An Affirmative Answer to a Problem Posed by Zălinescu

Liangjin Yao

Mathematics, Irving K. Barber School, UBC Okanagan, Kelowna, British Columbia V1V 1V7, Canada ljinyao@interchange.ubc.ca

Received: November 10, 2009 Revised manuscript received: June 6, 2010

Recently, in [5] Zălinescu posed a question about the characterization of the intrinsic core of the Minkowski sum of two graphs associated with two maximal monotone operators. In this note we give an affirmative answer.

Keywords: Convex function, convex set, Fenchel conjugate, Fitzpatrick function, intrinsic core, maximal monotone operator, monotone operator, multifunction, relative algebraic interior, representative, set-valued operator

2010 Mathematics Subject Classification: Primary 47H05; Secondary 49J53, 52A41

1. Introduction

We suppose throughout this note that X is a real reflexive Banach space with norm $\|\cdot\|$ and dual product $\langle\cdot,\cdot\rangle$. We now introduce some notation. Let $A: X \rightrightarrows X^*$ be a *set-valued operator* or *multifunction* whose graph is defined by

gra
$$A := \{(x, x^*) \in X \times X^* \mid x^* \in Ax\}.$$

The domain of A is dom $A := \{x \in X \mid Ax \neq \emptyset\}$. Recall that A is monotone if for all $(x, x^*), (y, y^*) \in \operatorname{gra} A$ we have

$$\langle x - y, x^* - y^* \rangle \ge 0,$$

and A is maximal monotone if A is monotone and A has no proper monotone extension (in the sense of graph inclusions).

The *Fitzpatrick function* of A (see [1]) is given by

$$F_A: (x, x^*) \mapsto \sup_{(a, a^*) \in \operatorname{gra} A} \left(\langle x, a^* \rangle + \langle a, x^* \rangle - \langle a, a^* \rangle \right).$$
(1)

For a function $f: X \to]-\infty, +\infty]$, the domain is dom $f := \{x \in X \mid f(x) < +\infty\}$ and $f^*: X^* \to [-\infty, +\infty]: x^* \mapsto \sup_{x \in X} (\langle x, x^* \rangle - f(x))$ is the Fenchel conjugate of f.

ISSN 0944-6532 / $\$ 2.50 \odot Heldermann Verlag

Given $F: X \times X^* \to]-\infty, +\infty]$, we say F is a representative of a maximal monotone operator A if F is lower semicontinuous and convex with $F \ge \langle \cdot, \cdot \rangle$, $F^* \ge \langle \cdot, \cdot \rangle$ and

$$\operatorname{gra} A = \{ (x, x^*) \mid F(x, x^*) = \langle x, x^* \rangle \}.$$

Following [2], it will be convenient to set $F^{\intercal}: X^* \times X :\rightarrow]-\infty, +\infty]: (x^*, x) \mapsto F(x, x^*)$, where $F: X \times X^* \rightarrow]-\infty, +\infty]$, and similarly for a function defined on $X^* \times X$.

We define \widehat{F} (see [5]) by

$$\widehat{F}(x,x^*) := F(x,-x^*).$$

Let $a = (x, x^*), b = (y, y^*) \in X \times X^*$, we also set (see [4]) by

$$\lfloor a, b \rfloor = \langle x, y^* \rangle + \langle y, x^* \rangle.$$

Given a subset D of X, \overline{D} is the *closure*, conv D is the *convex hull*, and aff D is the *affine hull*. The *conic hull* of D is denoted by cone $D := \{\lambda x \mid \lambda \ge 0, x \in D\}$. The *indicator function* $\iota_D : X \to [-\infty, +\infty]$ of D is defined by

$$x \mapsto \begin{cases} 0, & \text{if } x \in D; \\ +\infty, & \text{otherwise.} \end{cases}$$

The intrinsic core or relative algebraic interior of D, written as ^{i}D in [6], is

 ${}^{i}D := \{ a \in D \mid \forall x \in \operatorname{aff}(D - D), \, \exists \delta > 0, \, \forall \lambda \in [0, \delta] : a + \lambda x \in D \}.$

We define ${}^{ic}D$ by

$${}^{ic}D := egin{cases} {}^iD, & ext{if aff } D ext{ is closed}; \ arnothing, & ext{otherwise}. \end{cases}$$

Zălinescu posed the following problem in [5]: Let $A, B : X \implies X^*$ be maximal monotone. Is the implication

$${}^{ic}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right)\right] \neq \varnothing \quad \Rightarrow \quad {}^{ic}\left[\operatorname{dom} F_A - \operatorname{dom}\widehat{F_B}\right] \neq \varnothing$$

true? Theorem 2.7 provides an affirmative answer to this question. It further shows that these two sets actually are equal.

2. Main result

Definition 2.1 (Fitzpatrick family). Let $A: X \Rightarrow X^*$ be a maximal monotone operator. The associated *Fitzpatrick family* \mathcal{F}_A consists of all functions $F: X \times X^* \rightarrow]-\infty, +\infty]$ that are lower semicontinuous and convex, and that satisfy $F \geq \langle \cdot, \cdot \rangle$, and $F = \langle \cdot, \cdot \rangle$ on gra A.

Fact 2.2 (Fitzpatrick, see [1, Theorem 3.10]). Let $A: X \rightrightarrows X^*$ be a maximal monotone operator. Then for every $(x, x^*) \in X \times X^*$,

$$F_A(x, x^*) = \min \{F(x, x^*) \mid F \in \mathcal{F}_A\}$$

and $F_A^{*\mathsf{T}}(x, x^*) = \max \{F(x, x^*) \mid F \in \mathcal{F}_A\}.$ (2)

Fact 2.3 (Simons, see [4, Lemma 20.4(b)]). Let $A : X \rightrightarrows X^*$ be maximal monotone and $a := (x, x^*) \in X \times X^*$ with $\langle x, x^* \rangle = 0$. Suppose that there exists $u \in \mathbb{R}$ such that

$$\left\lfloor \operatorname{gra} A, a \right\rfloor = \{u\}$$

Then

$$\lfloor \operatorname{dom} F_A, a \rfloor = \{u\}.$$

Theorem 2.4. Let $A, B : X \rightrightarrows X^*$ be maximal monotone. Then

$$\overline{\operatorname{aff}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]} = \overline{\operatorname{aff}\left[\operatorname{dom} F_A - \operatorname{dom}\widehat{F_B}\right]}.$$
(3)

Proof. We do and can suppose $(0,0) \in \operatorname{gra} A$ and $(0,0) \in \operatorname{gra} B$. We first show

$$\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right] \subseteq \overline{\operatorname{aff} \left[\operatorname{gra} A - \operatorname{gra}(-B)\right]}.$$
(4)

Suppose to the contrary that there exists $c \in X \times X^*$ such that $c \in [\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}]$ but $c \notin \operatorname{aff}[\operatorname{gra} A - \operatorname{gra}(-B)]$. By the Separation Theorem, there exist $a := (x, x^*) \in X \times X^*$ and $\delta \in \mathbb{R}$ such that

$$\lfloor a, c \rfloor > \delta > \sup\left\{ \lfloor a, e \rfloor \mid e \in \overline{\operatorname{aff}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]} \right\}.$$
(5)

Since $(0,0) \in \operatorname{gra} A$, $(0,0) \in \operatorname{gra} B$ and $\operatorname{\overline{aff}} [\operatorname{gra} A - \operatorname{gra}(-B)]$ is a closed subspace, we have $\delta > 0$ and $\lfloor a, b - d \rfloor = 0$, $\forall b \in \operatorname{gra} A$, $\forall d \in \operatorname{gra}(-B)$. Thus,

$$\lfloor a, \operatorname{gra} A \rfloor = \{0\} = \lfloor a, \operatorname{gra}(-B) \rfloor = \lfloor (-x, x^*), \operatorname{gra} B \rfloor.$$
(6)

By $(0,0) \in \operatorname{gra} A$ and $(0,0) \in \operatorname{gra} B$ again,

$$F_A(a) = F_A(x, x^*) = 0, \qquad F_B(-x, x^*) = 0.$$
 (7)

Since $F_A(x, x^*) \ge \langle x, x^* \rangle$ and $F_B(-x, x^*) \ge \langle -x, x^* \rangle$, by (7), $\langle x, x^* \rangle = 0$. Thus by (6) and Fact 2.3,

$$[a, \operatorname{dom} F_A] = \{0\} = \lfloor (-x, x^*), \operatorname{dom} F_B \rfloor = \lfloor a, \operatorname{dom} \widehat{F_B} \rfloor$$

Thus, $\lfloor a, \operatorname{dom} F_A - \operatorname{dom} \widehat{F_B} \rfloor = \{0\}$, which contradicts (5). Hence

$$\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right] \subseteq \overline{\operatorname{aff} \left[\operatorname{gra} A - \operatorname{gra}(-B)\right]}.$$
(8)

And thus $\overline{\operatorname{aff}[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}]} \subseteq \overline{\operatorname{aff}[\operatorname{gra} A - \operatorname{gra}(-B)]}$. Hence

$$\overline{\operatorname{aff}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]} = \operatorname{aff}\left[\operatorname{dom} F_A - \operatorname{dom}\widehat{F_B}\right]$$

Fact 2.5 (Zălinescu, see [5, Lemma 2 and Theorem 3]). Let $A, B : X \rightrightarrows X^*$ be maximal monotone, and let F_1, F_2 be representatives of A, B, respectively. Then

$${}^{ic}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right] = {}^{ic}\left[\operatorname{conv}(\operatorname{gra} A - \operatorname{gra}(-B))\right]$$

and

$${}^{ic}\left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] \subseteq \left[\operatorname{gra} A - \operatorname{gra}(-B)\right]$$
$$\subseteq \operatorname{conv}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right] \subseteq \left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right].$$

If ${}^{ic}[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}] \neq \emptyset$, then

$${}^{ic}\left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] = {}^{ic}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right] = {}^{ic}\left[\operatorname{conv}(\operatorname{gra} A - \operatorname{gra}(-B))\right].$$
(9)

Remark 2.6. If X is finite-dimensional, the intrinsic core of a convex set $D \subseteq X$ is the same as the relative interior of D in the sense of Rockafellar [3]. Then $i^{c}[\operatorname{dom} F_{1} - \operatorname{dom} \widehat{F_{2}}] = i[\operatorname{dom} F_{1} - \operatorname{dom} \widehat{F_{2}}] \neq \emptyset$ by [3, Theorem 6.2]. Thus, (9) always holds.

Our main result comes the following which provides an affirmative answer to the question posed by Zălinescu.

Theorem 2.7. Let $A, B : X \rightrightarrows X^*$ be maximal monotone such that ${}^{ic} [\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B))] \neq \emptyset$. Then

$${}^{ic}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right] = {}^{ic}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right)\right] = {}^{ic}\left[\operatorname{dom} F_A - \operatorname{dom}\widehat{F_B}\right].$$
(10)

Moreover, if F_1, F_2 are representatives of A, B, respectively, then

$${}^{ic}\left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] = {}^{ic}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right)\right] = {}^{ic}\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right].$$
(11)

Proof. Let $a \in {}^{ic} [\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B))]$. Then we have $a \in [\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}]$ and cone $[\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B)) - a]$ is a closed subspace. By Theorem 2.4,

$$\operatorname{cone}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right) - a\right] \subseteq \operatorname{cone}\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B} - a\right]$$
$$\subseteq \operatorname{aff}\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B} - a\right] = \operatorname{aff}\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right] - \{a\}$$
$$\subseteq \operatorname{\overline{aff}}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right] - \{a\} \subseteq \operatorname{\overline{aff}}\left[\operatorname{gra} A - \operatorname{gra}(-B) - a\right]$$
$$= \operatorname{\overline{aff}}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right) - a\right] \subseteq \operatorname{cone}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right) - a\right].$$

Hence cone $[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B} - a] = \operatorname{cone} [\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B)) - a]$ is a closed subspace. Thus $a \in {}^{ic}[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}]$. By Fact 2.5,

$${}^{ic}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right] = {}^{ic}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right)\right] = {}^{ic}\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right].$$

And by Fact 2.2,

$$\operatorname{conv}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right) \subseteq \left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] \subseteq \left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right]$$

Similar to the proof above, see that (11) holds.

Remark 2.8. The referee pointed out the following alternative proof of equation (10) in Theorem 2.7. Let $C := \operatorname{gra} A - \operatorname{gra}(-B)$ and $D := \operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}$. Since ${}^{ic}(\operatorname{conv} C) \neq \emptyset$, we have that $\operatorname{aff}(\operatorname{conv} C) = \operatorname{aff} C$ is closed. By Fact 2.2, $C \subseteq D$ and D is convex. Then we have that $\operatorname{conv} C \subseteq D$. Using Theorem 2.4, we get

 $\operatorname{aff}(\operatorname{conv} C) \subseteq \operatorname{aff} D \subseteq \overline{\operatorname{aff} C} = \operatorname{aff}(\operatorname{conv} C).$

Therefore, $\operatorname{aff}(\operatorname{conv} C) = \operatorname{aff} D$ and so $\operatorname{aff} D$ is closed. Thus by $\operatorname{conv} C \subseteq D$ again, $i(\operatorname{conv} C) \subseteq iD$ and hence $ic(\operatorname{conv} C) \subseteq icD$. By Fact 2.5, (10) holds.

Theorem 2.9. Let $A, B : X \rightrightarrows X^*$ be maximal monotone, and F_1, F_2 be representatives of A, B, respectively. Then

$${}^{ic}\left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] = {}^{ic}\left[\operatorname{conv}\left(\operatorname{gra} A - \operatorname{gra}(-B)\right)\right] = {}^{ic}\left[\operatorname{gra} A - \operatorname{gra}(-B)\right].$$
(12)

Proof. We consider two cases.

Case 1. ${}^{ic} [\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B))] = \varnothing$. Assume that ${}^{ic} [\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}] \neq \varnothing$. Then by Fact 2.5, ${}^{ic} [\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}] = {}^{ic} [\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B))] = \varnothing$. This a contradiction.

Case 2. $ic [\operatorname{conv}(\operatorname{gra} A - \operatorname{gra}(-B))] \neq \emptyset$. Apply Theorem 2.7.

Combining the above results, we see that (12) holds.

Corollary 2.10. Let $A, B : X \rightrightarrows X^*$ be maximal monotone, and F_1, F_2 be representatives of A, B, respectively. Assume ${}^{ic} [\operatorname{conv} (\operatorname{gra} A - \operatorname{gra}(-B))] \neq \emptyset$. Then

$$\left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] = \overline{\operatorname{conv}\left[(\operatorname{gra} A - \operatorname{gra}(-B)\right]} = \overline{\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]}.$$
 (13)

In particular,

$$\overline{\left[\operatorname{dom} F_A - \operatorname{dom} \widehat{F_B}\right]} = \overline{\operatorname{conv}\left[\left(\operatorname{gra} A - \operatorname{gra}(-B)\right)\right]} = \overline{\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]}.$$

Proof. Given a convex set $D \subseteq X$, assume that ${}^{ic}D \neq \emptyset$, then $\overline{{}^{ic}D} = \overline{D}$. By Theorem 2.9,

$$\left[\operatorname{dom} F_1 - \operatorname{dom} \widehat{F_2}\right] = \overline{\operatorname{conv}\left[(\operatorname{gra} A - \operatorname{gra}(-B)\right]}$$
$$= \overline{ic\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]} \subseteq \overline{\left[\operatorname{gra} A - \operatorname{gra}(-B)\right]}$$

Hence (13) holds.

Acknowledgements. The author thanks Dr. Heinz Bauschke and Dr. Xianfu Wang for valuable discussions. The author also thanks the referee for his/her insightful and pertinent comments.

 \square

References

- S. Fitzpatrick: Representing monotone operators by convex functions, in: Functional Analysis and Optimization, Workshop / Miniconference (Canberra, 1988), Proc. Cent. Math. Anal. Aust. Natl. Univ. 20, Australian National University, Canberra (1988) 59–65.
- [2] J.-P. Penot: The relevance of convex analysis for the study of monotonicity, Nonlinear Anal. 58 (2004) 855–871.
- [3] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).
- [4] S. Simons: From Hahn-Banach to Monotonicity, Springer, Berlin (2008).
- [5] C. Zălinescu: A new convexity property for monotone operators, J. Convex Analysis 13 (2006) 883–887.
- [6] C. Zălinescu: Convex Analysis in General Vector Spaces, World Scientific, Singapore (2002).