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We provide a method to find a weighted Steiner minimal tree for convex quadrilaterals on a two-
dimensional hemisphere of radius 1

√

K
, for K > 0 and the two dimensional hyperbolic plane of

constant Gaussian Curvature K, for K < 0 by introducing a method of cyclical differentiation of
the objective function with respect to four variable angles. By applying this method, we find a
generalized solution to a problem posed by C. F. Gauss in the spirit of weighted Steiner trees.
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1. Introduction

In 1836, C. F. Gauss posed the following problem to the astronomer Schumacher
(see [2], page 326, [4], Chapter 2): How to find a railway network of minimal total
length which connects the four cities Bremen, Harburg (today part of the city of
Hamburg), Hannover, and Braunschweig. In 1879, K. Bopp (see [3], [2], page 327)
gave a complete solution to Gauss problem for any four given points in the two-
dimensional Euclidean Space. He also gave a description of an experimental solution
by applying the property of soapsuds to span a minimal surface between the given
points and which have been developed later by R. Courant (see also [5], page 385–
397). A formulation of the Steiner problem has been given in [5], page 360: "Given n
points A1A2...An to find a connected system of straight line segments of shortest total
length such that any two of the given points can be joined by a polygon consisting of
segments of the system." In the classical paper of E. Gilbert and H. Pollak ([6], [2],
page 328–329) the following fundamental result is proved:
A solution of the Steiner problem is a Steiner tree with at most n−2 Fermat-Torricelli
(or Steiner) points which are vertices of the polygonal tree which do not belong in
{A1A2...An}, where each Fermat-Torricelli point has valency 3, and the angle between
any two edges incident with a Fermat-Torricelli point is of 120◦.
The solution of the Steiner problem is not uniquely determined. For example, for
the case that four given points forming a tetragon in the two-dimensional Euclidean
Space, two equivalent solutions exist (see [5], page 361). Cases where a variant of
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Steiner problem is uniquely determined is given in [6], pages 6–7. Concerning the
definition of the topologies of various Steiner trees on the two-dimensional Euclidean
Space, you can consult [6].

In this paper, we provide a method to find a weighted (full) Steiner tree for convex
quadrilaterals on the two-dimensional sphere, two dimensional hyperbolic plane by
expressing the length of two geodesic arcs which are edges of the weighted Steiner
tree as a function of the other two geodesic arcs (edges of the Steiner tree) and two
angles which are formulated between these two geodesic arcs and two given sides
of the quadrilateral, respectively. By applying a method of cyclical differentiation
with respect to four angles, we derive that the two inner points which are located at
the interior domain of the quadrilateral are two weighted Fermat-Torricelli points. A
generalized solution of the Steiner problem for convex quadrilaterals (Gauss problem)
is given on the two-dimensional Euclidean Space. We would like to note that we have
excluded any degenerate minimal trees and we focus on the topology of a weighted
Steiner minimal tree which is full and contains two points which are located at the
interior domain of the convex quadrilateral. An open question is to derive a gener-
alized condition of weighted inequalities such that a weighted Steiner tree exists and
is unique. The answer to this question will generalize the floating and absorbed case
of the generalized Fermat-Torricelli point which has been established by Y. Kupitz
and H. Martini (see [2], page 250) in R

n, on the two-dimensional sphere and the
two-dimensional hyperbolic plane.

2. A weighted Steiner minimal tree for convex quadrilaterals on the K-
plane.

We denote by K-plane (SK), the open hemisphere of radius 1/
√
K of the two-

dimensional sphere S2 if K > 0 and the Lobachevski plane (two-dimensional hyper-
boloid H2) of curvature K if K < 0, the Euclidean plane R

2 if K = 0 (see [1], page
2). Let A1A2A3A4 be a convex quadrilateral on the K-plane. Suppose that a positive
number Bi(weight) corresponds to each vertex Ai, for i = 1, 2, 3, 4, respectively. We
denote by d the length of the geodesic arc that connects A0 with A0′ , aij the length
of the geodesic arc that connects the vertex Ai with Aj, and αijk, the angle that is
formulated between the geodesic arcs AiAj and AjAk, for i, j, k ∈ {0, 0′, 1, 2, 3, 4} and
i 6= j 6= k. Furthermore, we denote by a10 = a1, a40 = a4, a20′ = a2, and a30′ = a3
(see Figure 2.1).

Theorem 2.1. A weighted (full) Steiner minimal tree of A1A2A3A4 consists of two
(weighted) Fermat-Torricelli points A0, A

′

0
which are located at the interior convex

domain with corresponding weights B0=B0′=B5 and minimizes the objective function:

B1a1 +B2a2 +B3a3 +B4a4 +B5d = minimum, (1)

such that:
|Bi −Bj| < Bk < Bi +Bj (2)

and
|Bl −Bm| < Bn < Bl +Bm (3)

for i, j, k ∈ {1, 4, 5}, l,m, n ∈ {2, 3, 5} and i 6= j 6= k, l 6= m 6= n.
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Figure 2.1

Proof of Theorem 2.1. (I) We study the case where A1A2A3A4 lies on a two-
dimensional sphere S2 of constant Gaussian curvature K or a two-dimensional hyper-
bolic plane H2 of constant Gaussian curvature −K, for K > 0.

The length of geodesic arcs a3, a4, d can be expressed as functions of a1, a2, α014,
α120′ , by applying the cosine law in a unified form (see [1], page 3) in the triangles
∇A0′A2A3, ∇A0A1A4, ∇A0A0′A1, respectively, on the K-plane:

cos(κ̃a3) = cos(κ̃a23) cos(κ̃a2) + sin(κ̃a23) sin(κ̃a2) cos(α123 − α120′), (4)

cos(κ̃a4) = cos(κ̃a14) cos(κ̃a1) + sin(κ̃a14) sin(κ̃a1) cosα014, (5)

cos(κ̃d) = cos(κ̃a10′) cos(κ̃a1) + sin(κ̃a10′) sin(κ̃a1) cosα010′ , (6)

or

cos(κ̃d) = cos(κ̃a10′) cos(κ̃a1) + sin(κ̃a10′) sin(κ̃a1) cos(α214 − α014 − α210′) (7)

where

κ̃ =

{√
K if K > 0,

i
√
−K if K < 0.

From the cosine law in ∇A1A2A0′ we have:

cos(κ̃a10′) = cos(κ̃a12) cos(κ̃a2) + sin(κ̃a12) sin(κ̃a2) cosα120′ . (8)

We show that the angle α210′ can be expressed as a function of a2 and α120′ .
We take a point A5 that belongs in the geodesic arc A1A2 and the angle that is
formulated between the geodesic arcs A0′A5 and A1A2 is π

2
and we denote by a50′

the length of the geodesic arc A5A0′ . From the sine law in the triangle ∇A5A2A0′ we
have:

sin(κ̃a50′)

sinα120′

=
sin(κ̃a2)

sin π
2

(9)

or

sin(κ̃a50′) = sinα120′ sin(κ̃a2). (10)
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From the sine law in the triangle ∇A1A5A0′ we have:

sin(κ̃a50′)

sinα210′

=
sin(κ̃a10′)

sin π
2

(11)

or

sin(α210′) =
sin(κ̃a50′)

sin(κ̃a10′)
(12)

By replacing (10), (8) in (12), we derive that α210′ is a function of a2 and α120′ and
by replacing this result and (8) in (7), we derive that d depends on a1, a2, α014, α120′ .

By differentiating (1) with respect to a1, a2, α014, α120′ , respectively, we obtain:

B1 +B3

∂a3
∂a1

+B4

∂a4
∂a1

+B5

∂d

∂a1
= 0, (13)

B2 +B3

∂a3
∂a1

+B4

∂a4
∂a2

+B5

∂d

∂a2
= 0, (14)

B3

∂a3
∂α014

+B4

∂a4
∂α014

+B5

∂d

∂α014

= 0, (15)

B3

∂a3
∂α120′

+B4

∂a4
∂α120′

+B5

∂d

∂α120′

= 0. (16)

We calculate ∂a3
∂α014

, ∂a4
∂α014

, ∂d
∂α014

, in order to derive (15).

By differentiating (7) with respect to α014, we have:

κ̃
∂d

∂α014

= −sin(κ̃a10′) sin(κ̃a1) sin(α214 − α014 − α210′)

sin(κ̃d)
. (17)

We apply the "sine law" in the triangle ∇A1A0A0′ :

sin(κ̃a10′)

sin(κ̃d)
=

sin(α100′)

sin(α214 − α014 − α210′)
. (18)

By replacing (18) in (17), we get:

κ̃
∂d

∂α014

= − sin(κ̃a1) sinα100′ . (19)

By differentiating (4) with respect to α014, we derive that:

∂a3
∂α014

= 0. (20)

By differentiating (5) with respect to α014, we derive that:

∂a4
∂α014

=
sin(κ̃a14) sin(κ̃a1) sinα014

sin(κ̃a4)
. (21)
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From the sine law in ∇A0A1A4, we have:

sin(κ̃a14)

sin(κ̃a4)
=

sinα104

sinα014

. (22)

By replacing (22) in (21), we get:

κ̃
∂a4
∂α014

= sin(κ̃a1) sinα104. (23)

By replacing (20), (23), (19) in (15), we have:

B4

sin(κ̃a1)

κ̃
sinα104 −B5

sin(κ̃a1)

κ̃
sinα100′ = 0 (24)

or
B4

sinα100′

=
B5

sinα104

. (25)

From the cosine law in∇A0A2A0′ , the length of the geodesic arc can also be expressed
as a function of a1, a2, α014, α120′ :

cos(κ̃d) = cos(κ̃a20) cos(κ̃a2) + sin(κ̃a20) sin(κ̃a2) cosα020′ (26)

or
cos(κ̃d) = cos(κ̃a20) cos(κ̃a2) + sin(κ̃a20) sin(κ̃a2) cos(α120′ − α120). (27)

From the cosine law in ∇A0A1A2, we have:

cos(κ̃a20) = cos(κ̃a1) cos(κ̃a12) + sin(κ̃a1) sin(κ̃a12) cosα012 (28)

or
cos(κ̃a20) = cos(κ̃a1) cos(κ̃a12) + sin(κ̃a1) sin(κ̃a12) cos(α214 − α014). (29)

We show that the angle α120 depends on a1 and α014.

We take a point A5′ that belongs in the geodesic arc A1A2 and the angle that is
formulated between the geodesic arcs A0A5′ and A1A2 is

π
2
and we denote by a5′0 the

length of the geodesic arc A5′A0. From the sine law in the triangle ∇A1A5′A0, we
have:

sin(κ̃a5′0)

sin(α214 − α014)
=

sin(κ̃a1)

sin π
2

(30)

or

sin(κ̃a5′0) =
sin(κ̃a1)

sin(α214 − α014)
. (31)

From the sine law in the triangle ∇A5′A2A0 we have:

sin(κ̃a5′0)

sinα120

=
sin(κ̃a20)

sin π
2

(32)

or

sinα120 =
sin(κ̃a5′0)

sin(κ̃a20)
. (33)
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By replacing (31), (29) in (33), we derive that α120 is a function of a1 and α014.

By replacing (29) in (27) and by differentiating with respect to α120′ , we have:

κ̃
∂d

∂α120′

=
sin(κ̃a20) sin(κ̃a2) sin(α120′ − α120)

sin(κ̃d)
. (34)

From the sine law in ∇A0A2A0′ , we have:

sin(κ̃a20)

sin(κ̃d)
=

sinα00′2

sin(α120′ − α120)
. (35)

By replacing (35) in (34), we have:

κ̃
∂d

∂α120′

= sin(κ̃a2) sinα00′2 . (36)

By differentiating (4) with respect to α120′ , we have:

κ̃
∂a3

∂α120′

= −sin(κ̃a2) sin(κ̃a23) sin(α123 − α120′)

sin(κ̃a3)
. (37)

From the sine law in ∇A2A3A0′ we have:

sin(κ̃a23)

sin(κ̃a3)
=

sinα20′3

sin(α123 − α120′)
. (38)

By replacing (38) in (37), we have:

κ̃
∂a3
α120′

= − sin(κ̃a2) sinα20′3. (39)

By differentiating (5) with respect to α120′ , we have:

∂a4
∂α120′

= 0. (40)

By replacing (39), (36) and (40) in (16), we obtain:

−B3

sin(κ̃a2)

κ̃
sinα20′3 +B5

sin(κ̃a2)

κ̃
sinα00′2 = 0 (41)

or
B3

sinα00′2

=
B5

sinα20′3

. (42)

We can also express a1, a2, d as a function of a3, a4, α041 and α0′34.

By applying the cosine law in the triangles ∇A0A1A4, ∇A0′A2A3, ∇A0A0′A4 and
∇A0A0′A3, respectively, we have:

cos(κ̃a1) = cos(κ̃a14) cos(κ̃a4) + sin(κ̃a14) sin(κ̃a4) cosα041, (43)

cos(κ̃a2) = cos(κ̃a23) cos(κ̃a3) + sin(κ̃a23) sin(κ̃a3) cos(α234 − α0′34), (44)

cos(κ̃d) = cos(κ̃a4) cos(κ̃a0′4) + sin(κ̃a4) sin(κ̃a0′4) cos(α0′41 − α041), (45)

cos(κ̃d) = cos(κ̃a3) cos(κ̃a03) + sin(κ̃a3) sin(κ̃a03) cos(α0′34 − α034). (46)
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By differentiating (1) with respect to a3, a4, α041, α0′34, we obtain, respectively:

B1

∂a1
∂a3

+B2

∂a2
∂a3

+B3 +B5

∂d

∂a3
= 0, (47)

B1

∂a1
∂a4

+B2

∂a2
∂a4

+B4 +B5

∂d

∂a4
= 0, (48)

B1

∂a1
∂α041

+B2

∂a2
∂α041

+B5

∂d

∂α041

= 0, (49)

B1

∂a1
∂α0′34

+B2

∂a2
∂α0′34

+B5

∂d

∂α0′34

= 0. (50)

Similarly, by working cyclically we can follow the previous process and by exchanging
the indices 1 → 4, 2 → 3, 3 → 2 and 1 → 4, we derive two relations, respectively:

B1

sinα0′04

=
B5

sinα104

(51)

and
B2

sinα00′3

=
B5

sinα20′3

. (52)

From (25) and (51), we have:

B1

sinα0′04

=
B4

sinα100′

=
B5

sinα104

= c. (53)

The relationship between the angles α0′04, α100′ and α104 can be used, in order to
show that c depends on B1, B4, B5. Thus, we have:

α0′04 + α100′ + α104 = 2π (54)

or
sinα0′04 = − sin(α100′ + α104). (55)

From (55) and (53), we get:

c =
2B1B4B5

(B1 +B4 +B5)(B1 −B4 +B5)(B1 +B4 −B5)(−B1 +B4 +B5)
. (56)

By replacing (56) in (53), we have:

cosα100′ =
B2

4
−B2

1
−B2

5

2B1B5

, (57)

cosα0′04 =
B2

1
−B2

4
−B2

5

2B4B5

, (58)

cosα104 =
B2

5
−B2

1
−B2

4

2B1B4

. (59)
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The relations (57), (58) and (59) show that A0 is the weighted Fermat-Torricelli point
of ∇A1A0′A4 which minimizes the function f1 = B1a1 +B5d+B4a4.

From (42) and (52), we have:

B2

sinα00′3

=
B3

sinα00′2

=
B5

sinα20′3

= c. (60)

The relationship between the angles α00′3, α00′2 and α20′3 can be used, in order to
show that c depends on B2, B3, B5. Thus, we have:

α00′3 + α00′2 + α20′3 = 2π (61)

or
sinα00′3 = − sin(α00′2 + α20′3). (62)

From (62) and (60), we get:

c =
2B2B3B5

(B2 +B3 +B5)(B2 −B3 +B5)(B2 +B3 −B5)(−B2 +B3 +B5)
. (63)

By replacing (63) in (60), we have:

cosα00′3 =
B2

2
−B2

3
−B2

5

2B3B5

, (64)

cosα00′2 =
B2

3
−B2

5
−B2

2

2B5B2

, (65)

cosα20′3 =
B2

5
−B2

2
−B2

3

2B2B3

. (66)

The relations (64), (65) and (66) show that A0′ is the weighted Fermat-Torricelli
point of ∇A0A2A3 which minimizes the function f2 = B5d+B2a2 +B3a3.

From (57), (58), (59), (64), (65) and (66) we derive (2) and (3).

(II) We study the case for K = 0, where A1A2A3A4 lies on the two-dimensional
Euclidean Space R2.
The length of the line segments arcs a3, a4, d can be expressed as functions of a1,
a2, α014, α120′ , by applying the cosine law in the triangles ∇A0′A2A3, ∇A0A1A4,
∇A0A0′A1, respectively:

a2
3
= a2

23
+ a2

2
− 2a23a2 cos(α123 − α120′), (67)

a2
4
= a2

14
+ a2

1
− 2a14a1 cosα014 , (68)

d2 = a2
10′

+ a2
1
− 2a10′a1 cosα010′ (69)

or
d2 = a2

10′
+ a2

1
− 2a10′a1 cos(α214 − α014 − α210′). (70)

From the cosine law in ∇A1A2A0′ we have:

a2
10′

= a2
12
+ a2

2
− 2a12a2 cos(α120′). (71)
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We show that the angle α210′ can be expressed as a function of a2 and α120′ .
We take the height A0′A5 of the triangle ∇A1A2A0′ , where A5 belongs in the line
segment A1A2. From the triangles ∇A1A5A0′ and ∇A2A5A0′ , we get:

α210′ = arctan
a2 sinα120′

a12 − a2 cosα120′

. (72)

From (72), we derive that α210′ is a function of a2 and α120′ and by replacing (71)
and (72) in (70), we derive that d depends on a1, a2, α014, α120′ .

By differentiating (1) with respect to a1, a2, α014, α120′ , respectively, we obtain (13),
(14), (15) and (16).

We calculate ∂a3
∂α014

, ∂a4
∂α014

, ∂d
∂α014

, in order to derive (15).

By differentiating (70) with respect to α014, we have:

∂d

∂α014

= −a10′a1 sin(α214 − α014 − α210′)

d
. (73)

We apply the "sine law" in the triangle ∇A1A0A0′ :

a10′

d
=

sin(α100′)

sin(α214 − α014 − α210′)
. (74)

By replacing (74) in (73), we get:

∂d

∂α014

= −a1 sinα100′ . (75)

By differentiating (67) with respect to α014, we derive that:

∂a3
∂α014

= 0. (76)

By differentiating (68) with respect to α014, we derive that:

∂a4
∂α014

=
a14a1 sinα014

a4
. (77)

From the sine law in ∇A0A1A4, we have:

a14
a4

=
sinα104

sinα014

. (78)

By replacing (78) in (77), we get:

∂a4
α014

= a1 sinα104. (79)

By replacing (76), (79), (75) in (15), we obtain (25). From the cosine law in
∇A0A2A0′ , the length d can also be expressed as a function of a1, a2, α014, α120′ :

d2 = a2
20
+ a2

2
− 2a20a2 cosα020′ (80)
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or
d2 = a2

20
+ a2

2
− 2a20a2 cos(α120′ − α120). (81)

From the triangle ∇A1A2A0, we have:

tanα120 =
a1 sin(α214 − α014)

a12 − a1 cos(α214 − α014)
(82)

From the cosine law in ∇A0A1A2, we have:

a2
20

= a2
1
+ a2

12
− 2a1a12 cosα012 (83)

or
a2
20

= a2
1
+ a2

12
− 2a1a12 cos(α214 − α014). (84)

By replacing (84) and (82) in (81) and by differentiating (81) with respect to α120′ ,
we have:

∂d

∂α120′

=
a20a2 sin(α120′ − α120)

d
. (85)

From the sine law in ∇A0A2A0′ , we have:

a20
d

=
sinα00′2

sin(α120′ − α120)
. (86)

By replacing (86) in (85), we have:

∂d

∂α120′

= a2 sinα00′2 . (87)

By differentiating (67) with respect to α120′ , we have:

∂a3
∂α120′

= −a2a23 sin(α123 − α120′)

a3
. (88)

From the sine law in ∇A2A3A0′ we have:

a23
a3

=
sinα20′3

sin(α123 − α120′)
. (89)

By replacing (89) in (88), we have:

∂a3
∂α120′

= −a2 sinα20′3 . (90)

By differentiating (68) with respect to α120′ , we get:

∂a4
∂α120′

= 0. (91)

By replacing (90), (91) and (87), we derive (42).
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We can also express a1, a2, d as a function of a3, a4, α041 and α0′34, by applying the
cosine law in the triangles ∇A0A1A4, A0′A2A3, A0A0′A4 and A0A0′A3, respectively.

By differentiating (1) with respect to a3, a4, α041, α0′34, we obtain, (47), (48), (49)
and (50), respectively.

Similarly, by following the process like in case (I)(S2, H2) and by working cyclically
and exchanging the indices 1 → 4, 2 → 3, 3 → 2 and 1 → 4, we derive (51) and (52).

From (25) and (51), we obtain (53).

The relationship between the angles α0′04, α100′ and α104 can be used, in order to
show that c depends on B1, B4, B5. Thus, we have:

α0′04 + α100′ + α104 = 2π (92)

or

sinα0′04 = − sin(α100′ + α104). (93)

From (93) and (53), we derive (56).

By replacing (56) in (53), we derive (57), (58) and (59).

The relations (57), (58) and (59) show that A0 is the weighted Fermat-Torricelli point
of ∇A1A0′A4 which minimizes the function f1 = B1a1 +B5d+B4a4.

From (42) and (52), we derive (60).

The relationship between the angles α00′3, α00′2 and α20′3 can be used, in order to
show that c depends on B2, B3, B5. Thus, we have:

α00′3 + α00′2 + α20′3 = 2π (94)

or

sinα00′3 = − sin(α00′2 + α20′3). (95)

From (95) and (60), we get (63).

By replacing (63) in (60), we obtain (64), (65) and (66).

The relations (64), (65) and (66) show that A0′ is the weighted Fermat-Torricelli
point of ∇A0A2A3 which minimizes the function f2 = B5d+B2a2 +B3a3.

Remark 2.2. For given weights Bi, for i = 1, 2, 3, 4, 5, we calculate the angles α100′ ,
α104 and α0′04, α00′2, α20′3 from (57), (58), (59), (64), (65) and (59). The calculation
of A0 and A0′ is given by deriving a system of four equations that depend on a1, a2,
α014 and α120′ .

The length d of the line segment A0A0′ can be expressed as functions of a1, a2, α014

and α120′ in four different ways by applying the cosine law with respect to the triangles
∇A1A0A0′ , ∇A2A0A0′ , ∇A3A0A0′ , ∇A4A0A0′ .
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By replacing (82) and (71) in (70), we have:

d2 = a2
1
+ a2

12
− 2a1a12 cos(α214 − α014) + a2

2

− 2

(

√

a2
1
+ a2

12
− 2a1a12 cos(α214 − α014)

)

a2

cos

(

α120′ − arctan
a1 sin(α214 − α014)

a12 − a1 cos(α214 − α014)

)

(96)

By replacing (71) and (72) in (70), we have:

d2 = a2
12
+ a2

2
− 2a12a2 cos(α120′) + a2

1

− 2

(

√

a2
12
+ a2

2
− 2a12a2 cos(α120′)

)

a1

cos

(

α214 − α014 − arctan
a2 sinα120′

a12 − a2 cosα120′

)

. (97)

From the sine law in ∇A0A1A4 and from (59), we have:

a4 =
a14 sinα014

sin
(

arccos
B2

5
−B2

1
−B2

4

2B1B4

) . (98)

From the cosine law in ∇A4A0A0′ , we have:

d2 = a2
0′4

+ a2
4
− 2a4a0′4 cos

(

α143 − α0′43

−
(

2π − α014 − arccos
B2

5
−B2

1
−B2

4

2B1B4

))
(99)

From the cosine law in ∇A3A4A0′ , we have:

a2
0′4

= a2
3
+ a2

34
− 2a3a34 cos(α234 − α230′) (100)

or

a2
0′4

= a2
3
+ a2

34
− 2a3a34 cos

(

α234

−
(

2π − (α123 − α120′)− arccos

(

B2

5
−B2 −B2

3

2B2B3

)))

.

(101)

From the sine law in ∇A0′A2A3, we have:

a3 = sin(α123 − α120′)a23 sin

(

arccos
B2

5
−B2

2
−B2

3

2B2B3

)

. (102)

From the triangle ∇A0′A4A3, we have:

tan(α0′43) =
a3 sin

(

α234−
(

2π− (α123−α120′)− arccos
(

B2
5
−B2−B2

3

2B2B3

)))

a34− a3 cos
(

α234−
(

2π− (α123−α120′)− arccos
(

B2
5
−B2−B2

3

2B2B3

))) . (103)
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By replacing (102) in (103) and (101) in (99), we derive a third relation that expresses
d as a function of a1, a2, α014 and α120′ .

From the cosine law in ∇A0′A0A3, we have:

d2 = a2
03
+ a2

3
− 2a03a3 cos(α234 − α034 − α230′) (104)

or

d2 = a2
03
+ a2

3
− 2a03a3 cos

(

α234

−
(

2π − (α123 − α120′)− arccos

(

B2

5
−B2 −B2

3

2B2B3

)

− α034

))

.

(105)

From the cosine law in ∇A0A3A4, we have:

a2
03

= a2
4
+ a2

34
− 2a4a34 cos(α340) (106)

or

a2
03

= a2
4
+ a2

34
− 2a4a34 cos

(

α341

−
(

2π − α014 − arccos
B2

5
−B2

1
−B2

4

2B1B4

))

.

(107)

From the triangle ∇A0A3A4, we have:

α034 = arctan
a4 sin

(

α143 −
(

2π − α014 − arccos
B2

5
−B2

1
−B2

4

2B1B4

))

a34 − cos
(

α143 −
(

2π − α014 − arccos
B2

5
−B2

1
−B2

4

2B1B4

)) . (108)

By replacing (108), (107) and (102) in (105), we obtain a fourth relation which
expresses d as a function of a1, a2, α014 and α120′ .

By subtracting (96) from (97), (96) from (99), (96) from (105) and (97) from (105),
we obtain a system of four equations that depends on a1, a2, α014 and α120′ . The
numerical solution of this system of equations gives the location of A0 and A′

0
.

Corollary 2.3. A (full) Steiner minimal tree of A1A2A3A4 consists of two Fermat-
Torricelli points A0, A

′

0
which are located at its interior domain and minimizes the

objective function:

B1a1 +B2a2 +B3a3 +B4a4 +B5d = minimum. (109)

Proof of Corollary 2.3. By following the same proof of Theorem 2.1 and by setting
B1 = B2 = B3 = B4 = B5 in (57), (58), (59), (64), (65) and (66), we derive that:

α0′04 = α100′ = α104 = 120◦

and
α00′3 = α00′2 = α20′3 = 120◦.
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Corollary 2.4 ([7], Theorem 2.2). A degenerate weighted (full) Steiner minimal
tree of the convex quadrilateral A1A2A3A4 consists of one weighted Fermat-Torricelli
point A0 which is located at the interior of the triangle AjAkAl, if there is one and
only i such that: Bi = 0 and

|Bj −Bl| < Bk < Bj +Bl,

for i, j, k, l ∈ {1, 2, 3, 4} and j, k, l 6= i.

Remark 2.5. The case II of Theorem 2.1 corresponds to the weighted (full) Steiner
minimal tree of a convex quadrilateral in R

2 and provides a solution to the generalized
(weighted) Gauss problem (restricted Steiner problem) by considering two Fermat-
Torricelli points A0, A0′ which are located at the convex domain of A1A2A3A4 having
two equal positive weights B0 = B0′ = B5.

Remark 2.6. A weighted Steiner minimal tree may not be unique, since we can have
two possible (full) topologies of Steiner trees for convex quadrilaterals in R

2. In this
case, we need to apply the same method by considering two interior points A◦

0
and

A◦

0′
and the objective function which will be minimized is:

B1a
◦

1
+B2a

◦

2
+B3a

◦

3
+B4a

◦

4
+B5d

◦

where A◦

0
may be located inside the quadrilateral A1A2A0′A0 and A◦

0′
may be located

inside the quadrilateral A4A0A0′A3.

Remark 2.7. A future work will be to study weighted Steiner trees on the K-plane.
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