliminary definitions and results, we show (Theorem 3.4) that
convexity implies local simplicity, for proper subsets of Rn having non-empty interior.

Several important separation theorems in convex analysis follow from a key separation
result, which asserts that if K is a closed subset of Rn having non-empty interior K◦,
and having a supporting hyperplane at each point of its topological boundary ∂topK,
then any x /∈ K can be separated from K by a supporting hyperplane of K through
a point p ∈ ∂topK (see for example [13], Theorems 1.3.3 and 1.3.4).

We use local simplicity to give measure-theoretic versions of this vital separation
result (Theorems 4.1 and 4.2), in which we suppose the existence of supporting hy-
perplanes to K at points p in the reduced boundary of K. Unlike in the standard
result, we do not require this supporting hyperplane condition to hold at all points p
in the topological boundary. Our conclusion is stronger than that of the standard re-
sult, since we show it is possible to separate x from K using a supporting hyperplane
through a point p of the reduced boundary.

Additionally, we use local simplicity to establish representation theorems for K in
terms of intersecting half-spaces. If K ⊂ R

n is closed and has non-empty interior,
and if K has a supporting hyperplane at each point p of its topological boundary
∂topK, then K is the intersection of all its supporting half-spaces through topological
boundary points (cf. [11] Theorem 5.3, [13] Theorem 1.3.3 and Corollary 1.3.5); in
particular, it is convex. In Theorems 4.3 and 4.4, we again suppose the existence of
supporting hyperplanes to K at points p of the reduced boundary of K. Our repre-
sentation for K involves the intersection of only the supporting half-spaces through
points of the reduced boundary of K.

Finally, in Section 5 we prove our main theorem, Theorem 1.1, characterizing con-
vexity in terms of local simplicity and a supporting hyperplane condition at reduced
boundary points. Because convexity is closely related to many other topics – such as
other separation theorems, nearest point estimates, etc. – our main theorem helps es-
tablish connections between reduced boundaries and these other concepts and results
as well.
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2. Notation and Boundaries

Throughout this paper, we work in R
n with n ≥ 2. We measure volume with n

dimensional Lebesgue measure Ln and surface area with (n−1) dimensional Hausdorff
measure Hn−1. We let B(p, r) and U(p, r) denote, respectively, the closed and open
balls in R

n with center p and radius r ∈ (0,∞), and we set α(n) = Ln (B(0, 1)),
where 0 = (0, 0, . . . , 0) is the origin in R

n. If A,B ⊂ R
n, A△B = (A \B) ∪ (B \A)

denotes the symmetric difference of A and B.

Given a point p ∈ R
n and a unit vector u ∈ R

n, we define the hyperplane H (p, u) =
{x : (x− p) · u = 0} and its associated open half-spacesH+(p, u) = {x : (x−p) ·u> 0}
and H−(p, u) = {x : (x− p) · u < 0} . We define the associated closed half-spaces
H+(p, u) andH−(p, u) by replacing > and < with ≥ and ≤ respectively. A hyperplane
H = H (p, u) is a supporting hyperplane for the set X ⊂ R

n at the point p ∈ R
n

provided p ∈ X, p ∈ H, and either X ⊂ H+(p, u) or X ⊂ H−(p, u). A closed half-
space in R

n is called a supporting half-space for a set X ⊂ R
n if it contains X and if

it is bounded by a supporting hyperplane for X.

If A ⊂ R
n, A and A◦ denote, respectively, the topological closure and topological

interior of A in R
n. The interior of A relative to the smallest affine subspace, or flat,

containing A is denoted relintA. When A ⊂ R
n, we let ∂topA = A ∩ Rn \ A denote

the topological boundary of A.

When X ⊂ R
n is Ln measurable, p ∈ R

n, and R > 0, we define the n dimensional
density ratio of X at p in B (p,R) as

Θn (X, p,R) = Ln (X ∩B (p,R)) / Ln (B (p,R)) ,

and we set Θn (X, p) = limR→0+ Θn (X, p,R), provided the limit exists. If X ⊂ R
n

is Ln measurable, we let ∂∗X denote the reduced boundary of X (see [4], [5], [6]).
If X ⊂ R

n and p ∈ R
n, the vector u ∈ R

n is called a measure-theoretic exterior
unit normal to X at p in the sense of Federer (cf. [7], [8] 4.5.5) provided |u| = 1,
Θn (H+(p, u) ∩X, p) = 0, and Θn (H−(p, u) \X, p) = 0. If no such u exists, we
define nX (p) = 0, while if such a u exists it is necessarily unique ([7] Theorem 3.4)
and we define nX (p) = u. Whenever X is Ln measurable and p ∈ ∂∗X, nX (p) is a
unit vector.

Some excellent references for reduced boundaries include [1], [6], [9], [10], and [12].
Also, see [2].

If X ⊂ R
n is Ln measurable, we define the measure-theoretic interior, measure-

theoretic exterior, measure-theoretic boundary, and measure-theoretic closure of X as
follows:

Intmeas (X) = {x ∈ R
n : Θn (X, x) = 1} ,

Extmeas (X) = {x ∈ R
n : Θn (X, x) = 0} ,

∂MX = R
n \ (Intmeas (X) ∪ Extmeas (X)) ,

Clmeas (X) = Intmeas (X) ∪ ∂MX = {x ∈ R
n : lim supR→0+ Θn (X, x,R) > 0} .
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3. Local Simplicity and Convexity

In [3], we introduced local simplicity in the context of sets of finite perimeter, and
we showed that it plays a major role in connecting topological and measure-theoretic
properties of sets. Here, we extend the notion to sets having locally finite perimeter,
and we establish strong connections with convexity of subsets of Rn.

Definition 3.1. A set X ⊂ R
n is called locally simple provided X is Ln measur-

able, X has locally finite perimeter, ∂∗X 6= ∅, and there exist continuous functions
δ, a, A : Rn → [0,∞) such that δ (x) > 0 for all x ∈ ∂∗X and

0 < a (x) ≤ Θn (X, x,R) ≤ A (x) < 1 (1)

whenever x ∈ ∂∗X and 0 < R < δ (x).

We observe that, if X is locally simple, then so is R
n \ X; also, Ln (X) > 0 and

Ln (Rn \X) > 0. The following theorem shows that local simplicity allows us to
work with measure-theoretic interiors and exteriors in much the same way we would
work with topological interiors and exteriors.

Theorem 3.2. Suppose X ⊂ R
n is locally simple. Then Intmeas (X) and Extmeas (X)

are open.

Proof. Taking complements in (1), we obtain

0 < 1− A (x) ≤ Θn (Rn \X, x,R) ≤ 1− a (x) < 1 (2)

whenever x ∈ ∂∗X and 0 < R < δ (x).

Suppose x ∈ Intmeas (X). If we had x ∈ ∂∗X = ∂∗ (Rn \X), then (2) would imply

lim supR→0+ Θn (Rn \X, x,R) ≥ 1− A (x) > 0,

so that Θn (Rn \X, x) 6= 0, contradicting x ∈ Intmeas (X). Therefore, x /∈ ∂∗X.
Let D = dist

(

x, ∂∗X
)

> 0. Since x ∈ Intmeas (X), there exists an r ∈ (0, D)
such that Ln (X ∩ U (x, r)) > 0. If we were to have Ln ((Rn \X) ∩ U (x, r)) > 0
as well, then the relative isoperimetric inequality ([6] 5.6.2, or [10] 3.7.14) would
give Hn−1 (∂∗X ∩ U (x, r)) > 0, implying dist

(

x, ∂∗X
)

≤ dist (x, ∂∗X) < r < D,
a contradiction. Thus, Ln ((Rn \X) ∩ U (x, r)) = 0, so that Ln (X ∩ U (x, r)) =
α (n) rn. It follows that Θn (X, z) = 1, and hence z ∈ Intmeas (X), for any z ∈ U (x, r),
so that Intmeas (X) is open.

It follows from (2) that Rn\X is locally simple, and so Extmeas (X) = Intmeas (R
n \X)

is also open.

Next, we will prove that the class of locally simple subsets of Rn includes all convex
sets, other than R

n, with non-empty interior. We will first need to establish the
following lemma, which ensures that we may replace a convex set with its closure or
with its interior without altering it on a set having positive volume.

Lemma 3.3. Suppose K ⊂ R
n is convex. Then



D. G. Caraballo / Convexity, Local Simplicity, and Reduced Boundaries of Sets 827

1) Ln (∂topK) = 0.

2) Ln (K◦ △K) = 0.

3) Ln
(

K △K
)

= 0.

Proof. Since K is convex, ∂topK = ∂topK ([13] 1.1.14), and also K is convex ([13]
1.1.9). Since K = K◦ ∪ ∂topK, it follows that ∂topK ⊂ K. Since Ln is a Radon
measure and K is Ln measurable, Θn

(

K, x
)

= 1 for Ln almost every x ∈ K (cf.

[12] 2.14) and in particular for Ln almost every x ∈ ∂topK. However, because K
is convex, there is a supporting hyperplane to K at each point p ∈ ∂topK ([13]
1.3.2), so that Θn

(

K, p, r
)

≤ 1/2 (and in particular Θn
(

K, p
)

= 1 does not hold)

for each p ∈ ∂topK, r > 0. It follows that Ln (∂topK) = Ln
(

∂topK
)

= 0. Finally,

Ln
(

K◦ △K
)

= Ln
(

K \K◦
)

= 0, by 1 ), and so 2 ) and 3 ) follow immediately.

Theorem 3.4. If K ⊂ R
n is convex, with non-empty interior K◦, then either K is

locally simple, or K = R
n.

Proof. Let K be a convex subset of Rn having non-empty interior K◦. If K = R
n

we’re done, so suppose K 6= R
n and choose x ∈ R

n \K. Since K \K◦ ⊂ ∂topK has
Lebesgue measure zero (Lemma 3.3), it is Lebesgue measurable, and therefore so is
K = K◦∪ (K \K◦). K has locally finite perimeter since it is convex. K and {x} can
be separated by a hyperplane ([13] 1.3.4), so Ln (Rn \K) > 0. SinceK◦ is non-empty,
K contains a ball and so Ln (K) > 0. The relative isoperimetric inequality ([6] 5.6.2,
or [10] 3.7.14) implies that Hn−1 (∂∗K) > 0, so that in particular ∂∗K is non-empty.

We must now establish continuous density ratio bounds at points in ∂∗K. Because
K◦ is non-empty, translating if necessary we may assume 0 =(0, 0, . . . , 0)∈K◦, so
that B (0, 2R) ⊂ K◦ for some R > 0. We fix R for the remainder of the proof and
let U ′ = U (0, R).

Suppose p ∈ ∂∗K ⊂ ∂topK. Since K has a supporting hyperplane through p, it
follows that Θn (K, p, r) ≤ 1/2 for all r > 0. Next, we note that ∂∗K ∩K◦ = ∅, since
Θn (K, x) = 1/2 for x ∈ ∂∗K and Θn (K, x) = 1 for x ∈ Intmeas (K), which contains
K◦. Thus,

p ∈ ∂∗K ⊂ R
n \K◦ ⊂ R

n \B (0, 2R) ,

which implies |p| > 2R.

Suppose w ∈ R
n satisfies |w| > R, so that dist (w,U ′) > 0. For x ∈ R

n with x 6= w,
we let −→wx = {(1− λ)w + λx : λ ≥ 0} denote the ray through x with initial point w,
and we let

Cone (w,U ′) = {x ∈ R
n : −→wx ∩ U ′ 6= ∅}

denote the cone with vertex w through the ball U ′. For w satisfying |w| > R, we
define

f (w) = Ln (Cone (w,U ′) ∩B (w, 1)) .

We note that f is continuous at each w in its domain. By symmetry, f (v) = f (w)
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provided |v| = |w|. Letting p0 = (2R, 0, 0, . . . , 0) ∈ R
n, it then follows that

a (w) =

{

(1/α (n)) f (w) , if |w| > 2R

(1/α (n)) f (p0) , if |w| ≤ 2R
(3)

is continuous and positive for all w ∈ R
n.

Since K is convex, K is convex and satisfies Ln
(

K △K
)

= 0 (Lemma 3.3). Since K
contains both p and U ′, by convexity it must contain the convex hull of their union,
conv ({p} ∪ U ′). This set, in turn, contains Cone (p, U ′) ∩ U (p,R), since |p| > 2R.
Thus, Cone (p, U ′) ∩B (p, r) ⊂ K ∩B (p, r) whenever 0 < r < R. For each such r,

Ln (K ∩B (p, r)) = Ln
(

K ∩B (p, r)
)

≥ Ln (Cone (p, U ′) ∩B (p, r)) = f (p) · rn.

The last equality follows from the fact that Cone (p, U ′)∩B (p, r) and Cone (p, U ′)∩
B (p, 1) are homothetic, with scale factor r (cf. [14] 6.2.15). Thus, for each p ∈ ∂∗K,
and for each 0 < r < R, we have

Θn (K, p, r) =
Ln (K ∩B (p, r))

α (n) rn
≥

f (p) · rn

α (n) rn
= a (p) .

It follows that K satisfies Definition 3.1 with δ (p) = R, A (p) = 1/2, and a (p) as
given in (3).

Remark 3.5. When K is bounded, we can take a (x) and A (x) to be constants in
(1).

4. Separation and Representation

It is well-known that, if K is a closed subset of Rn having non-empty interior K◦,
and having a supporting hyperplane at each point of its topological boundary ∂topK,
then any x /∈ K can be separated from K by a supporting hyperplane of K through
a point p ∈ ∂topK (see for example [13] Theorems 1.3.3 and 1.3.4).

We will now use local simplicity to give a measure-theoretic version of this important
standard result, in which we suppose only that K has a supporting hyperplane at
each point p ∈ ∂∗K ⊂ ∂topK. We also suppose only that Intmeas (K) 6= ∅, which
is more general than K◦ 6= ∅. Our conclusion is stronger, since we will show it is
possible to separate x from K using a supporting hyperplane through a point p of
the reduced boundary.

Theorem 4.1. Suppose K ⊂ R
n is locally simple and closed, with non-empty mea-

sure-theoretic interior Intmeas (K). Suppose K has a supporting hyperplane at each
point p of its reduced boundary ∂∗K. If x ∈ R

n \ K, then K has a supporting
hyperplane H = H (p, u), with p ∈ ∂∗K, such that K ⊂ H−(p, u) and x ∈ H+ (p, u).

Proof. Since K is locally simple, K is non-empty and K 6= R
n. Suppose x ∈ R

n \K.
Since K is closed, we may select r so that 0 < r < dist (x,K). By assumption, there
exists y ∈ Intmeas (K). Theorem 3.2 then implies U (y,R) ⊂ Intmeas (K) for some
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U(x, r)
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Figure 4.1.

R > 0. Let xy = {(1− λ)x+ λy : 0 ≤ λ ≤ 1}, and define qx = xy ∩ ∂topU (x, r) and
qy = xy ∩ ∂topU (y,R) . qx ∈ R

n \K by our choice of r, so that qx 6= qy in particular.

For any p ∈ R
n with p 6= x, let −→xp = {(1− λ)x+ λp : λ ≥ 0} denote the ray through

p with initial point x. We then define the cone with vertex x through the open ball
U (y,R) as follows:

C = Cone (x, U (y,R)) = {p ∈ R
n : −→xp ∩ U (y,R) 6= ∅} . (4)

Fix s ∈ R so that 0 < s < dist (qx,R
n \ C) and so that |qy − qx| /s = k is a positive

integer. Define the vector w = s (qy − qx) / |qy − qx| = (qy − qx) /k. For each i =
1, 2, . . . , k + 1, let Ui = U (qx + (i− 1)w, s), so that U1 = U (qx, s) and Uk+1 =
U (qy, s) in particular. (See Figure 4.1.)

Since r < dist (x,K), we must have Ln (K ∩ U (x, r)) = 0, which implies

Ln ((Rn \K) ∩ U (x, r)) = α (n) rn,

and therefore Ln ((Rn \K) ∩ U1) > 0. Similarly, Ln (K ∩ U (y,R)) = α (n)Rn, and
therefore Ln (K ∩ Uk+1)> 0. It follows that Ln (K ∩ Ui)> 0 and Ln ((Rn \K) ∩ Ui)>
0 for some 1 ≤ i ≤ k + 1. By the relative isoperimetric inequality ([6] 5.6.2, or [10]
3.7.14), Hn−1 (∂∗K ∩ Ui) > 0, so that in particular we may choose p ∈ ∂∗K ∩ Ui.

Let H (p, u) be a supporting hyperplane to K at p, such that K ⊂ H−(p, u). By (4),
there exists z ∈ −→xp ∩ U (y,R), with p ∈ relintxz. We cannot have x ∈ H− (p, u),
since then p ∈ xz ⊂ H− (p, u), which contradicts p ∈ H (p, u). We also cannot have
x ∈ H (p, u), for then we would have −→xp ∈ H (p, u) and therefore z ∈ H (p, u), a
contradiction.

We can now state and prove a more general version of Theorem 4.1:

Theorem 4.2. Suppose K ⊂ R
n is locally simple and K is closed or Clmeas(K) =

K. Suppose Intmeas (K) 6= ∅ (or suppose K◦ 6= ∅). Suppose K has a supporting
hyperplane at each point p of its reduced boundary ∂∗K. If x ∈ R

n \K, then K has
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a supporting hyperplane H = H (p, u), with p ∈ ∂∗K, such that K ⊂ H−(p, u) and
x ∈ H+ (p, u).

Proof. If x ∈ K◦, then U (x, r) ⊂ K◦ for some r > 0, so that Θn (K, x) = 1 and thus
x ∈ Intmeas (K). Therefore, if K◦ 6= ∅ we have Intmeas (K) 6= ∅, as in the hypotheses
of Theorem 4.1. Also, if K ⊂ R

n is locally simple and Clmeas(K) = K, Theorem 3.2
implies that

K = Clmeas (K) = Intmeas (K) ∪ ∂MK = R
n \ Extmeas (K) (5)

is closed, as in the hypotheses of Theorem 4.1. The result now follows from Theorem
4.1.

IfK ⊂ R
n is closed and has non-empty interior, and ifK has a supporting hyperplane

at each point p of its topological boundary ∂topK, then K is convex, and in fact it
equals the intersection of all its supporting half-spaces through topological boundary
points (cf. [11] Theorem 5.3, [13] Theorem 1.3.3 and Corollary 1.3.5). We will again
use local simplicity to give a measure-theoretic version of this important standard
result, in which we suppose only that K has a supporting hyperplane at each point
p of the reduced boundary of K. We also suppose only that Intmeas (K) 6= ∅, which
is more general than K◦ 6= ∅. Our representation theorem involves the intersection
of all supporting half-spaces through points of the reduced boundary of K only.

Theorem 4.3. Suppose K ⊂ R
n is locally simple and closed, with non-empty mea-

sure-theoretic interior Intmeas (K). Suppose K has a supporting hyperplane at each
point p of its reduced boundary ∂∗K. Then K = ∩H−(p, u), where the intersection
is taken over all supporting hyperplanes H (p, u) to K at points p ∈ ∂∗K, with unit
vectors u chosen so that K ⊂ H−(p, u). In particular, K is convex.

Proof. SinceK is locally simple, K 6= R
n, so we may choose x ∈ R

n\K. SinceK is a
subset of each of the H−(p, u)’s, it follows thatK ⊂ ∩H−(p, u), where the intersection
is taken over all supporting hyperplanes H (p, u) to K at points p ∈ ∂∗K, with unit
vectors u chosen so that K ⊂ H−(p, u). By Theorem 4.1, K has a supporting
hyperplane H = H (p, u), with p ∈ ∂∗K, such that K ⊂ H−(p, u) and

x ∈ H+ (p, u) = R
n \H−(p, u) ⊂ R

n \ ∩H−(p, u).

Thus, Rn \K ⊂ R
n \∩H−(p, u), since x was arbitrary, so K = ∩H−(p, u) as claimed.

Since K is the intersection of closed half-spaces, it must be convex.

More generally, we have the following:

Theorem 4.4. SupposeK ⊂ R
n is locally simple and eitherK is closed or Clmeas(K)

= K. Suppose Intmeas (K) 6= ∅ (or suppose K◦ 6= ∅). Suppose K has a supporting
hyperplane at each point p of its reduced boundary ∂∗K. Then K = ∩H−(p, u),
where the intersection is taken over all supporting hyperplanes H (p, u) to K at points
p ∈ ∂∗K, with unit vectors u chosen so that K ⊂ H−(p, u). In particular, K is convex.
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Proof. If K◦ 6= ∅, then Intmeas (K) ⊃ K◦ is also non-empty, as in the hypotheses of
Theorem 4.3. Also, if K ⊂ R

n is locally simple and Clmeas(K) = K, Theorem 3.2
and (5) imply that K is closed, as in the hypotheses of Theorem 4.3. We now apply
Theorem 4.3 to complete the proof.

5. Proof of the Main Theorem

We can now prove our main theorem, which gives a characterization for convexity in
terms of local simplicity and a supporting hyperplane condition at reduced bound-
ary points. This result fundamentally connects convexity, local simplicity, and the
reduced boundary.

Proof of Theorem 1.1. Suppose K is a Lebesgue measurable proper subset of Rn.
Suppose either K ⊂ R

n is closed or Clmeas(K) = K. Suppose Intmeas (K) 6= ∅ (if
K◦ 6= ∅, we automatically have Intmeas (K) 6= ∅).

If K is locally simple and K has a supporting hyperplane at each point p of its
reduced boundary ∂∗K, then Theorem 4.4 shows that K is convex.

Now suppose K is convex. Since Intmeas (K) 6= ∅, there exists y ∈ Intmeas (K),
and so Θn (K, y) = 1. In particular, Ln (K) > 0. Lemma 3.3, 2 ) then implies
Ln (K◦) = Ln (K) > 0, so that K◦ is non-empty. Since we also have K 6= R

n, we
can apply Theorem 3.4 to conclude K is locally simple. K must be closed, since if K
satisfies merely Clmeas(K) = K, then (5) and Theorem 3.2 imply that K is closed,
since K is locally simple. K is therefore closed and convex, with non-empty interior,
so K has a supporting hyperplane at each point p of ∂topK (cf. [11] Theorem 5.4, [13]
Theorem 1.3.2). The proof is now complete since ∂∗K ⊂ ∂topK.
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