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Voronöı’s theorem characterizes local maxima of the Hermite invariantm/ det1/n defined on the open
cone of positive definite n by n symmetric matrices, where m denotes the arithmetical minimum
function. In this paper, we extend Voronöı’s theorem to functions of the form m/φ when φ is a type
one function. Moreover, we study the Hermite like constant defined from m/φ.
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1. Introduction

Let Vn be the vector space of real n × n symmetric matrices, Pn the open cone of
positive definite matrices in Vn and P semi

n the closure of Pn in Vn. For a ∈ P semi
n , m(a)

denotes the inferior infx∈Zn\{0}
txax, where Z

n is the lattice of integral vectors in an
n-dimensional real Euclidean space. The function γ on Pn defined by

γ(a) =
m(a)

det(a)1/n

for a ∈ Pn is called the Hermite invariant, and its maximum γn = maxa∈Pn γ(a) is
known as the Hermite constant. In [6], Poor and Yuen introduced another Hermite
like constant cn, which is defined by

cn = min
a∈Pn

w(a)

m(a)
=

(
max
a∈Pn

m(a)

w(a)

)−1

,

where w(a) denotes the dyadic trace of a. The constant cn is connected with γn by
means of the inequality

1

cn
≤
γ2n
n
. (1)
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A fundamental tool to study γn is Voronöı’s theorem, which states that γ attains a
local maximum on a ∈ Pn if and only if a is perfect and eutactic. In some proofs
of Voronöı’s theorem, the convexity of the domain Pn and the concavity of both
functions m and det1/n play key roles. Poor and Yuen [5] investigated a family of

such kind of functions asm, det1/n and w. They named this family type one functions.
In general, for a given type one function φ, one can consider the function Fφ = m/φ
and its Hermite like constant δφ = supa∈Pn

Fφ(a). The purpose of this paper is to
study δφ and an analog of Voronöı’s theorem for Fφ.

Definition and some properties of type one functions are given in Section 2. For a
type one function φ, the corresponding convex subset

K1(φ) = { a ∈ P semi
n | φ(a) ≥ 1 }

plays an important role. We will introduce the notion of semikernel for convex subsets
of P semi

n , and then prove that the mapping φ 7→ K1(φ) gives a one to one correspon-
dence between type one functions and semikernels.

An analog of Voronöı’s theorem for Fφ is considered for differentiable type one func-
tions. For a such φ, we will introduce the notion of φ-eutaxy for elements in Pn, and
prove that Fφ attains a local maximum on a ∈ Pn if and only if a is perfect and
φ-eutactic.

For any type one class function φ, we observe that there exist positive constants C1

and C2 such that C1m ≤ φ ≤ C2w. Namely, m (resp. w) is the smallest (resp. largest)
one among type one class functions up to constant multiples. Thus both Hermite like

constants δφ = supa∈Pn
m(a)/φ(a) and δ̂φ = supa∈Pn

φ(a)/w(a) are finite for any type
one class function φ. If φ◦ denotes the dual type one class function of φ, then the

equality δφ = δ̂φ◦ will be proved in Section 4. In particular, we obtain the following
expression of Hermite’s constant γn:

γn = δdet1/n = δ̂(det1/n)◦ = n sup
a∈Pn

det(a)1/n

w(a)
.

It is convenient to consider the constant ξφ = δφ · δ̂φ since it has the invariant property
ξCφ = ξφ = ξφ◦ for any constant C > 0. By definition, we have ξm = ξw = 1/cn and
ξdet1/n = γ2n/n. The extreme property of w leads us to the inequality

ξw ≤ ξφ (2)

for any type one class function φ. Thus the inequality (1) may be viewed as a
particular case of (2).

Notation. The vector space Vn is equipped with the inner product 〈a1, a2〉 = tr(a1a2)
for a1, a2 ∈ Vn. The identity matrix in Vn is denoted by In. For a ∈ Vn, σ(a) stands
for the operator norm of a, i.e.,

σ(a) = sup
x∈Rn\{0}

√
t(ax)ax

txx
.

For a constant c ∈ R, R>c and R≥c stand for the open interval (c,+∞) and the closed
interval [c,+∞), respectively.
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2. Type one functions and semikernels

We start with definition of type one functions.

Definition. A function φ : P semi
n → R≥0 is called a type one function if φ satisfies

the following conditions:

(TO1) φ(θa) = θφ(a) for all a ∈ P semi
n and θ ≥ 0,

(TO2) φ(a1 + a2) ≥ φ(a1) + φ(a2) for all a1, a2 ∈ P semi
n ,

(TO3) φ(a) > 0 for all a ∈ Pn.

A type one function φ is called a type one class function if φ(tgag) = φ(a) holds for
all a ∈ P semi

n and g ∈ GLn(Z).

It is known that a type one function is continuous on Pn (cf. [4, Proposition 2.2] or
[7, Theorem 10.1]).

Example 2.1 The trace tr and the smallest eigenvalue λ1 are type one functions, but
not type one class functions. The reduced determinant det1/n and the arithmetical
minimum m are type one class functions.

For a type one function φ, the dual type one function φ◦ : P semi
n → R≥0 is defined to

be

φ◦(a) = inf
b∈Pn

〈a, b〉

φ(b)
.

If φ is a type one class function, then so is φ◦. The dual type one class function of m
is denoted by w, which is called the dyadic trace. The dual type one class function
of det1/n is n det1/n.

Definition. Let K be a convex subset of P semi
n such that 0 /∈ K, R≥1 ·K = K and

R>0 ·K ⊃ Pn.

(1) K is called a kernel if K is closed in P semi
n .

(2) K is called a semikernel if the following three conditions are satisfied:
(SK1) K ∩ (Pn ∪ {0}) is closed in Pn ∪ {0},
(SK2) { θ ≥ 0 | θa ∈ K } is closed in R≥0 for any a ∈ K,
(SK3) a+ b ∈ K for all a ∈ K and b ∈ P semi

n .

Lemma 2.2. A kernel is a semikernel.

Proof. Let K be a kernel. It is obvious that K satisfies (SK1) and (SK2), so we
show that K satisfies the condition (SK3). Let a ∈ K and b ∈ Pn. There exists a
θ > 0 such that θb ∈ K. We have

(
1−

1

1 + θ

)
a+

1

1 + θ
θb ∈ K,

thus

a+ b ∈
1 + θ

θ
·K ⊂ K.

This implies (SK3) since K is closed.
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Lemma 2.3. If K is a semikernel, then K is contained in the closure K ∩ Pn of

K ∩ Pn in P semi
n .

Proof. There exists a θ > 0 such that θIn ∈ K. For any a ∈ K and 0 ≤ µ ≤ 1, we
have (1−µ)a+µθIn ∈ K. Since (1−µ)a+µθIn ∈ Pn for 0 < µ ≤ 1, a is an adherent
point of K ∩ Pn.

The dual K⊔ of a semikernel K is defined to be

K⊔ = { a ∈ Vn | 〈a, b〉 ≥ 1 for all b ∈ K }.

Lemma 2.4. For any semikernel K, K⊔ ⊂ P semi
n and K⊔ is a kernel.

Proof. Let a ∈ K⊔ and x ∈ R
n. Since xtx ∈ P semi

n , there exist bm ∈ Pn and
νm > 0 (m = 1, 2, . . .) such that νmbm ∈ K and bm → xtx as m→ ∞. Then we have
〈νmbm, a〉 ≥ 1, i.e., 〈bm, a〉 ≥ 1/νm > 0. Therefore,

txax = 〈xtx, a〉 =
〈
lim

m→∞
bm, a

〉
= lim

m→∞
〈bm, a〉 ≥ 0

holds for all x ∈ R
n, and hence a ∈ P semi

n . This proves K⊔ ⊂ P semi
n . It is obvious

that K⊔ is a closed convex subset, R≥1 · K
⊔ ⊂ K⊔ and 0 /∈ K⊔. We have to show

R>0 ·K
⊔ ⊃ Pn. Since 0 /∈ K and K ∩ (Pn ∪ {0}) is closed in Pn ∪ {0}, there exists a

µK > 0 depending only on K such that

K ∩ (Pn ∪ {0}) ⊂ { b ∈ Pn ∪ {0} | σ(b) ≥ µK }.

By taking the closures of both sides and Lemma 2.3,

K ⊂ { b ∈ P semi
n | σ(b) ≥ µK }.

Let a ∈ Pn and λ1(a) the smallest eigenvalue of a. Then we have

〈a, b〉 ≥ 〈λ1(a)In, b〉 = λ1(a)tr(b) ≥ λ1(a)σ(b) ≥ λ1(a)µK

for all b ∈ K. This implies a ∈ λ1(a)µK ·K⊔, i.e., a ∈ R>0 ·K
⊔.

If K is a kernel, then K⊔⊔ coincides with K (see [1, p. 128]).

For a type one function φ, we set

K1(φ) = { a ∈ P semi
n | φ(a) ≥ 1 }.

It is easy to check that K1(φ) is a semikernel. If φ is upper semicontinuous on P semi
n ,

then K1(φ) is a kernel. We recall that φ is said to be upper semicontinuous at a if

φ(a) = lim sup
b→a

φ(b) = lim
ǫ↓0

(sup{φ(b) | σ(a− b) ≤ ǫ, b ∈ P semi
n }) .

Conversely, for a semikernel K, define the function ψ(K, ·) : P semi
n → R≥0 by

ψ(K, a) = max ({ θ > 0 | a ∈ θ ·K } ∪ {0}) .

The existence of this maximum follows from the condition (SK2).
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Lemma 2.5. For any semikernel K, ψ(K, ·) is a type one function. If K is a kernel,

then ψ(K, ·) is upper semicontinuous on P semi
n .

Proof. Let a ∈ P semi
n . If ψ(K, a) = α, then

{ θ > 0 | a ∈ θ ·K } ∪ {0} = [0, α] ,

and hence
{ θ > 0 | µa ∈ θ ·K } ∪ {0} = [0, µα]

for any µ ≥ 0. Therefore, we get ψ(K,µa) = µα = µψ(K, a).

For a1, a2 ∈ P semi
n , set α1 = ψ(K, a1) and α2 = ψ(K, a2). If α1 > 0 and α2 > 0, then

(1/α1)a1 ∈ K, (1/α2)a2 ∈ K and

a1 + a2 = α1 ·
1

α1

a1 + α2 ·
1

α2

a2

= (α1 + α2)
α1 · (1/α1)a1 + α2 · (1/α2)a2

α1 + α2

∈ (α1 + α2) ·K.

This gives
ψ(K, a1 + a2) ≥ α1 + α2 = ψ(K, a1) + ψ(K, a2) .

If α1 > 0 and α2 = 0, then (1/α1)a1 ∈ K, (1/α1)a2 ∈ P semi
n , and

a1 + a2 = α1 {(1/α1)a1 + (1/α1)a2} ∈ α1 ·K.

This gives
ψ(K, a1 + a2) ≥ α1 = α1 + α2 = ψ(K, a1) + ψ(K, a2) .

If α1 = α2 = 0, then we have immediately

ψ(K, a1 + a2) ≥ 0 = α1 + α2 = ψ(K, a1) + ψ(K, a2) .

For a ∈ Pn, there exists a θ > 0 such that a ∈ θ ·K. Then we have ψ(K, a) ≥ θ > 0.
This completes the proof of the first half of the Lemma.

We assume K is a kernel. Let a ∈ P semi
n and θ = ψ(K, a). Choose a sequence {an}

in P semi
n such that an → a as n → ∞. For any ǫ > 0, P semi

n \ (θ + ǫ) ·K is open in
P semi
n and contains a. Therefore, ψ(K, an) < θ + ǫ for sufficiently large n, and hence

lim sup
n→∞

ψ(K, an) ≤ θ + ǫ .

Since this holds for any ǫ > 0, we have

lim sup
n→∞

ψ(K, an) ≤ θ = ψ(K, a)

for any sequence {an} such that an → a. Thus ψ(K, ·) is upper semicontinuous at
a.

Proposition 2.6. For any type one function φ and any semikernel K, one has

ψ(K1(φ), ·) = φ and K1(ψ(K, ·)) = K.
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Proof. For any a ∈ P semi
n , we have

ψ(K1(φ), a) = max ({ θ > 0 | a ∈ θ ·K1(φ) } ∪ {0})

=

{
α if φ(a) = α > 0

0 if φ(a) = 0

= φ(a),

so that ψ(K1(φ), ·) = φ.

If K is a semikernel, then

a ∈ K1(ψ(K, ·)) ⇔ ψ(K, a) ≥ 1 ⇔ a ∈ 1 ·K = K,

and hence K1(ψ(K, ·)) = K.

By Proposition 2.6, type one functions and upper semicontinuous type one functions
are bijectively corresponding to semikernels and kernels, respectively.

Lemma 2.7. For any semikernel K, ψ(K, ·)◦ = ψ(K⊔, ·).

Proof. For any a ∈ P semi
n , we have

ψ(K, a)◦ = inf
b∈Pn

〈a, b〉

ψ(K, b)
= inf

b∈Pn

〈
a,

1

ψ(K, b)
b

〉
= inf

b∈K∩Pn

〈a, b〉,

and
ψ(K⊔, a) = max ({ θ > 0 | a ∈ θ ·K⊔ } ∪ {0}) = inf

b∈K
〈a, b〉.

From Lemma 2.3, it follows

inf
b∈K

〈a, b〉 ≤ inf
b∈K∩Pn

〈a, b〉 = inf
b∈K∩Pn

〈a, b〉 ≤ inf
b∈K

〈a, b〉,

and hence ψ(K, ·)◦ = ψ(K⊔, ·).

Corollary 2.8. For any type one function φ, φ◦ is upper semicontinuous on P semi
n .

Proof. This immediately follows from Lemmas 2.4, 2.5, 2.7 and Proposition 2.6.

If φ is a type one function and upper semicontinuous on P semi
n , then we have

φ◦◦ = ψ(K1(φ), ·)
◦◦ = ψ(K1(φ)

⊔, ·)◦ = ψ(K1(φ)
⊔⊔, ·) = ψ(K1(φ), ·) = φ

because of K⊔⊔ = K for a kernel K. The next proposition shows a relation between
φ and φ◦◦ for general φ.

Proposition 2.9. For any type one function φ, we have

{
φ◦◦(a) = φ(a) if a ∈ Pn

φ◦◦(a) ≥ φ(a) if a ∈ P semi
n \ Pn.
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Proof. By the definition of a dual semikernel, we getK1(φ) ⊂ K1(φ)
⊔⊔, i.e., K1(φ) ⊂

K1(φ
◦◦). This implies φ◦◦(a) ≥ φ(a) for all a ∈ P semi

n . It remains that we show

φ◦◦(a) ≤ φ(a) for all a ∈ Pn. Since the closure K1(φ) of K1(φ) in P
semi
n is a kernel,

we have
K1(φ

◦◦) = K1(φ)
⊔⊔ ⊂ K1(φ)

⊔⊔
= K1(φ).

If we set α = φ◦◦(a), then, by a ∈ α ·K1(φ
◦◦) ⊂ α ·K1(φ), we have (1/α)a ∈ K1(φ).

Therefore, there is a sequence bm ∈ K1(φ)∩Pn (m = 1, 2, . . .) such that bm → (1/α)a
as m→ ∞. Since φ is continuous on Pn, we have

φ

(
1

α
a

)
= φ

(
lim

m→∞
bm

)
= lim

m→∞
φ(bm) ≥ 1,

namely, φ(a) ≥ α = φ◦◦(a).

Remark. Proposition 2.9 follows from the general theory of convex functions. A
type one function φ is extended to the whole Vn by putting formally φ(a) = −∞ if
a 6∈ P semi

n . This φ satisfies

φ(a1 + a2) ≥ φ(a1) + φ(a2)

for all a1, a2 ∈ Vn. Then φ
◦◦ is the closure of φ and φ◦◦(a) ≥ φ(a) holds for all a ∈ Vn.

(See [7, §7 and §15], but one has to modify definitions and results in [7] to concave
functions).

3. A generalization of Voronöı’s theorem

In this section, we generalize Voronöı’s theorem to Fφ = m/φ for some type one
function φ. For a ∈ Pn, S(a) denotes the set of minimal integral vectors of a, i.e.,

S(a) = {x ∈ Z
n \ {0} | txax = m(a) }.

For any y ∈ R
n, ϕy denotes the linear form v 7→ tyvy on Vn.

Definition. Let a ∈ Pn. We fix an element b ∈ GLn(R) such that a = tbb. An
element a is said to be perfect if the linear forms ϕbx (x ∈ S(a)) span the dual space
V ∗
n of Vn. An element a is said to be eutactic if there exist ρx > 0 (x ∈ S(a)) such

that

tr =
∑

x∈S(a)

ρxϕbx. (3)

These definitions of perfection and eutaxy are independent of a choice of b. If
{ϕbx}x∈S(a) spans V ∗

n , then so does {ϕhbx}x∈S(a) for any orthogonal matrix h. If
tr is represented as (3), then we have

tr =
∑

x∈S(a)

ρxϕhbx

for any orthogonal matrix h. The coefficients ρx are independent of h. Voronöı’s
theorem can be stated that the Hermite invariant γ attains a local maximum on
a ∈ Pn if and only if a is perfect and eutactic.
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Let φ be an arbitrary type one function. It follows from (TO1) and (TO2) that φ is
log-concave, i.e,

logφ((1− θ)a1 + θa2)) ≥ (1− θ) logφ(a1) + θ logφ(a2)

holds for all a1, a2 ∈ Pn and 0 < θ < 1. We say φ is strictly log-concave if this
inequality is strict for a1 6= a2. Assume φ is differentiable on Pn. Then

(∂ logφ)b(v) = lim
t→0

logφ(tb(In + tv)b)− logφ(tbb)

t

exists for b ∈ GLn(R) and v ∈ Vn. We define φ-eutaxy as follows:

Definition. Let a ∈ Pn, and fix an element b ∈ GLn(R) such that a = tbb. An
element a is said to be φ-eutactic if there exist ρx > 0 (x ∈ S(a)) such that (∂ logφ)b =∑

x∈S(a) ρxϕbx.

In a similar fashion as eutaxy, this definition is independent of a choice of b. An
element a ∈ Pn is said to be φ-extreme (resp. strictly φ-extreme) if Fφ attains a local
maximum (resp. a strict local maximum) on a up to the multiplication by an element
of R>0. A goal of this section is to prove the following theorem:

Theorem 3.1. Let φ be a strictly log-concave and differentiable type one function.

Then, a ∈ Pn is φ-extreme if and only if a is perfect and φ-eutactic. Moreover, any

φ-extreme point is strictly φ-extreme.

To prove this theorem, we follow the same line as the proof of [3, Theorems 3.4.5 and
3.4.6]. The next is the same as [3, Lemmas 3.4.2 and 3.4.3].

Lemma 3.2. Let a ∈ Pn, and fix an element b ∈ GLn(R) such that a = tbb.

(1) There exists a neighborhood U of In in GLn(R) such that S(tbtuub) ⊂ S(a) for
any u ∈ U .

(2) There exists a neighborhood V of 0 in Vn such that the equivalence

m(tb(In + v)b) = m(a) ⇔ min
x∈S(a)

ϕbx(v) = 0

holds for any v ∈ V.

Next is a generalization of [3, Lemma 3.4.4].

Lemma 3.3. Let a ∈ Pn, and fix an element b ∈ GLn(R) such that a = tbb.

(1) There exists a neighborhood V ⊂ Vn of 0 such that either v = 0 or φ(tb(In +
v)b) < φ(a) holds for any v ∈ V with (∂ logφ)b(v) ≤ 0 and In + v ∈ Pn.

(2) Let C be a closed cone in Vn such that (∂ logφ)b(v) > 0 for all v ∈ C \ {0}.
Then there exists α > 0 such that φ(tb(In + v)b) > φ(a) holds for any v ∈ C
with 0 < σ(v) < α.

Proof. (1) We set V = { v ∈ Vn | In + v ∈ Pn }, and fix v ∈ V \ {0} so that
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(∂ logφ)b(v) ≤ 0. By the strict log-concavity, we obtain

logφ(tb(In + θv)b)− logφ(a)

θ

>
{(1− θ) logφ(a) + θ logφ(tb(In + v)b)} − logφ(a)

θ
= − logφ(a) + logφ(tb(In + v)b)

for all 0 < θ < 1. As θ ↓ 0, we have

(∂ logφ)b(v) ≥ − logφ(a) + logφ(tb(In + v)b).

From (∂ logφ)b(v) ≤ 0, it follows logφ(tb(In + v)b) ≤ logφ(a). We show that the
equality logφ(tb(In+v)b) = logφ(a) leads us to a contradiction. Assume this equality
holds. We fix a constant θ0 with 0 < θ0 < 1. By using the strict log-concavity again,
we have

logφ(tb(In + θ0v)b) > (1− θ0) logφ(a) + θ0 logφ(
tb(In + v)b)

= (1− θ0) logφ(a) + θ0 logφ(a)

= logφ(a),

and hence

(∂ logφ)b(θ0v) = lim
t→0

logφ(tb(In + tθ0v)b)− logφ(a)

t

= lim
t→+0

logφ(tb(In + tθ0v)b)− logφ(a)

t

≥ lim
t→+0

{(1− t) logφ(a) + t logφ(tb(In + θ0v)b)} − logφ(a)

t

= lim
t→+0

−t logφ(a) + t logφ(tb(In + θ0v)b)

t

= − logφ(a) + logφ(tb(In + θ0v)b)

> 0 .

This contradicts (∂ logφ)b(θ0v) = θ0(∂ logφ)b(v) ≤ 0. Therefore, logφ(tb(In + v)b) is
less than logφ(a), i.e., φ(tb(In + v)b) < φ(a).

(2) Let Σ = {u ∈ Vn | σ(u) = 1 } be the unit sphere of Vn and let u ∈ C ∩ Σ. The
function gu(t) = logφ(In+ tu) in t ∈ R is defined on a sufficiently small neighborhood
of 0. Since (∂ logφ)b(u) > 0, there exists 0 < tu < 1 such that logφ(tb(In + tu)b) >
logφ(a) for all t ∈ (0, tu]. By the continuity of φ, there exists an open neighborhood
O(u) of u in C ∩ Σ such that logφ(tb(In + tuu

′)b) > logφ(a) for all u′ ∈ O(u). From
this and the strict log-concavity, it follows

logφ(tb(In + θtuu
′)b) > (1− θ) logφ(a) + θ logφ(tb(In + tuu

′)b)

> (1− θ) logφ(a) + θ logφ(a)

= logφ(a)
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for any 0 < θ < 1. Hence we deduce φ(tb(In + tu′)b) > φ(a) for all t ∈ (0, tu]. Since
O(u) (u ∈ C ∩ Σ) is an open covering of the compact set C ∩ Σ, there exists a finite
covering

C ∩ Σ ⊂
r⋃

i=1

O(ui)

with u1, . . . , ur ∈ C ∩ Σ. Put α = min{tu1
, . . . , tur}. For v ∈ C with 0 < σ(v) < α,

put u = v/σ(v) ∈ C ∩ Σ. There exists i such that u ∈ O(ui). Then we have
φ(tb(In+ tu)b) > φ(a) for t ∈ (0, α] ⊂ (0, tui

]. At t = σ(v), this yields φ(tb(In+v)b) >
φ(a).

Now the proof of Theorem 3.1 follows from the same argument as in the proof of [3,
Theorem 3.4.6] by using Lemmas 3.2 and 3.3.

4. Hermite like constants

In this section, we assume that φ is an arbitrary type one class function. Let ∂K1(m)
be the boundary of the kernel K1(m) and ∂0K1(m) the set of all vertices of ∂K1(m).
It is known that R>0 · ∂

0K1(m) coincides with the set of all perfect elements of Pn

and K1(m) is the convex hull of R≥1 ·∂
0K1(m), (cf. [8, §3.1]). The unimodular group

GLn(Z) acts on ∂0K1(m) as (a, g) 7→ tgag for a ∈ ∂0K1(m) and g ∈ GLn(Z). Let
Sp denote a complete set of representatives for ∂0K1(m)/GLn(Z). This Sp is a finite
set. From Pn ⊂ R>0 ·K1(m), it follows

sup
a∈Pn

Fφ(a) = sup
a∈K1(m)

Fφ(a) = sup
a∈∂K1(m)

1

φ(a)
.

Any a ∈ K1(m) is represented as a = λ1a1 + · · · + λrar by some a1, · · · , ar ∈
∂0K1(m) and λ1, · · · , λr ∈ R≥0 with λ1 + · · · + λr ≥ 1. Then, since φ(a) ≥
min{φ(a1), · · · , φ(ar)} and φ is a class function, one has

sup
a∈∂K1(m)

1

φ(a)
= sup

a∈∂0K1(m)

1

φ(a)
= max

a∈Sp

1

φ(a)
.

The constant δφ = supa∈Pn
Fφ(a) is regarded as an analog of Hermite’s constant γn.

We show that "the dual constant" of δφ also exists.

Proposition 4.1. If φ is a type one class function, then the superior

δ̂φ = sup
a∈Pn

φ(a)

w(a)

is finite.

Proof. There exists an α > 0 such that φ(αa) ≥ 1 for all a ∈ Sp. Since K1(m) is
the convex hull of R≥1 · ∂

0K1(m) and φ is a type one class function, we have

α ·K1(m) ⊂ K1(φ) .
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By taking the duals of both sides,

K1(φ
◦) ⊂

1

α
·K1(w).

By replacing φ with φ◦ and using the relation K1(φ) ⊂ K1(φ
◦◦), we have

α ·K1(φ) ⊂ K1(w).

Since (α/φ(a))a ∈ α ·K1(φ) ⊂ K1(w) for any a ∈ Pn, φ/w is bounded by α on Pn.

Proposition 4.2. For any type one class function φ, δφ = δ̂φ◦.

Proof. Since m(a) ≤ δφφ(a) for any a ∈ Pn, we have δφ ·K1(m) ⊂ K1(φ). By passing

to the dual, we have δφ · K1(φ
◦) ⊂ K1(w). This leads us to δ̂φ◦ ≤ δφ. In a similar

fashion, we obtain

sup
a∈Pn

m(a)

φ◦◦(a)
≤ δ̂φ◦ .

Since φ◦◦ = φ on Pn by Proposition 2.9, we have δφ ≤ δ̂φ◦ .

For a type one class function φ, we set ξφ = δφ · δφ◦ .

Proposition 4.3. The inequality ξw ≤ ξφ holds for any type one class function φ.

Proof. As in the proof of Proposition 4.2, we have m(a) ≤ δφ · φ(a) and δφ · w(a) ≥
φ◦(a) for all a ∈ Pn. By replacing φ with φ◦, we get δφ◦ · w(a) ≥ φ◦◦(a) = φ(a) for
a ∈ Pn. This implies δw ≤ δφ · δφ◦ .
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