
Journal of Convex Analysis

Volume 18 (2011), No. 3, 737–747

The Demyanov Metric for Convex,

Bounded Sets and Existence

of Lipschitzian Selectors∗

Andrzej Leśniewski
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1. Introduction

Apart well known and often used Hausdorff distance between subsets of metric spaces
there are some other essentially different and more adequate in some situations – we
have in mind here especially the Demyanov and Bartels-Pallaschke metrics defined
in the family of convex, compact subsets of Rd. They were applied in particular in
relation to the quasi-differentiability of multivalued functions – a tool important in
optimization. The basic information and further references can be found in [4], [5],
[6], [9].

We show in the present paper that a slightly different formula for the Demyanov
metric allows us to extend the scope of its validity to convex, bounded but not
necessarily closed sets. In order to do this we introduce in that family of sets a
relation of equivalence and define a metric in each class of equivalence. This metric
is in fact that of uniform convergence in the set of mappings whose arguments are
orthonormal systems of vectors in R

d and values are convex sets orthogonal to these
vectors (this is strictly connected with the decomposition of convex sets into the
relative interiors of extremal faces).
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ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



738 A. Leśniewski, T. Rze�zuchowski / The Demyanov Metric for Convex ...

This variant of the formula for the Demyanov metric allows us to compare it to a
metric introduced in 1975 by Plís in a paper on the problem of unicity of optimal
controls [10]. It can be seen that the Plís and Demyanov metrics coincide.

The final part of the paper is devoted to linear selectors. In [7], [11] one can find the
proof of existence of linear selectors s defined on the family of compact, convex sets
such that s(A) ∈ riA (ri denotes the relative interior). These selectors are Lipschitzian
with respect to the Hausdorff metric. Recently, in [3], a method of finding selectors
for which s(A) may also belong to the relative boundary of A has been studied. For
these selectors the Lipschitz condition relative to the Demyanov metric is adequate
(the Hausdorff metric being too weak). At the end of the paper we show the existence
of selectors s defined for A convex, bounded, not necessarily closed. Moreover, for
any fixed A0 and a0 ∈ A0 we have s with s(A0) = a0. The Lipschitz condition is
satisfied with respect to the variant of Demyanov metric introduced previously.

2. Basic notions and preliminaries

We keep as close as possible to the notations from [9] and [12].

By K̃d we denote the family of convex, bounded, nonempty subsets of Rd and by Kd

its subfamily composed of compact sets. For any A ∈ K̃d and u ∈ R
d

pA(u) = sup
a∈A

〈a, u〉, A(u) = {a ∈ A : 〈a, u〉 = pA(u)}

and by recurrence A(u1, . . . , ui) = A(u1, . . . , ui−1)(ui). (It may happen that some of
the sets A(u1, . . . , ui) are empty if A is not closed.)

E will stand for the set of all orthonormal sequences (e1, . . . , ek), 1 ≤ k ≤ d. We shall
often use a single, capital letter to denote elements of E , like E = (e1, . . . , ek).

The Hausdorff distance of V,W ⊂ R
d is defined by

ρH(V,W ) = max{ǫ(V,W ), ǫ(W,V )}

where

ǫ(V,W ) = sup
v∈V

dist(v,W ) = inf{ε > 0 : V ⊂ W + εU}

(U is the open unit ball). This is a metric in the family of closed, bounded sets in
R

d.

Upper semicontinuity of a map φ defined on some metric space X whose values are
subsets of Rd means that limx→x0 ǫ(φ(x), φ(x0)) = 0 for all x0 ∈ X.

For each A ∈ Kd the map u 7→ A(u) is upper semicontinuous ([1], page 53, Theo-
rem 6). Let us prove a lemma precising in some sense this property – it will be useful
in the sequel.

Lemma 2.1. Let A ∈ Kd, v, w ∈ R
d be non-zero and not parallel. Then

lim
α→0+

ǫ(A(v + αw), A(v, w)) = 0
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Proof. In view of the compactness of A it is enough to prove that for any αj → 0+
and any convergent sequence yj ∈ A(v + αjw) its limit y0 belongs to A(v, w).

Remark first that due to the upper semicontinuity of the map u 7→ A(u) we have
y0 ∈ A(v).

Let us choose some element x in A(v, w). Then 〈yj, v + αjw〉 ≥ 〈x, v + αjw〉, as
yj ∈ A(v + αjw). Together with the inequalities 〈yj, v〉 ≤ 〈x, v〉 this results in
〈yj, αjw〉 ≥ 〈x, αjw〉. But αj > 0 so we get 〈y0, w〉 ≥ 〈x,w〉 and this finally implies
that y0 ∈ A(v, w) which was to be proved.

We use the notation u⊥v to say that u, v are orthogonal vectors in R
d. For U, V ⊂ R

d

we write U⊥V if u⊥v for any u ∈ U , v ∈ V . U⊥ denotes the subspace orthogonal to
all elements of U .

3. The Demyanov difference and metric in Kd.

We recall briefly how the Demyanov difference and metric are usually introduced
(see [9] for example) and give an alternative formula for the Demyanov metric which
permits further extensions to the case of convex but not necessarily closed sets. We
recall a paper by Plís [10] who in a different context and using other language defined
a metric which occured to be equal to the Demyanov metric. At the end of the section,
some metrics in Kd are proposed which are intermediary between the Hausdorff and
Demyanov metrics.

Let TA, for A ∈ Kd, be the set of nonzero vectors v ∈ R
d for which A(v) is a singleton.

The set Rd \ TA has always measure 0 and so for any two A,B ∈ Kd the complement
of TA ∩ TB has also measure 0.

The Demyanov difference of A,B ∈ Kd is defined by

A÷B = clco {A(v)−B(v) : v ∈ TA ∩ TB} (1)

where clco stands for the closed, convex hull. It is enough to take in (1) v from any
T ⊂ TA ∩ TB such that the complement of T in R

d has measure 0 or even v from
T ∩ Sd−1.

The Demyanov distance of A,B ∈ Kd is defined as

ρD(A,B) = max{‖z‖ : z ∈ A÷B} (2)

It is well known and easy to prove that ρH(A,B) ≤ ρD(A,B) but the metrics are
not equivalent. We refer to [5], [9] for these and other properties of the metric space
(Kd, ρD) and its applications. Here we recall and prove some properties which will
serve to give a slightly different formula for ρD. This formula will be in some sense
worse than that from the definition – it will use a redundant information – but will
permit to extend the Demyanov metric to the family of convex, not necessarily closed
sets.
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3.1. A representation of the Demyanov metric.

The following property can be found in [9] – we give here a slightly different proof.

Lemma 3.1. For A,B ∈ Kd and any v ∈ R
d

A(v)÷B(v) ⊂ A÷B . (3)

Proof. This inclusion is obvious when v = 0 or v ∈ TA ∩ TB. So it is enough to
consider the case when at least one of sets A(v), B(v) is not a singleton and v 6= 0.

We show that for every w ∈ TA(v) ∩ TB(v) the difference A(v, w)−B(v, w) belongs to
A÷B and this, in view of (1), proves the claim.

To this end it will be enough to find a sequence un ∈ TA ∩ TB such that A(un) →
A(v, w) and B(un) → B(v, w).

Fix n ∈ N. Due to Lemma 2.1 we may find αn > 0 sufficiently small to have

ǫ(A(v + αnw), A(v, w)) <
1

2n
and ǫ(B(v + αnw), B(v, w)) <

1

2n
.

There is rn > 0 such that for ‖z − (v + αnw)‖ < rn

ǫ(A(z), A(v + αnw)) <
1

2n
and ǫ(B(z), B(v + αnw)) <

1

2n
.

We take now un ∈ TA ∩ TB with ‖un − (v + αnw)‖ < rn to get

‖A(un)− A(v, w)‖ <
1

n
and ‖B(un)−B(v, w)‖ <

1

n

which provides the desired sequence.

The lemma implies obviously that for A,B ∈ Kd and any (e1, . . . , ek) ∈ E

A(e1, . . . , ek)÷B(e1, . . . , ek) ⊂ A÷B (4)

and
ρD(A(e1, . . . , ek), B(e1, . . . , ek)) ≤ ρD(A,B) (5)

We put Ek = {(e1, . . . , ej) ∈ E : j ≥ k}.

Corollary 3.2. For all A,B ∈ Kd and 1 ≤ k ≤ d

ρD(A,B) = sup
E∈Ek

ρH(A(E), B(E)) (6)

Proof. The inequality "≥" is a consequence of (5) and of the inequality ρH(A(E),
B(E)) ≤ ρD(A(E), B(E)). To justify "≤" remark that if u ∈ TA ∩ TB, with
‖u‖ = 1, then for any orthonormal system (u, e2, . . . , ek) we have ‖A(u) − B(u)‖ =
‖A(u, e2, . . . , ek) − B(u, e2, . . . , ek)‖ = ρH(A(u, e2, . . . , ek), B(u, e2, . . . , ek)) and (2)
ends the proof.
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Corollary 3.2 may seem to be obvious and in fact it is – the right-hand side of (6)
contains much redundant information. However, this expression for the Demyanov
metric will permit to extend this metric to the family K̃d – it will be done in Section 4.
It may be also considered to have some value in explaining the nature of the Demyanov
metric.

For k = 1 we get in particular that

ρD(A,B) = sup
E∈E

ρH(A(E), B(E))

and one can see that the Demyanov metric can be interpreted as the metric of uniform
convergence of maps defined by E 7→ A(E) for each A ∈ Kd. This, for example,
implies instantly that the space (Kd, ρD) is complete – a well known fact.

3.2. A metric introduced by Plís and its variants.

It is probably not widely known that Plís [10] introduced a metric which can be
proved to be equal to the Demyanov metric. He did it in the spirit of formula (6).
Using our notation Plís’s definition can be writtten as

η(A,B) = sup
e∈Sd−1

ρH(A(e), B(e)) (7)

The equality η = ρD can be proved in exactly the same way as Corollary 3.2.

Let us remark that in order to define the Demyanov metric we may use not necessarily
the whole sphere Sd−1 but its dense subsets.

Proposition 3.3. If V is a dense subset of Sd−1 then for A,B ∈ Kd

ρD(A,B) = sup
v∈V

ρH(A(v), B(v)) (8)

Proof. The inequality ≥ is obvious in view of (6). Let e ∈ TA ∩ TB and take
any sequence vn ∈ V convergent to e. The mappings u → A(u), u → B(u) are
upper semicontinuous, A(e), B(e) are singletons, so both sequences ρH(A(vn), A(e)),
ρH(B(vn), B(e)) tend to 0. This implies

ρH(A(vn), B(vn)) → ‖A(e)−B(e)‖

and the opposite inequality follows which ends the proof.

When V is not dense in Sd−1 then the right-hand side of (8) does not define a metric.
However, adding a term equal to the Hausdorff metric we may get a whole family
of intermediary metrics stronger than the Hausdorff and weaker than the Demyanov
metric. Namely, let V ⊂ Sd−1 be arbitrary and put

ηV (A,B) = ρH(A,B) + sup
v∈V

(ρH(A(v), B(v)) (9)

Plís compared in [10] the metric (7) introduced by himself to the Hausdorff metric.
He noticed, of course, the inequality ρH(A,B) ≤ η(A,B) but discussed also their
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relation in the family of p-convex sets. A set A ∈ Kd is p-convex if for every a ∈ ∂A
and v ∈ Sd−1 such that a ∈ A(v) the inequality

〈x− a, v〉+ p · ‖x− a‖2 ≤ 0

holds for all x ∈ A.

The following property is proved in [10]. Fix p > 0 and M > 0. There is then
a constant K > 0 such that if A,B ∈ Kd, A,B ⊂ MU and at least one of them is
p-convex then

η(A,B)2 ≤ KρH(A,B)

An obvious consequence of this inequality is the equivalence of ρD and ρH in the
family of p-convex sets. In fact, it is known and easy to prove that this equivalence
holds in the family of strictly convex sets.

4. The Demyanov metric in subspaces of K̃d.

We put E0 = E ∪ {0} and introduce in K̃d the following equivalence relation.

Definition 4.1. A ∼ B iff for every E ∈ E0 we have

A(E) 6= ∅ ⇔ B(E) 6= ∅

Remark that if we fix an equivalence class then the set U composed of E ∈ E0 for
which A(E) 6= ∅ is common for all the representants. It is thus possible to denote

this equivalence class using U – we shall write K̃d
U .

The sets U ⊂ E0 corresponding to some equivalence class will be called admissible.
Any admissible U satisfies the following two obvious conditions:

(i) 0 ∈ U

(ii) (e1, . . . , ek, ek+1) ∈ U ⇒ (e1, . . . , ek) ∈ U

However, the conditions (i), (ii) are not sufficient for a set U ⊂ E0 to be admissible
which can be observed for U described in the following example.

Example 4.2. Let d = 2 and U = {0} ∪ S1.

Suppose that K̃d
U 6= ∅ and take any A ∈ K̃d

U . Let e1 be such that Ā(e1) is an exposed
point in Ā – the bar over a set A denotes its closure. Then Ā(e1) ∈ A and for e2 ∈ S1

orthogonal to e1 we have A(e1) = A(e1, e2) 6= ∅ wheras (e1, e2) /∈ U and so U is not
admissible.

The formula (6) from Theorem 3.2 allows us to define in a natural way the Demyanov

metric in K̃d
U .

Fix d ≥ 1 and a nonempty, admissible set U ⊂ E0.

Definition 4.3. For A,B ∈ K̃d
U we define

ρU(A,B) = sup
E∈U

ρH(A(E), B(E)) (10)
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Proposition 4.4. ρU defines a metric in K̃d
U .

The symmetry and the triangle inequality are obvious as well as the implication
A = B ⇒ ρU(A,B) = 0. We check that ρU(A,B) = 0 implies A = B. Suppose, on
the contrary, that ρU(A,B) = 0 but A \ B 6= ∅ and fix x in A \ B. For some E ∈ U
this x must belong to riA(E) – ri stands here for the relative interior of a convex set.
The equality ρU(A,B) = 0 implies ρH(A(E), B(E)) = 0 and so riA(E) = riB(E).
Thus x ∈ B which is the seeked contradiction.

From now on we shall consider the space K̃d
U always equipped with the metric ρU if

not stated otherwise.

The metric ρU provides a separable space only if U is finite (see Example 3.1 in

[9]). The discussion of completeness, or rather noncompleteness, of spaces (K̃d
U , ρU)

and characterizing their complements is postponed to a paper in preparation. Let us
mention here only that no such space is complete except for d = 1 and U = {0, 1,−1}.

5. Selectors in K̃d
U .

Much attention has been given to continuous, linear selectors (additive and positively
homogeneous) in the family of closed, convex sets and many important results have
been obtained. To mention just a few we refer to [3], [8], [11] and references therein.
They all have their origins in the notion of Steiner point.

We consider any space K̃d
U and the problem of existence of linear selectors s : K̃d

U → R
d

satisfying the Lipschitz condition. For selectors we should have by definition s(A) ∈ A
but we may require in addition that

s(A0) = a0 (11)

for any fixed A0 ∈ K̃d
U and a0 ∈ A0. We shall show also how the Lipschitz constant

of s may depend on the nature of U .

The solution of the problem of existence of selectors satisfying (11) when a0 ∈ intA0

(or more generally a0 ∈ riA0) is covered, for example, in [11] so we consider the case
a0 ∈ A0 \ intA0.

Let E = (e1, . . . , ek) ∈ U be such that a0 ∈ A0(E) but for no nonzero v⊥E the set
A0(e1, . . . , ek, v) contains a0 – this means that A0(E) is the minimal face containing
a0. We claim that a0 ∈ riA0(e1, . . . , ek) (recall that ri denotes the relative interior).
In fact, when k = d then A0(E) is a singleton and the condition holds. Suppose now
that k < d but a0 /∈ riA0(E). Then A0(E) ⊂ a0+E⊥, a0 ∈ rbA0(E), where rb stands
for the relative boundary, and so there exists ek+1⊥E for which a0 ∈ A0(E)(ek+1) =
A0(e1, . . . , ek, ek+1) contrary to the definition of E.

We define now a selector s : K̃d
U → R

d for which s(A0) = a0. According to Theorem
4.1 and 4.2 in [11] (Section 4. The harmonic representation of convex sets) there is
a probability measure α on Sd−1 with strictly positive density with respect to the
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surface measure for which

a0 =

∫

Sd−1∩T
A(E)

A0(E)(e) dα(e) (12)

The complement of Sd−1∩TA(E) in Sd−1 has the surface measure equal 0 and so, using
the fact that α is absolutely continuous with respect to the surface measure, we have
α(Sd−1 ∩ TA(E)) = α(Sd−1). In view of that we may integrate in integrals like (12)

over whole Sd−1 even if from the formal point of view it may be then the integral of a
multivalued map. This multivalued map is, by the way, upper semicontinuous which
implies the measurability of our integrand.

We define the needed selector by the formula

s(A) =

∫

Sd−1

A(E)(e) dα(e) (13)

Let us check first that it is actually a selector – the equality (11) is obvious. In view
of Theorem 4.2 in [11] we have s(A) ∈ riA(E) and as E ∈ U so riA(E) ⊂ A.

The mapping s(·) is a composition

A 7→ A(E) 7→

∫

Sd−1

A(E)(e) dα(e)

which implies immediately that it is additive and positively homogenous as both
composed mappings are.

We check now the Lipschitz condition. According to Section 4 in [11] there is a con-

stant L such that for A,B ∈ K̃d
U we have ‖s(A)− s(B)‖ ≤ LρH(A(E), B(E)) and in

view of ρH(A(E), B(E)) = ρH(A(E), B(E)) ≤ ρU(A,B) we get finally

‖s(A)− s(B)‖ ≤ LρU(A,B)

The Lipschitz constant L depends on the position of a0 in A0(E) and in general it
cannot be bounded from above. However, in some cases it can be proved not to
exceed 1 and this depends on a property of U .

Suppose first that k = d. Then we put s(A) = A(e1, . . . , ed). We have, by definition,
s(A0) = A0(e1, . . . , ed) = a0. Moreover, in view of Definition 4.3

‖s(A)− s(B)‖ = ‖A(e1, . . . , ed)−B(e1, . . . , ed)‖ ≤ ρU(A,B)

so s is Lipschitzian with constant 1.

Suppose now k < d and assume that A(E)(e) 6= ∅ for all e ∈ Sd−1. If e is linearly
independent from E then A(E)(e) = A(E)(e′) for some e′ ∈ Sd−1 such that (E, e′) ∈
U . So ρH(A(E, e), B(E, e)) = ρH(A(E, e′), B(E, e′)) ≤ ρU(A,B). The set of e ∈ Sd−1



A. Leśniewski, T. Rze�zuchowski / The Demyanov Metric for Convex ... 745

which are linearly dependent from E has the surface measure equal 0 and due to the
absolute continuity of α we get

‖s(A)− s(B)‖ ≤

∥∥∥∥
∫

Sd−1

(A(E)(e)−B(E)(e)) dα(e)

∥∥∥∥

≤

∫

Sd−1

ρH(A(E, e), B(E, e)) dα(e) ≤ ρU(A,B)

Note that the function e 7→ ρH(A(E, e), B(E, e)) is continuous at every point e for
which both A(E, e) and B(E, e) are singletons and so it is continuous almost every-
where on Sd−1. It is also bounded and thus integrable.

Let us consider yet the case when U is composed only of the zero vector which means
that K̃d

U coincides with the family of nonempty, convex, open subsets of Rd. Here
ρU coincides with the Hausdorff distance and Theorems 4.1 and 4.2 from [11] can be
directly applied.

We summarize the above considerations in a theorem.

Theorem 5.1. For every A0 ∈ K̃d
U and a0 ∈ A0 there is a linear selector s : K̃d

U → R
d

satisfying s(A0) = a0 and

‖s(A)− s(B)‖ ≤ LρU(A,B) (14)

for some L ≥ 0 and all A,B ∈ K̃d
U .

With an additional assumption we get another estimate for the Lipschitz constant
with respect to the metric ρU than the one that can be derived from [11].

Theorem 5.2. Let E ∈ U be such that a0 ∈ A0(E) and a0 /∈ A(E, v) for all (E, v) ∈
U with v ∈ E⊥ ∩ Sd−1. If for all such v we have (E, v) ∈ U then we may put L = 1
in (14).

Such E as in the assumption above always exists and A(E) is the minimal face
containing a0.

In particular, the assumption of Theorem 5.2 is always satisfied for U = E0 and so
we have

Corollary 5.3. For every A0 ∈ K̃d
E0

and a0 ∈ A0 there is a linear selector s : K̃d
E0

→
R

d for which s(A0) = a0 and

‖s(A)− s(B)‖ ≤ ρE0(A,B)

for all A,B ∈ K̃d
E0
.

It may happen that E is composed only of the zero vector – this corresponds to the
case when a0 ∈ intA0.
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6. Some comments.

Baier and Farkhi define in [2] a metric very near to the Demyanov metric and inves-
tigate their relations. The difference between these two approaches can be explained
using formula (6). For the Demyanov metric it contains terms ρH(A(E), B(E)) while
in order to get the metric ρV from [2] one should replace them by the Hausdorff
distance of projections π(A(E)) and π(B(E)) of A(E) and B(E) on E⊥. So

ρV (A,B) = sup
E∈Ek

ρH(π(A(E)), π(B(E)))

– true for each k = 1, . . . , d.

The Hausdorff distance of two sets can be expressed as the supremum of absolute
values of differences of their support functions so we have

ρD(A,B) = sup
E∈Ek

sup
v∈Sd−1

∣∣pA(E)(v)− pB(E)(v)
∣∣

for the Demyanov metric and

ρV (A,B) = sup
E∈Ek

sup
v∈Sd−1∩E⊥

∣∣pA(E)(v)− pB(E)(v)
∣∣

for that of Baier and Farkhi.

A formula for ρV – analogous to the definition of Demyanov’s metric given by formula
(2) – can be written in the following way

ρV (A,B) = sup
v∈TA∩TB

√
‖A(v)−B(v)‖2 − 〈v, A(e)−B(e)〉2

Dentcheva defines in [7] generalized Steiner points of convex, compact sets in R
d

applying the formula

S̃tα(A) =

∫

U

m(A(v)) dα(v)

where m(U) stands for the element in U ∈ Kd with minimal norm and α is a proba-
bility measure on U with density of class C1. These generalized Steiner points provide
linear selectors in Kd Lipschitzian with respect to the Hausdorff metric. Baier and
Farkhi modify this formula to the shape

Stα(A) =

∫

U

St(A(v)) dα(v)

where St(U) denotes the usual Steiner point of the set U . They extend the family of
probability measures using also convex combinations of Dirac measures concentrated
on points of the sphere Sd−1. In that way the family of corresponding linear selectors
is broader – it contains also selectors s for which s(A0) = St(A0(v0)) for any fixed
A0 ∈ Kd, v0 ∈ Sd−1. These selectors are Lipshitzian with respect to the Demyanov
metric.
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