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We provide a method to find a weighted Steiner minimal tree for convex quadrilaterals on a two-

dimensional hemisphere of radius LK, for K > 0 and the two dimensional hyperbolic plane of

constant Gaussian Curvature K, for K < 0 by introducing a method of cyclical differentiation of
the objective function with respect to four variable angles. By applying this method, we find a
generalized solution to a problem posed by C. F. Gauss in the spirit of weighted Steiner trees.
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1. Introduction

In 1836, C. F. Gauss posed the following problem to the astronomer Schumacher
(see [2], page 326, [4], Chapter 2): How to find a railway network of minimal total
length which connects the four cities Bremen, Harburg (today part of the city of
Hamburg), Hannover, and Braunschweig. In 1879, K. Bopp (see [3], [2], page 327)
gave a complete solution to Gauss problem for any four given points in the two-
dimensional Euclidean Space. He also gave a description of an experimental solution
by applying the property of soapsuds to span a minimal surface between the given
points and which have been developed later by R. Courant (see also [5], page 385—
397). A formulation of the Steiner problem has been given in [5], page 360: "Given n
points A; A,... A, to find a connected system of straight line segments of shortest total
length such that any two of the given points can be joined by a polygon consisting of
segments of the system." In the classical paper of E. Gilbert and H. Pollak ([6], [2],
page 328-329) the following fundamental result is proved:

A solution of the Steiner problem is a Steiner tree with at most n—2 Fermat-Torricelli
(or Steiner) points which are vertices of the polygonal tree which do not belong in
{A1A,... A, }, where each Fermat-Torricelli point has valency 3, and the angle between
any two edges incident with a Fermat-Torricelli point is of 120°.

The solution of the Steiner problem is not uniquely determined. For example, for
the case that four given points forming a tetragon in the two-dimensional Euclidean
Space, two equivalent solutions exist (see [5], page 361). Cases where a variant of
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Steiner problem is uniquely determined is given in [6], pages 6-7. Concerning the
definition of the topologies of various Steiner trees on the two-dimensional Euclidean
Space, you can consult [6].

In this paper, we provide a method to find a weighted (full) Steiner tree for convex
quadrilaterals on the two-dimensional sphere, two dimensional hyperbolic plane by
expressing the length of two geodesic arcs which are edges of the weighted Steiner
tree as a function of the other two geodesic arcs (edges of the Steiner tree) and two
angles which are formulated between these two geodesic arcs and two given sides
of the quadrilateral, respectively. By applying a method of cyclical differentiation
with respect to four angles, we derive that the two inner points which are located at
the interior domain of the quadrilateral are two weighted Fermat-Torricelli points. A
generalized solution of the Steiner problem for convex quadrilaterals (Gauss problem)
is given on the two-dimensional Euclidean Space. We would like to note that we have
excluded any degenerate minimal trees and we focus on the topology of a weighted
Steiner minimal tree which is full and contains two points which are located at the
interior domain of the convex quadrilateral. An open question is to derive a gener-
alized condition of weighted inequalities such that a weighted Steiner tree exists and
is unique. The answer to this question will generalize the floating and absorbed case
of the generalized Fermat-Torricelli point which has been established by Y. Kupitz
and H. Martini (see [2], page 250) in R", on the two-dimensional sphere and the
two-dimensional hyperbolic plane.

2. A weighted Steiner minimal tree for convex quadrilaterals on the K-
plane.

We denote by K-plane (S¥), the open hemisphere of radius 1/v/K of the two-
dimensional sphere S? if K > 0 and the Lobachevski plane (two-dimensional hyper-
boloid H?) of curvature K if K < 0, the Euclidean plane R? if K = 0 (see [1], page
2). Let A; A3 A3 A, be a convex quadrilateral on the K-plane. Suppose that a positive
number B;(weight) corresponds to each vertex A;, for i = 1,2, 3,4, respectively. We
denote by d the length of the geodesic arc that connects Ay with Ay, a;; the length
of the geodesic arc that connects the vertex A; with A;, and o, the angle that is
formulated between the geodesic arcs A;A; and A; Ay, for i, 5,k € {0,0,1,2,3,4} and
i # j # k. Furthermore, we denote by a9 = a1, asg = a4, asey = as, and azy = ag
(see Figure 2.1).

Theorem 2.1. A weighted (full) Steiner minimal tree of A1AyA3Ay consists of two
(weighted) Fermat-Torricelli points Ao, A} which are located at the interior convex
domain with corresponding weights Bo=By =Bs5 and minimizes the objective function:

Blal + BQGQ + B3CL3 + B4CL4 + B5d = mmzmum, (1)
such that:
and

fori j k€ {1,4,5}, I,m,n € {2,3,5} andi # j # k,l #m #n.
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Figure 2.1

Proof of Theorem 2.1. (I) We study the case where A;A;A3A, lies on a two-
dimensional sphere S? of constant Gaussian curvature K or a two-dimensional hyper-
bolic plane H? of constant Gaussian curvature —K, for K > 0.

The length of geodesic arcs as, a4, d can be expressed as functions of aq, as, apis,
aq20r, by applying the cosine law in a unified form (see [1], page 3) in the triangles
VAyAsAs, VAgGA1 Ay, VAgAy Aq, respectively, on the K-plane:

cos(Rag) = cos(Rasg) cos(Rasg) + sin(Rasgs) sin(kas) cos(aiaz — oy ), (4)
cos(Ray) = cos(Rays) cos(Ray) + sin(Ra4) sin(Ray) cos agpi, (5)
cos(Rd) = cos(Rayy ) cos(Ray) + sin(Rayo ) sin(kay ) cos apo (6)
or
cos(Rd) = cos(Rayy ) cos(Raq) + sin(Rayo ) sin(kaq ) cos(aa14 — Q14 — Q2107) (7)
where

. [VKE i K>o,
KR =
w—K if K<O.

From the cosine law in VA; Ay Ay we have:
cos(Rayy ) = cos(Raiz) cos(Ray) + sin(Rais) sin(Kag) cos aggg - (8)

We show that the angle aso can be expressed as a function of ay and a;ag .

We take a point Az that belongs in the geodesic arc A;As and the angle that is
formulated between the geodesic arcs Ay As and A; A, is § and we denote by asy
the length of the geodesic arc As Ay . From the sine law in the triangle VA A; Ay we

have:
sin(Rasy)  sin(Ras)

(9)

sin Q1907 sin %

or
sin(Rase ) = sin o sin(kaz). (10)
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From the sine law in the triangle VA; A5 Ay we have:

sin(Rasy)  sin(Rai)

(11)

sin Q210! sin g
or
. Sin(l%ag)o/)
Sln(a210/) Sin(f-{am/) ( )

By replacing (10), (8) in (12), we derive that agiy is a function of ay and aqap and
by replacing this result and (8) in (7), we derive that d depends on ay, as, agis, Q190

By differentiating (1) with respect to a1, as, agia, 20, respectively, we obtain:

8@3 8&4 ﬁ B

B+ B3s—+By,— + B =0 13
1+ 38a1+ 48a1+ 5 s ; (13)
das day od
By+ B3—+ By— + Bs— =0 14
2 + 38a1+ 48a2+ 5D ; (14)
(9a3 8a4 od
B: B B =0 15
5306014 - 4306014 " 5804014 ’ ( )
aag 8a4 ad
B B B = 0. 16
3304120' * 430&120' * 5804120/ ( )
We calculate 8‘3‘3?4, aiiiu 8314’ in order to derive (15).
By differentiating (7) with respect to agi4, we have:
od . Sin(/?aaw/) Sil’l(l%al) sin(a214 — Q14 — 04210/)
0 sin( (17)
OJaprg sin(~d)
We apply the "sine law" in the triangle VA; Ag Ay :
sin(/%am/) _ Sin(al()o/) (18)
sm(/?ad) sin(a214 — Q014 — 04210/) )
By replacing (18) in (17), we get:
od
K = —sin(& i - 19
K8a014 sin(&aq ) sin oo (19)

By differentiating (4) with respect to agi4, we derive that:

8a3

Oapia

= 0. (20)

By differentiating (5) with respect to agi4, we derive that:

day  sin(Raiy)sin(Ray)sin agig

= 21
Oapig sin(kay) (21)
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From the sine law in VAyA; A4, we have:

sin(Rai4)  sinaig

. 22
sin(Ray) sin a4 (22)
By replacing (22) in (21), we get:
8a4
K = sin(K i . 23
,{804014 sin(Ray) sin a4 (23)
By replacing (20), (23), (19) in (15), we have:
B4 Sln(f‘"al) Sin 06104 o B5 Sln(i{afl) Sin 05100’ — 0 (24)
R
or
B B

sin Q1007 o sin Q104 '
From the cosine law in VAyAs Ay, the length of the geodesic arc can also be expressed
as a function of ai, a2, Xp14, 120" -
cos(Rd) = cos(Ragy) cos(Ray) + sin(Rag) sin(Kaz) cos agegr (26)
or
cos(Rd) = cos(Ragg) cos(Rag) + sin(Rag) sin(kag) cos(arzy — a2g). (27)

From the cosine law in VAgA; Ay, we have:
cos(Ragy) = cos(kay) cos(Rayz) + sin(Ray) sin(Raja) cos g1z (28)

or
cos(Rag) = cos(Ray) cos(Rayz) + sin(kay) sin(Rai2) cos(az1q — o14)- (29)

We show that the angle a9 depends on a; and aqq4.

We take a point As that belongs in the geodesic arc A; A, and the angle that is
formulated between the geodesic arcs AgAs and A; Ay is § and we denote by asq the
length of the geodesic arc As Ag. From the sine law in the triangle VA; A5 Agy, we

have:
sin(Razo)  sin(kay)

- = —0 30
sin(ag14 — Qo14) sin § (30)
or
o sin(kay)
sin(kasg) = — . 31
( ° 0> s1n(a214 - 04014) ( )
From the sine law in the triangle VA5 As Ay we have:
sin(Raso) _ sin(Fag) (32)
sin o199 sin 5
or
sin 120 — SI,n(I{aE’/O) (33)

sin(Rasg)
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By replacing (31), (29) in (33), we derive that ajg9 is a function of a; and agyy.

By replacing (29) in (27) and by differentiating with respect to aqap, we have:

dd  sin(Rag) sin(kaz) sin(aiay — aiz)

— . 34
804120/ Sln(lz,d) ( )
From the sine law in VAyAsAq, we have:
sin(&asg) _ sin agoro (35)
Slﬂ(/%d) Sin(amo/ — 04120) .
By replacing (35) in (34), we have:
od
R = sin(k& i . 36
K@QIQO’ sin(kag) sin agoz (36)
By differentiating (4) with respect to ajgy, we have:
_ Oaz  sin(Rag)sin(Rags) sin(aias — o)
== — . (37)
Do sin(kas)
From the sine law in VA3 A3Ay we have:
sin(kasg3) _ sin (g3 (38)
sin(kRasz)  sin(ao3 — )
By replacing (38) in (37), we have:
0
P - — sin(Raz) sin gy 3. (39)
Q1207
By differentiating (5) with respect to ajg, we have:
8a4
= 0. 40
Daygy (40)
By replacing (39), (36) and (40) in (16), we obtain:
sin(kag) . sin(kag) |
3 ——— SIN Qlgr3 + B5f S1I (pgrg — 0 (41)
R R
or
By Bs (42)

sinagye  SIN Qg
We can also express ai, as, d as a function of as, a4, s and aysy.

By applying the cosine law in the triangles VAgA; Ay, VAy AsAs, VAgAy Ay and
V AgAy Az, respectively, we have:

cos(Ray) = cos(Rays) cos(Ray) + sin(Ra4) sin(Rayg) cos apa, (43)
cos(Ray) = cos(Ragz) cos(Ras) + sin(Rags) sin(Ras) cos(aasy — rsq), (44)
cos(Rd) = cos(Ray) cos(Ragy) + sin(Ray) sin(Rag4) cos(pa — oa1), (45)
cos(kd) = cos(kas) cos(Raps) + sin(Ras) sin(Rags) cos(agss — qp3a)- (46)
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By differentiating (1) with respect to as, as, a1, Qiy3s, We obtain, respectively:

B gz; By gaz + By + Bs g‘i 0, (47)
Blgz BQg B +B5§Oi 0, (48)
B Brgact + Bt =0, (49)
B 030/134 + B, 8(20/234 + By 85534 = 0. (50)

Similarly, by working cyclically we can follow the previous process and by exchanging
the indices 1 — 4, 2 — 3, 3 — 2 and 1 — 4, we derive two relations, respectively:

By _ B (51)
sin Q04 sin X104
and
By _ Bs (52)
sin Qo3 sin Q903 .
From (25) and (51), we have:
B B B
L - - (53)

sin /04 sin 100/ sin 104

The relationship between the angles aggs4, @100 and aq94 can be used, in order to
show that ¢ depends on B;, By, Bs. Thus, we have:

Qpos + Qro0 + Q104 = 27 (54)
or
sin Qprog = — Sil’l(alool + 06104). (55)
From (55) and (53), we get:
2B,B,B
c— 122405 ) (56)

(B1 + By + Bs)(By — By + Bs)(B1 + By — Bs)(—B1 + By + Bs)
By replacing (56) in (53), we have:

B2 — B?— B?

COS 100" — 2BlB5 5 (57)
B2 _ B2 . B2

COS Q\grgq4 = 1 2B4435 5 5 (58)
B2 _ B2 _ BZ

COS (X104 = S — (59)

2818y
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The relations (57), (58) and (59) show that Ay is the weighted Fermat-Torricelli point
of VA Ay Ay which minimizes the function f; = Bya; + Bsd + Bsay.

From (42) and (52), we have:

B B
B, _ B _ B _ (60)

sin Qo3 sin Qo2 sin Q903

The relationship between the angles g3, apye and asys can be used, in order to
show that ¢ depends on By, B3, Bs. Thus, we have:

Qo3 + Qg + Qiagry = 27 (61)
or
sin aigrs = — sin(agerg + agr3)- (62)
From (62) and (60), we get:
9B, B Bs )
C = .
(By 4+ B3 + Bs)(Bs — B3 + Bs)(Bs + B3 — Bs)(— By + B3 + Bs)
By replacing (63) in (60), we have:
B: — B — B?
19 = 64
COS (/3 2By B, , (64)
B2 — B? — B;
9 = 65
COS Qo2 2B532 s ( )
B2 — B2 — B?
COS (X913 = > QBQQB;J, 3 (66)

The relations (64), (65) and (66) show that Ay is the weighted Fermat-Torricelli
point of VAgAsAs which minimizes the function f, = Bsd + Bsas + Bsas.

From (57), (58), (59), (64), (65) and (66) we derive (2) and (3).

(IT) We study the case for K = 0, where A;A;A3A, lies on the two-dimensional
Euclidean Space R2.

The length of the line segments arcs as, a4, d can be expressed as functions of ay,
as, Qg14, 1207, by applying the cosine law in the triangles VAy Ay Az, VAgA; Ay,
V AgAy Ay, respectively:

CL% = 033 -+ CL% — 2@23@2 COS(O&123 — 06120/), (67)
a3 = aj, + a3 — 2a14a1 oS Qg4 (68)
d®> = aly + a2 — 2a1a1 cos g1y (69)
or
d2 = CL%O/ + CL% - 2@10/(1,1 COS(O&214 — Q14 — 04210/). (70)

From the cosine law in VA; A, Ay we have:

(Z%O/ = a% + CLg — 2@12a2 COS((Ilg()/). (7].)
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We show that the angle a0 can be expressed as a function of as and aqo.
We take the height Ay As of the triangle VA; Ay Ay, where As belongs in the line
segment A;As. From the triangles VA; A5 Ay and VAyAs Ay, we get:

a9 sin Q190!

91 = arctan ) (72)
12 — G2 COS 120/

From (72), we derive that s is a function of as and aj90 and by replacing (71)
and (72) in (70), we derive that d depends on ay, az, 14, 1207

By differentiating (1) with respect to aj, as, a4, 120/, respectively, we obtain (13),
(14), (15) and (16).

das day ad
Oap1a’ Oap1sa’ Oapla

We calculate , in order to derive (15).

By differentiating (70) with respect to agi4, we have:

ad _ e ! sin(a214 — Q14 — 04210') (73)
Oapia d '
We apply the "sine law" in the triangle VA; AgAy :
G sin(ovo0) (74)
d sin(a214 — Q14 — 04210/)'
By replacing (74) in (73), we get:
od
= —a si - 75
aa014 a1 S 100 ( )
By differentiating (67) with respect to agi4, we derive that:
8a3
= 0. 76
dag14 ( )
By differentiating (68) with respect to agi4, we derive that:
80,4 _ 1401 sin Q014 (77)
dopi4 Qay '
From the sine law in VAyA; A4, we have:
% _ sin Q104 (78)
a,  sinoog
By replacing (78) in (77), we get:
0
e _ a1 sin aqpy. (79)
Qo14

By replacing (76), (79), (75) in (15), we obtain (25). From the cosine law in
VAgAs Ay, the length d can also be expressed as a function of ay, as, apra, Q120 :

d* = a3y + a5 — 2as0as cos gy (80)
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or

2 2 2
d° = Qo + Qo — 2@20@2 COS(O{lQO/ — 05120).

From the triangle VA; A5 Aq, we have:

a Siﬂ(06214 - 04014)
A12 — ay cos(a214 - 04014)

tan Q120 —

From the cosine law in VAgA; Ay, we have:

2 2, 2
a5 = aj + ajy — 2a1a12 COS Q12

or
2

2 2
Aog = A1 + 19 — 2@1&12 COS(()(214 — 06014).

(81)

(82)

(83)

(84)

By replacing (84) and (82) in (81) and by differentiating (81) with respect to ajay,

we have:
Od  agassin(aigy — o)

Oavioy - d

From the sine law in VAyAsAq, we have:

ao0 sin oo

d sin(ago — CY120)'
By replacing (86) in (85), we have:
od

304120/

= a2 sin Qo2 -

By differentiating (67) with respect to ajgy, we have:

das ___ O2023 SiH(Oé123 - 04120')
ooy as .

From the sine law in VA A3 Ay we have:

a3 sin apor3

az  sin(ags — agg)’

By replacing (89) in (88), we have:
6a3

5@120'

= —a2 sin 903 -

By differentiating (68) with respect to asgy, we get:

8a4

804120'

=0.

By replacing (90), (91) and (87), we derive (42).

(85)

(86)

(88)

(89)

(90)
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We can also express aq, as, d as a function of ag, a4, s and g4, by applying the
cosine law in the triangles VAgA1 Ay, Ay AsAsz, AgAy Ay and AygAg As, respectively.

By differentiating (1) with respect to as, a4, cos1, rzs, we obtain, (47), (48), (49)
and (50), respectively.

Similarly, by following the process like in case (I)(S?, H?) and by working cyclically
and exchanging the indices 1 — 4,2 — 3,3 — 2 and 1 — 4, we derive (51) and (52).

From (25) and (51), we obtain (53).

The relationship between the angles ago4, @100 and aq94 can be used, in order to
show that ¢ depends on B, B,, Bs. Thus, we have:

Q04 -+ 100/ + 104 — 2T (92)

or

sin Qpop = — sin(alooz + 05104). (93)

From (93) and (53), we derive (56).
By replacing (56) in (53), we derive (57), (58) and (59).

The relations (57), (58) and (59) show that Ay is the weighted Fermat-Torricelli point
of VA Ay Ay which minimizes the function f; = Byjay + Bsd + Bsay.

From (42) and (52), we derive (60).

The relationship between the angles a3, gy and asgys can be used, in order to
show that ¢ depends on By, Bs, Bs. Thus, we have:

Qo3 + Quoor + Qoz = 2 (94)

or

sin Qpo'3 = — SiH(Oé()o/Q + agolg). (95)

From (95) and (60), we get (63).
By replacing (63) in (60), we obtain (64), (65) and (66).

The relations (64), (65) and (66) show that Ay is the weighted Fermat-Torricelli
point of VAgAs Az which minimizes the function fs = Bsd + Bsas + Bsas. H

Remark 2.2. For given weights B;, for i = 1,2, 3,4, 5, we calculate the angles aqqq,
104 and Qpro4, Cpp’2, 20/3 from (57)7 (58), (59), (64), (65) and (59) The calculation
of Ay and Ay is given by deriving a system of four equations that depend on ay, as,
apia and ooy .

The length d of the line segment AgAy can be expressed as functions of aq, as, g1y
and a9y in four different ways by applying the cosine law with respect to the triangles
VA AgAy, VAsAgAy, VA3A Ay, VALAG Ay .
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By replacing (82) and (71) in (70), we have:

2 2 2 2
d* = aj + ajy — 2a1a12 cos(a1y — Qo14) + a3

2 2
-2 (\/al + ajg — 2(11&12 COS(O&214 — Oé014)) (05}

cos <o¢120/ — arctan — 1 sin(as14 — Q014) > (96)
a2 — 1 COS(OZ214 - 04014)
By replacing (71) and (72) in (70), we have:
d* = a3, + a5 — 2a19a5 cos(ayay) + af
—2 ( aiy + a3 — 2ay2a9 Cos(ozlgof)) aq
si /
cos <a214 — a4 — arctan @2 S 120 ) ) (97)
Q12 — G2 COS 120/
From the sine law in VAgA; A4 and from (59), we have:
@14 SIN Q14
ay = ] B\ (98)
sin (arccos W)
From the cosine law in VA4AqAy, we have:
d2 = CL(2)/4 + ai — 2&4(10/4 COS (0143 — 043
B - B - B )
— (o7 — _
< ™ Qp14 arccos 2BlB4 ))
From the cosine law in VA3A4 Ay, we have:
ag,4 = CL§ + CL§4 — 2(13@34 COS(CM234 — 04230/) (100)
or
a8/4 = a§ + a§4 — 2a3a34 COS (a234
101
. ( ) B2 — B, — B? (101)
— | 27 — (@23 — auyaer) — arccos | ——————> )
123 120 5B,B;
From the sine law in VAy Ay A3, we have:
B2 — B2 — B?
as = sin(aa3 — Qa0/)ags sin (arccos 2 232283 3) (102)
From the triangle V Ay A4 A3, we have:
as sin (a234 — (27r — (@193 — Qr19¢r) — arccos <%)>)
tan(apaz) = . (103)

9 B2—B,— B2
a34 — a3 cos (aogy — | 27 — (123 — (ry9r) — arccos Ty e
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By replacing (102) in (103) and (101) in (99), we derive a third relation that expresses
d as a function of a1, as, agy and gy .

From the cosine law in V Ay AgAs, we have:
d2 = agg + CL% — 2&03(13 COS(O&234 — (Yp34 — 04230/) (104)

or

d* = ag3 + a% — 2a03a3 COS (a234

) ) (105)
— | 27 — (123 — a190r) — arccos BB = By —«
123 120 25,5, 034 | | -
From the cosine law in VAqAzA,, we have:
apy = a3 + a3, — 2a4a34 cos(azqg) (106)
or
ag?) = ai + a§4 — 2a4a34 COS (a341
107
) B! — B~ B} Hon
— | 2 — ag4 — arccos )
014 5B,
From the triangle VAyA3A,, we have:
Qg sin ((1143 — (27’(’ — (O/g14 — arccos %))
Q34 = arctan (108)

5 B2 B2 B2
34 — COS | (V143 — T — Q14 — arccos T 2B1Ba

By replacing (108), (107) and (102) in (105), we obtain a fourth relation which
expresses d as a function of ay, as, gy and gy .

By subtracting (96) from (97), (96) from (99), (96) from (105) and (97) from (105),
we obtain a system of four equations that depends on ay, as, g4 and aqsy. The
numerical solution of this system of equations gives the location of Ay and Aj,.

Corollary 2.3. A (full) Steiner minimal tree of A1 AsA3Ay consists of two Fermat-
Torricelli points Aoy, A which are located at its interior domain and minimizes the
objective function:

Biay + Bsay + Bsas + Byay + Bsd = minimum. (109)

Proof of Corollary 2.3. By following the same proof of Theorem 2.1 and by setting
By = By = By = By = By in (57), (58), (59), (64), (65) and (66), we derive that:

(e}
Qo4 = Qo = o4 = 120

and
Qo3 = Qo = Qi = 120°.
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Corollary 2.4 ([7], Theorem 2.2). A degenerate weighted (full) Steiner minimal
tree of the convexr quadrilateral Ay A3 AsAy consists of one weighted Fermat-Torricelli
point Ay which is located at the interior of the triangle A;AiA;, if there is one and
only 1 such that: B; =0 and

|Bj—Bl| < Bp < Bj+Bl,

fori,j, k1l € {1,2,3,4} and j, k,1 # 1.

Remark 2.5. The case I of Theorem 2.1 corresponds to the weighted (full) Steiner
minimal tree of a convex quadrilateral in R? and provides a solution to the generalized
(weighted) Gauss problem (restricted Steiner problem) by considering two Fermat-
Torricelli points Ay, Ay which are located at the convex domain of A; A A3z A4 having
two equal positive weights By = By = Bs.

Remark 2.6. A weighted Steiner minimal tree may not be unique, since we can have
two possible (full) topologies of Steiner trees for convex quadrilaterals in R?. In this
case, we need to apply the same method by considering two interior points Aj and
A, and the objective function which will be minimized is:

Bl(lcl) + BQCL; + Bga§ + B4CLZ + B5do

where Af may be located inside the quadrilateral A; A3 Ay Ay and Ay may be located
inside the quadrilateral A4AgAy As.

Remark 2.7. A future work will be to study weighted Steiner trees on the K-plane.
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