Type One Functions and Voronoi's Theorem

Kazuomi Sawatani

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0001, Japan

Takao Watanabe*

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0001, Japan twatanabe@math.sci.osaka-u.ac.jp

Received: September 04, 2009

Voronoi's theorem characterizes local maxima of the Hermite invariant $m/\det^{1/n}$ defined on the open cone of positive definite n by n symmetric matrices, where m denotes the arithmetical minimum function. In this paper, we extend Voronoi's theorem to functions of the form m/ϕ when ϕ is a type one function. Moreover, we study the Hermite like constant defined from m/ϕ .

Primary 52A40; Secondary 11H55 Mathematics Subject Classification:

1. Introduction

Let V_n be the vector space of real $n \times n$ symmetric matrices, P_n the open cone of positive definite matrices in V_n and P_n^{semi} the closure of P_n in V_n . For $a \in P_n^{\text{semi}}$, m(a)denotes the inferior $\inf_{x \in \mathbb{Z}^n \setminus \{0\}} txax$, where \mathbb{Z}^n is the lattice of integral vectors in an *n*-dimensional real Euclidean space. The function γ on P_n defined by

$$\gamma(a) = \frac{m(a)}{\det(a)^{1/n}}$$

for $a \in P_n$ is called the Hermite invariant, and its maximum $\gamma_n = \max_{a \in P_n} \gamma(a)$ is known as the Hermite constant. In [6], Poor and Yuen introduced another Hermite like constant c_n , which is defined by

$$c_n = \min_{a \in P_n} \frac{w(a)}{m(a)} = \left(\max_{a \in P_n} \frac{m(a)}{w(a)}\right)^{-1}$$

where w(a) denotes the dyadic trace of a. The constant c_n is connected with γ_n by means of the inequality

$$\frac{1}{c_n} \le \frac{\gamma_n^2}{n} \,. \tag{1}$$

*The second author was supported by the Japan Society for the Promotion of Science, Grant-in-Aid for fundamental research (No. 19540026).

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

A fundamental tool to study γ_n is Voronoï's theorem, which states that γ attains a local maximum on $a \in P_n$ if and only if a is perfect and eutactic. In some proofs of Voronoï's theorem, the convexity of the domain P_n and the concavity of both functions m and det^{1/n} play key roles. Poor and Yuen [5] investigated a family of such kind of functions as m, det^{1/n} and w. They named this family type one functions. In general, for a given type one function ϕ , one can consider the function $F_{\phi} = m/\phi$ and its Hermite like constant $\delta_{\phi} = \sup_{a \in P_n} F_{\phi}(a)$. The purpose of this paper is to study δ_{ϕ} and an analog of Voronoï's theorem for F_{ϕ} .

Definition and some properties of type one functions are given in Section 2. For a type one function ϕ , the corresponding convex subset

$$K_1(\phi) = \{ a \in P_n^{\text{semi}} \mid \phi(a) \ge 1 \}$$

plays an important role. We will introduce the notion of semikernel for convex subsets of P_n^{semi} , and then prove that the mapping $\phi \mapsto K_1(\phi)$ gives a one to one correspondence between type one functions and semikernels.

An analog of Voronoï's theorem for F_{ϕ} is considered for differentiable type one functions. For a such ϕ , we will introduce the notion of ϕ -eutaxy for elements in P_n , and prove that F_{ϕ} attains a local maximum on $a \in P_n$ if and only if a is perfect and ϕ -eutactic.

For any type one class function ϕ , we observe that there exist positive constants C_1 and C_2 such that $C_1m \leq \phi \leq C_2w$. Namely, m (resp. w) is the smallest (resp. largest) one among type one class functions up to constant multiples. Thus both Hermite like constants $\delta_{\phi} = \sup_{a \in P_n} m(a)/\phi(a)$ and $\hat{\delta}_{\phi} = \sup_{a \in P_n} \phi(a)/w(a)$ are finite for any type one class function ϕ . If ϕ° denotes the dual type one class function of ϕ , then the equality $\delta_{\phi} = \hat{\delta}_{\phi^{\circ}}$ will be proved in Section 4. In particular, we obtain the following expression of Hermite's constant γ_n :

$$\gamma_n = \delta_{\det^{1/n}} = \widehat{\delta}_{(\det^{1/n})^\circ} = n \sup_{a \in P_n} \frac{\det(a)^{1/n}}{w(a)}$$

It is convenient to consider the constant $\xi_{\phi} = \delta_{\phi} \cdot \hat{\delta}_{\phi}$ since it has the invariant property $\xi_{C\phi} = \xi_{\phi} = \xi_{\phi^{\circ}}$ for any constant C > 0. By definition, we have $\xi_m = \xi_w = 1/c_n$ and $\xi_{\det^{1/n}} = \gamma_n^2/n$. The extreme property of w leads us to the inequality

$$\xi_w \le \xi_\phi \tag{2}$$

for any type one class function ϕ . Thus the inequality (1) may be viewed as a particular case of (2).

Notation. The vector space V_n is equipped with the inner product $\langle a_1, a_2 \rangle = \operatorname{tr}(a_1 a_2)$ for $a_1, a_2 \in V_n$. The identity matrix in V_n is denoted by I_n . For $a \in V_n$, $\sigma(a)$ stands for the operator norm of a, i.e.,

$$\sigma(a) = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \sqrt{\frac{t(ax)ax}{t_{xx}}} \,.$$

For a constant $c \in \mathbb{R}$, $\mathbb{R}_{>c}$ and $\mathbb{R}_{\geq c}$ stand for the open interval $(c, +\infty)$ and the closed interval $[c, +\infty)$, respectively.

2. Type one functions and semikernels

We start with definition of type one functions.

Definition. A function $\phi : P_n^{\text{semi}} \to \mathbb{R}_{\geq 0}$ is called a type one function if ϕ satisfies the following conditions:

(TO₁) $\phi(\theta a) = \theta \phi(a)$ for all $a \in P_n^{\text{semi}}$ and $\theta \ge 0$,

(TO₂) $\phi(a_1 + a_2) \ge \phi(a_1) + \phi(a_2)$ for all $a_1, a_2 \in P_n^{\text{semi}}$,

(TO₃) $\phi(a) > 0$ for all $a \in P_n$.

A type one function ϕ is called a type one class function if $\phi({}^t gag) = \phi(a)$ holds for all $a \in P_n^{\text{semi}}$ and $g \in GL_n(\mathbb{Z})$.

It is known that a type one function is continuous on P_n (cf. [4, Proposition 2.2] or [7, Theorem 10.1]).

Example 2.1 The trace tr and the smallest eigenvalue λ_1 are type one functions, but not type one class functions. The reduced determinant det^{1/n} and the arithmetical minimum m are type one class functions.

For a type one function ϕ , the dual type one function $\phi^{\circ}: P_n^{\text{semi}} \to \mathbb{R}_{\geq 0}$ is defined to be

$$\phi^{\circ}(a) = \inf_{b \in P_n} \frac{\langle a, b \rangle}{\phi(b)}.$$

If ϕ is a type one class function, then so is ϕ° . The dual type one class function of m is denoted by w, which is called the dyadic trace. The dual type one class function of det^{1/n} is $n \det^{1/n}$.

Definition. Let K be a convex subset of P_n^{semi} such that $0 \notin K$, $\mathbb{R}_{\geq 1} \cdot K = K$ and $\mathbb{R}_{>0} \cdot K \supset P_n$.

- (1) K is called a kernel if K is closed in P_n^{semi} .
- (2) K is called a semikernel if the following three conditions are satisfied:
 - (SK₁) $K \cap (P_n \cup \{0\})$ is closed in $P_n \cup \{0\}$,
 - (SK₂) { $\theta \ge 0 \mid \theta a \in K$ } is closed in $\mathbb{R}_{>0}$ for any $a \in K$,
 - (SK₃) $a + b \in K$ for all $a \in K$ and $b \in P_n^{\text{semi}}$.

Lemma 2.2. A kernel is a semikernel.

Proof. Let K be a kernel. It is obvious that K satisfies (SK_1) and (SK_2) , so we show that K satisfies the condition (SK_3) . Let $a \in K$ and $b \in P_n$. There exists a $\theta > 0$ such that $\theta b \in K$. We have

$$\left(1-\frac{1}{1+\theta}\right)a+\frac{1}{1+\theta}\theta b\in K,$$

thus

$$a+b \in \frac{1+\theta}{\theta} \cdot K \subset K.$$

This implies (SK_3) since K is closed.

Lemma 2.3. If K is a semikernel, then K is contained in the closure $\overline{K \cap P_n}$ of $K \cap P_n$ in P_n^{semi} .

Proof. There exists a $\theta > 0$ such that $\theta I_n \in K$. For any $a \in K$ and $0 \le \mu \le 1$, we have $(1 - \mu)a + \mu\theta I_n \in K$. Since $(1 - \mu)a + \mu\theta I_n \in P_n$ for $0 < \mu \le 1$, a is an adherent point of $K \cap P_n$.

The dual K^{\sqcup} of a semikernel K is defined to be

$$K^{\perp} = \{ a \in V_n \mid \langle a, b \rangle \ge 1 \text{ for all } b \in K \}.$$

Lemma 2.4. For any semikernel $K, K^{\sqcup} \subset P_n^{\text{semi}}$ and K^{\sqcup} is a kernel.

Proof. Let $a \in K^{\sqcup}$ and $x \in \mathbb{R}^n$. Since $x^t x \in P_n^{\text{semi}}$, there exist $b_m \in P_n$ and $\nu_m > 0$ (m = 1, 2, ...) such that $\nu_m b_m \in K$ and $b_m \to x^t x$ as $m \to \infty$. Then we have $\langle \nu_m b_m, a \rangle \geq 1$, i.e., $\langle b_m, a \rangle \geq 1/\nu_m > 0$. Therefore,

$${}^{t}xax = \langle x^{t}x, a \rangle = \left\langle \lim_{m \to \infty} b_{m}, a \right\rangle = \lim_{m \to \infty} \langle b_{m}, a \rangle \ge 0$$

holds for all $x \in \mathbb{R}^n$, and hence $a \in P_n^{\text{semi}}$. This proves $K^{\sqcup} \subset P_n^{\text{semi}}$. It is obvious that K^{\sqcup} is a closed convex subset, $\mathbb{R}_{\geq 1} \cdot K^{\sqcup} \subset K^{\sqcup}$ and $0 \notin K^{\sqcup}$. We have to show $\mathbb{R}_{>0} \cdot K^{\sqcup} \supset P_n$. Since $0 \notin K$ and $K \cap (P_n \cup \{0\})$ is closed in $P_n \cup \{0\}$, there exists a $\mu_K > 0$ depending only on K such that

$$K \cap (P_n \cup \{0\}) \subset \{b \in P_n \cup \{0\} \mid \sigma(b) \ge \mu_K\}.$$

By taking the closures of both sides and Lemma 2.3,

$$K \subset \{ b \in P_n^{\text{semi}} \mid \sigma(b) \ge \mu_K \}.$$

Let $a \in P_n$ and $\lambda_1(a)$ the smallest eigenvalue of a. Then we have

$$\langle a, b \rangle \ge \langle \lambda_1(a) I_n, b \rangle = \lambda_1(a) \operatorname{tr}(b) \ge \lambda_1(a) \sigma(b) \ge \lambda_1(a) \mu_K$$

for all $b \in K$. This implies $a \in \lambda_1(a)\mu_K \cdot K^{\sqcup}$, i.e., $a \in \mathbb{R}_{>0} \cdot K^{\sqcup}$.

If K is a kernel, then $K^{\sqcup \sqcup}$ coincides with K (see [1, p. 128]).

For a type one function ϕ , we set

$$K_1(\phi) = \{ a \in P_n^{\text{semi}} \mid \phi(a) \ge 1 \}.$$

It is easy to check that $K_1(\phi)$ is a semikernel. If ϕ is upper semicontinuous on P_n^{semi} , then $K_1(\phi)$ is a kernel. We recall that ϕ is said to be upper semicontinuous at a if

$$\phi(a) = \limsup_{b \to a} \phi(b) = \lim_{\epsilon \downarrow 0} (\sup\{\phi(b) \mid \sigma(a-b) \le \epsilon, \ b \in P_n^{\text{semi}}\})$$

Conversely, for a semikernel K, define the function $\psi(K, \cdot) : P_n^{\text{semi}} \to \mathbb{R}_{>0}$ by

$$\psi(K,a) = \max\left(\left\{\theta > 0 \mid a \in \theta \cdot K\right\} \cup \{0\}\right).$$

The existence of this maximum follows from the condition (SK_2) .

Lemma 2.5. For any semikernel K, $\psi(K, \cdot)$ is a type one function. If K is a kernel, then $\psi(K, \cdot)$ is upper semicontinuous on P_n^{semi} .

Proof. Let $a \in P_n^{\text{semi}}$. If $\psi(K, a) = \alpha$, then

$$\{\theta > 0 \mid a \in \theta \cdot K\} \cup \{0\} = [0, \alpha],$$

and hence

$$\{\,\theta>0\mid \mu a\in\theta\cdot K\,\}\cup\{0\}=[0,\mu\alpha]$$

for any $\mu \ge 0$. Therefore, we get $\psi(K, \mu a) = \mu \alpha = \mu \psi(K, a)$.

For $a_1, a_2 \in P_n^{\text{semi}}$, set $\alpha_1 = \psi(K, a_1)$ and $\alpha_2 = \psi(K, a_2)$. If $\alpha_1 > 0$ and $\alpha_2 > 0$, then $(1/\alpha_1)a_1 \in K$, $(1/\alpha_2)a_2 \in K$ and

$$a_{1} + a_{2} = \alpha_{1} \cdot \frac{1}{\alpha_{1}} a_{1} + \alpha_{2} \cdot \frac{1}{\alpha_{2}} a_{2}$$

= $(\alpha_{1} + \alpha_{2}) \frac{\alpha_{1} \cdot (1/\alpha_{1})a_{1} + \alpha_{2} \cdot (1/\alpha_{2})a_{2}}{\alpha_{1} + \alpha_{2}} \in (\alpha_{1} + \alpha_{2}) \cdot K.$

This gives

$$\psi(K, a_1 + a_2) \ge \alpha_1 + \alpha_2 = \psi(K, a_1) + \psi(K, a_2)$$

If $\alpha_1 > 0$ and $\alpha_2 = 0$, then $(1/\alpha_1)a_1 \in K$, $(1/\alpha_1)a_2 \in P_n^{\text{semi}}$, and

$$a_1 + a_2 = \alpha_1 \{ (1/\alpha_1)a_1 + (1/\alpha_1)a_2 \} \in \alpha_1 \cdot K.$$

This gives

$$\psi(K, a_1 + a_2) \ge \alpha_1 = \alpha_1 + \alpha_2 = \psi(K, a_1) + \psi(K, a_2)$$

If $\alpha_1 = \alpha_2 = 0$, then we have immediately

$$\psi(K, a_1 + a_2) \ge 0 = \alpha_1 + \alpha_2 = \psi(K, a_1) + \psi(K, a_2).$$

For $a \in P_n$, there exists a $\theta > 0$ such that $a \in \theta \cdot K$. Then we have $\psi(K, a) \ge \theta > 0$. This completes the proof of the first half of the Lemma.

We assume K is a kernel. Let $a \in P_n^{\text{semi}}$ and $\theta = \psi(K, a)$. Choose a sequence $\{a_n\}$ in P_n^{semi} such that $a_n \to a$ as $n \to \infty$. For any $\epsilon > 0$, $P_n^{\text{semi}} \setminus (\theta + \epsilon) \cdot K$ is open in P_n^{semi} and contains a. Therefore, $\psi(K, a_n) < \theta + \epsilon$ for sufficiently large n, and hence

$$\limsup_{n \to \infty} \psi(K, a_n) \le \theta + \epsilon \,.$$

Since this holds for any $\epsilon > 0$, we have

$$\limsup_{n \to \infty} \psi(K, a_n) \le \theta = \psi(K, a)$$

for any sequence $\{a_n\}$ such that $a_n \to a$. Thus $\psi(K, \cdot)$ is upper semicontinuous at a.

Proposition 2.6. For any type one function ϕ and any semikernel K, one has

$$\psi(K_1(\phi), \cdot) = \phi$$
 and $K_1(\psi(K, \cdot)) = K$.

Proof. For any $a \in P_n^{\text{semi}}$, we have

$$\psi(K_1(\phi), a) = \max\left(\left\{ \begin{array}{l} \theta > 0 \mid a \in \theta \cdot K_1(\phi) \right\} \cup \{0\}\right) \\ = \begin{cases} \alpha & \text{if } \phi(a) = \alpha > 0 \\ 0 & \text{if } \phi(a) = 0 \end{cases} \\ = \phi(a), \end{cases}$$

so that $\psi(K_1(\phi), \cdot) = \phi$.

If K is a semikernel, then

$$a \in K_1(\psi(K, \cdot)) \Leftrightarrow \psi(K, a) \ge 1 \Leftrightarrow a \in 1 \cdot K = K,$$

and hence $K_1(\psi(K, \cdot)) = K$.

By Proposition 2.6, type one functions and upper semicontinuous type one functions are bijectively corresponding to semikernels and kernels, respectively.

Lemma 2.7. For any semikernel K, $\psi(K, \cdot)^{\circ} = \psi(K^{\sqcup}, \cdot)$.

Proof. For any $a \in P_n^{\text{semi}}$, we have

$$\psi(K,a)^{\circ} = \inf_{b \in P_n} \frac{\langle a, b \rangle}{\psi(K,b)} = \inf_{b \in P_n} \left\langle a, \frac{1}{\psi(K,b)} b \right\rangle = \inf_{b \in K \cap P_n} \langle a, b \rangle,$$

and

$$\psi(K^{\sqcup},a) = \max\left(\left\{\,\theta>0 \mid a\in\theta\cdot K^{\sqcup}\,\right\}\cup\{0\}\right) = \inf_{b\in K}\langle a,b\rangle.$$

From Lemma 2.3, it follows

$$\inf_{b \in K} \langle a, b \rangle \le \inf_{b \in K \cap P_n} \langle a, b \rangle = \inf_{b \in \overline{K \cap P_n}} \langle a, b \rangle \le \inf_{b \in K} \langle a, b \rangle,$$

and hence $\psi(K, \cdot)^{\circ} = \psi(K^{\sqcup}, \cdot).$

Corollary 2.8. For any type one function ϕ , ϕ° is upper semicontinuous on P_n^{semi} .

Proof. This immediately follows from Lemmas 2.4, 2.5, 2.7 and Proposition 2.6. \Box

If ϕ is a type one function and upper semicontinuous on P_n^{semi} , then we have

$$\phi^{\circ\circ} = \psi(K_1(\phi), \cdot)^{\circ\circ} = \psi(K_1(\phi)^{\sqcup}, \cdot)^{\circ} = \psi(K_1(\phi)^{\sqcup \sqcup}, \cdot) = \psi(K_1(\phi), \cdot) = \phi$$

because of $K^{\sqcup \sqcup} = K$ for a kernel K. The next proposition shows a relation between ϕ and $\phi^{\circ\circ}$ for general ϕ .

Proposition 2.9. For any type one function ϕ , we have

$$\begin{cases} \phi^{\circ\circ}(a) = \phi(a) & \text{if } a \in P_n \\ \phi^{\circ\circ}(a) \ge \phi(a) & \text{if } a \in P_n^{\text{semi}} \setminus P_n. \end{cases}$$

Proof. By the definition of a dual semikernel, we get $K_1(\phi) \subset K_1(\phi)^{\sqcup \sqcup}$, i.e., $K_1(\phi) \subset K_1(\phi^{\circ\circ})$. This implies $\phi^{\circ\circ}(a) \ge \phi(a)$ for all $a \in P_n^{\text{semi}}$. It remains that we show $\phi^{\circ\circ}(a) \le \phi(a)$ for all $a \in P_n$. Since the closure $\overline{K_1(\phi)}$ of $K_1(\phi)$ in P_n^{semi} is a kernel, we have

$$K_1(\phi^{\circ\circ}) = K_1(\phi)^{\sqcup\sqcup} \subset \overline{K_1(\phi)}^{\sqcup\sqcup} = \overline{K_1(\phi)}.$$

If we set $\alpha = \phi^{\circ\circ}(a)$, then, by $a \in \alpha \cdot K_1(\phi^{\circ\circ}) \subset \alpha \cdot \overline{K_1(\phi)}$, we have $(1/\alpha)a \in \overline{K_1(\phi)}$. Therefore, there is a sequence $b_m \in K_1(\phi) \cap P_n$ (m = 1, 2, ...) such that $b_m \to (1/\alpha)a$ as $m \to \infty$. Since ϕ is continuous on P_n , we have

$$\phi\left(\frac{1}{\alpha}a\right) = \phi\left(\lim_{m \to \infty} b_m\right) = \lim_{m \to \infty} \phi(b_m) \ge 1,$$

namely, $\phi(a) \ge \alpha = \phi^{\circ\circ}(a)$.

Remark. Proposition 2.9 follows from the general theory of convex functions. A type one function ϕ is extended to the whole V_n by putting formally $\phi(a) = -\infty$ if $a \notin P_n^{\text{semi}}$. This ϕ satisfies

$$\phi(a_1 + a_2) \ge \phi(a_1) + \phi(a_2)$$

for all $a_1, a_2 \in V_n$. Then $\phi^{\circ\circ}$ is the closure of ϕ and $\phi^{\circ\circ}(a) \ge \phi(a)$ holds for all $a \in V_n$. (See [7, §7 and §15], but one has to modify definitions and results in [7] to concave functions).

3. A generalization of Voronoï's theorem

In this section, we generalize Voronoï's theorem to $F_{\phi} = m/\phi$ for some type one function ϕ . For $a \in P_n$, S(a) denotes the set of minimal integral vectors of a, i.e.,

$$S(a) = \{ x \in \mathbb{Z}^n \setminus \{0\} \mid {}^t xax = m(a) \}.$$

For any $y \in \mathbb{R}^n$, φ_y denotes the linear form $v \mapsto {}^t y v y$ on V_n .

Definition. Let $a \in P_n$. We fix an element $b \in GL_n(\mathbb{R})$ such that $a = {}^t bb$. An element a is said to be perfect if the linear forms φ_{bx} $(x \in S(a))$ span the dual space V_n^* of V_n . An element a is said to be eutactic if there exist $\rho_x > 0$ $(x \in S(a))$ such that

$$\operatorname{tr} = \sum_{x \in S(a)} \rho_x \varphi_{bx}.$$
(3)

These definitions of perfection and eutaxy are independent of a choice of b. If $\{\varphi_{bx}\}_{x\in S(a)}$ spans V_n^* , then so does $\{\varphi_{hbx}\}_{x\in S(a)}$ for any orthogonal matrix h. If tr is represented as (3), then we have

$$\operatorname{tr} = \sum_{x \in S(a)} \rho_x \varphi_{hbx}$$

for any orthogonal matrix h. The coefficients ρ_x are independent of h. Voronoï's theorem can be stated that the Hermite invariant γ attains a local maximum on $a \in P_n$ if and only if a is perfect and eutactic.

Let ϕ be an arbitrary type one function. It follows from (TO₁) and (TO₂) that ϕ is log-concave, i.e,

$$\log \phi((1-\theta)a_1 + \theta a_2)) \ge (1-\theta)\log \phi(a_1) + \theta \log \phi(a_2)$$

holds for all $a_1, a_2 \in P_n$ and $0 < \theta < 1$. We say ϕ is strictly log-concave if this inequality is strict for $a_1 \neq a_2$. Assume ϕ is differentiable on P_n . Then

$$(\partial \log \phi)_b(v) = \lim_{t \to 0} \frac{\log \phi({}^t b(I_n + tv)b) - \log \phi({}^t bb)}{t}$$

exists for $b \in GL_n(\mathbb{R})$ and $v \in V_n$. We define ϕ -eutaxy as follows:

Definition. Let $a \in P_n$, and fix an element $b \in GL_n(\mathbb{R})$ such that $a = {}^t bb$. An element a is said to be ϕ -eutactic if there exist $\rho_x > 0$ ($x \in S(a)$) such that $(\partial \log \phi)_b = \sum_{x \in S(a)} \rho_x \varphi_{bx}$.

In a similar fashion as eutaxy, this definition is independent of a choice of b. An element $a \in P_n$ is said to be ϕ -extreme (resp. strictly ϕ -extreme) if F_{ϕ} attains a local maximum (resp. a strict local maximum) on a up to the multiplication by an element of $\mathbb{R}_{>0}$. A goal of this section is to prove the following theorem:

Theorem 3.1. Let ϕ be a strictly log-concave and differentiable type one function. Then, $a \in P_n$ is ϕ -extreme if and only if a is perfect and ϕ -eutactic. Moreover, any ϕ -extreme point is strictly ϕ -extreme.

To prove this theorem, we follow the same line as the proof of [3, Theorems 3.4.5 and 3.4.6]. The next is the same as [3, Lemmas 3.4.2 and 3.4.3].

Lemma 3.2. Let $a \in P_n$, and fix an element $b \in GL_n(\mathbb{R})$ such that $a = {}^tbb$.

- (1) There exists a neighborhood \mathcal{U} of I_n in $GL_n(\mathbb{R})$ such that $S({}^tb^tuub) \subset S(a)$ for any $u \in \mathcal{U}$.
- (2) There exists a neighborhood \mathcal{V} of 0 in V_n such that the equivalence

$$m({}^{t}b(I_{n}+v)b) = m(a) \Leftrightarrow \min_{x \in S(a)} \varphi_{bx}(v) = 0$$

holds for any $v \in \mathcal{V}$.

Next is a generalization of [3, Lemma 3.4.4].

Lemma 3.3. Let $a \in P_n$, and fix an element $b \in GL_n(\mathbb{R})$ such that $a = {}^tbb$.

- (1) There exists a neighborhood $\mathcal{V} \subset V_n$ of 0 such that either v = 0 or $\phi({}^t b(I_n + v)b) < \phi(a)$ holds for any $v \in \mathcal{V}$ with $(\partial \log \phi)_b(v) \leq 0$ and $I_n + v \in P_n$.
- (2) Let C be a closed cone in V_n such that $(\partial \log \phi)_b(v) > 0$ for all $v \in C \setminus \{0\}$. Then there exists $\alpha > 0$ such that $\phi({}^tb(I_n + v)b) > \phi(a)$ holds for any $v \in C$ with $0 < \sigma(v) < \alpha$.

Proof. (1) We set $\mathcal{V} = \{ v \in V_n \mid I_n + v \in P_n \}$, and fix $v \in \mathcal{V} \setminus \{0\}$ so that

 $(\partial \log \phi)_b(v) \leq 0$. By the strict log-concavity, we obtain

$$\frac{\log \phi({}^{t}b(I_{n} + \theta v)b) - \log \phi(a)}{\theta}$$

>
$$\frac{\{(1 - \theta)\log \phi(a) + \theta\log \phi({}^{t}b(I_{n} + v)b)\} - \log \phi(a)}{\theta}$$

=
$$-\log \phi(a) + \log \phi({}^{t}b(I_{n} + v)b)$$

for all $0 < \theta < 1$. As $\theta \downarrow 0$, we have

$$(\partial \log \phi)_b(v) \ge -\log \phi(a) + \log \phi({}^t b(I_n + v)b).$$

From $(\partial \log \phi)_b(v) \leq 0$, it follows $\log \phi({}^t b(I_n + v)b) \leq \log \phi(a)$. We show that the equality $\log \phi({}^t b(I_n + v)b) = \log \phi(a)$ leads us to a contradiction. Assume this equality holds. We fix a constant θ_0 with $0 < \theta_0 < 1$. By using the strict log-concavity again, we have

$$\log \phi({}^t b(I_n + \theta_0 v)b) > (1 - \theta_0) \log \phi(a) + \theta_0 \log \phi({}^t b(I_n + v)b)$$
$$= (1 - \theta_0) \log \phi(a) + \theta_0 \log \phi(a)$$
$$= \log \phi(a),$$

and hence

$$\begin{aligned} (\partial \log \phi)_b(\theta_0 v) &= \lim_{t \to 0} \frac{\log \phi({}^t b(I_n + t\theta_0 v)b) - \log \phi(a)}{t} \\ &= \lim_{t \to +0} \frac{\log \phi({}^t b(I_n + t\theta_0 v)b) - \log \phi(a)}{t} \\ &\geq \lim_{t \to +0} \frac{\{(1-t)\log \phi(a) + t\log \phi({}^t b(I_n + \theta_0 v)b)\} - \log \phi(a)}{t} \\ &= \lim_{t \to +0} \frac{-t\log \phi(a) + t\log \phi({}^t b(I_n + \theta_0 v)b)}{t} \\ &= -\log \phi(a) + \log \phi({}^t b(I_n + \theta_0 v)b) \\ &> 0 \,. \end{aligned}$$

This contradicts $(\partial \log \phi)_b(\theta_0 v) = \theta_0(\partial \log \phi)_b(v) \le 0$. Therefore, $\log \phi({}^t b(I_n + v)b)$ is less than $\log \phi(a)$, i.e., $\phi({}^t b(I_n + v)b) < \phi(a)$.

(2) Let $\Sigma = \{ u \in V_n \mid \sigma(u) = 1 \}$ be the unit sphere of V_n and let $u \in \mathcal{C} \cap \Sigma$. The function $g_u(t) = \log \phi(I_n + tu)$ in $t \in \mathbb{R}$ is defined on a sufficiently small neighborhood of 0. Since $(\partial \log \phi)_b(u) > 0$, there exists $0 < t_u < 1$ such that $\log \phi({}^t b(I_n + tu)b) > \log \phi(a)$ for all $t \in (0, t_u]$. By the continuity of ϕ , there exists an open neighborhood $\mathcal{O}(u)$ of u in $\mathcal{C} \cap \Sigma$ such that $\log \phi({}^t b(I_n + t_u u')b) > \log \phi(a)$ for all $u' \in \mathcal{O}(u)$. From this and the strict log-concavity, it follows

$$\log \phi({}^{t}b(I_n + \theta t_u u')b) > (1 - \theta) \log \phi(a) + \theta \log \phi({}^{t}b(I_n + t_u u')b)$$
$$> (1 - \theta) \log \phi(a) + \theta \log \phi(a)$$
$$= \log \phi(a)$$

for any $0 < \theta < 1$. Hence we deduce $\phi({}^{t}b(I_n + tu')b) > \phi(a)$ for all $t \in (0, t_u]$. Since $\mathcal{O}(u)$ $(u \in \mathcal{C} \cap \Sigma)$ is an open covering of the compact set $\mathcal{C} \cap \Sigma$, there exists a finite covering

$$\mathcal{C} \cap \Sigma \subset \bigcup_{i=1}^{r} \mathcal{O}(u_i)$$

with $u_1, \ldots, u_r \in \mathcal{C} \cap \Sigma$. Put $\alpha = \min\{t_{u_1}, \ldots, t_{u_r}\}$. For $v \in \mathcal{C}$ with $0 < \sigma(v) < \alpha$, put $u = v/\sigma(v) \in \mathcal{C} \cap \Sigma$. There exists *i* such that $u \in \mathcal{O}(u_i)$. Then we have $\phi({}^tb(I_n + tu)b) > \phi(a)$ for $t \in (0, \alpha] \subset (0, t_{u_i}]$. At $t = \sigma(v)$, this yields $\phi({}^tb(I_n + v)b) > \phi(a)$. \Box

Now the proof of Theorem 3.1 follows from the same argument as in the proof of [3, Theorem 3.4.6] by using Lemmas 3.2 and 3.3.

4. Hermite like constants

In this section, we assume that ϕ is an arbitrary type one class function. Let $\partial K_1(m)$ be the boundary of the kernel $K_1(m)$ and $\partial^0 K_1(m)$ the set of all vertices of $\partial K_1(m)$. It is known that $\mathbb{R}_{>0} \cdot \partial^0 K_1(m)$ coincides with the set of all perfect elements of P_n and $K_1(m)$ is the convex hull of $\mathbb{R}_{\geq 1} \cdot \partial^0 K_1(m)$, (cf. [8, §3.1]). The unimodular group $GL_n(\mathbb{Z})$ acts on $\partial^0 K_1(m)$ as $(a, g) \mapsto {}^tgag$ for $a \in \partial^0 K_1(m)$ and $g \in GL_n(\mathbb{Z})$. Let S_p denote a complete set of representatives for $\partial^0 K_1(m)/GL_n(\mathbb{Z})$. This S_p is a finite set. From $P_n \subset \mathbb{R}_{>0} \cdot K_1(m)$, it follows

$$\sup_{a \in P_n} F_{\phi}(a) = \sup_{a \in K_1(m)} F_{\phi}(a) = \sup_{a \in \partial K_1(m)} \frac{1}{\phi(a)}$$

Any $a \in K_1(m)$ is represented as $a = \lambda_1 a_1 + \cdots + \lambda_r a_r$ by some $a_1, \cdots, a_r \in \partial^0 K_1(m)$ and $\lambda_1, \cdots, \lambda_r \in \mathbb{R}_{\geq 0}$ with $\lambda_1 + \cdots + \lambda_r \geq 1$. Then, since $\phi(a) \geq \min\{\phi(a_1), \cdots, \phi(a_r)\}$ and ϕ is a class function, one has

$$\sup_{a \in \partial K_1(m)} \frac{1}{\phi(a)} = \sup_{a \in \partial^0 K_1(m)} \frac{1}{\phi(a)} = \max_{a \in S_p} \frac{1}{\phi(a)}.$$

The constant $\delta_{\phi} = \sup_{a \in P_n} F_{\phi}(a)$ is regarded as an analog of Hermite's constant γ_n . We show that "the dual constant" of δ_{ϕ} also exists.

Proposition 4.1. If ϕ is a type one class function, then the superior

$$\widehat{\delta}_{\phi} = \sup_{a \in P_n} \frac{\phi(a)}{w(a)}$$

is finite.

Proof. There exists an $\alpha > 0$ such that $\phi(\alpha a) \ge 1$ for all $a \in S_p$. Since $K_1(m)$ is the convex hull of $\mathbb{R}_{>1} \cdot \partial^0 K_1(m)$ and ϕ is a type one class function, we have

$$\alpha \cdot K_1(m) \subset K_1(\phi) \,.$$

By taking the duals of both sides,

$$K_1(\phi^\circ) \subset \frac{1}{\alpha} \cdot K_1(w).$$

By replacing ϕ with ϕ° and using the relation $K_1(\phi) \subset K_1(\phi^{\circ\circ})$, we have

$$\alpha \cdot K_1(\phi) \subset K_1(w)$$

Since $(\alpha/\phi(a))a \in \alpha \cdot K_1(\phi) \subset K_1(w)$ for any $a \in P_n$, ϕ/w is bounded by α on P_n . \Box

Proposition 4.2. For any type one class function ϕ , $\delta_{\phi} = \widehat{\delta}_{\phi^{\circ}}$.

Proof. Since $m(a) \leq \delta_{\phi}\phi(a)$ for any $a \in P_n$, we have $\delta_{\phi} \cdot K_1(m) \subset K_1(\phi)$. By passing to the dual, we have $\delta_{\phi} \cdot K_1(\phi^\circ) \subset K_1(w)$. This leads us to $\hat{\delta}_{\phi^\circ} \leq \delta_{\phi}$. In a similar fashion, we obtain

$$\sup_{a \in P_n} \frac{m(a)}{\phi^{\circ \circ}(a)} \le \widehat{\delta}_{\phi^{\circ}}.$$

Since $\phi^{\circ\circ} = \phi$ on P_n by Proposition 2.9, we have $\delta_{\phi} \leq \widehat{\delta}_{\phi^{\circ}}$.

For a type one class function ϕ , we set $\xi_{\phi} = \delta_{\phi} \cdot \delta_{\phi^{\circ}}$.

Proposition 4.3. The inequality $\xi_w \leq \xi_{\phi}$ holds for any type one class function ϕ .

Proof. As in the proof of Proposition 4.2, we have $m(a) \leq \delta_{\phi} \cdot \phi(a)$ and $\delta_{\phi} \cdot w(a) \geq \phi^{\circ}(a)$ for all $a \in P_n$. By replacing ϕ with ϕ° , we get $\delta_{\phi^{\circ}} \cdot w(a) \geq \phi^{\circ \circ}(a) = \phi(a)$ for $a \in P_n$. This implies $\delta_w \leq \delta_{\phi} \cdot \delta_{\phi^{\circ}}$.

Acknowledgements. The authors thank Professor Cris Poor for useful comments on the dyadic trace.

References

- A. Ash, D. Mumford, M. Rappaport, Y. Tai: Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History, Frontiers and Applications 4, Math. Sci. Press, Brookline (1975).
- [2] E. S. Barnes, M. J. Cohn: On the inner product of positive quadratic forms, J. Lond. Math. Soc., II. Ser. 12 (1976) 32–36.
- [3] J. Martinet: Perfect Lattices in Euclidean Spaces, Grundlehren Math. Wiss. 327, Springer, Berlin (2003).
- [4] C. Poor, D. S. Yuen: Linear dependence among Siegel modular forms, Math. Ann. 318(2) (2000) 205–234.
- [5] C. Poor, D. S. Yuen: The extreme core, Abh. Math. Semin. Univ. Hamb. 75 (2005) 51-75.
- [6] C. Poor, D. S. Yuen: The Bergé-Martinet constant and slopes of Siegel cusp forms, Bull. Lond. Math. Soc. 38(6) (2006) 913–924.
- [7] R. T. Rockafellar: Convex Analysis, Princeton Mathematical Series 28, Princeton Univ. Press, Princeton (1970).
- [8] A. Schürmann: Computational Geometry of Positive Definite Quadratic Forms, Amer. Math. Soc., Providence (2009).