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The Bregman-function-based Proximal Point Algorithm (BPPA) for solving variational inequalities
is considered. In this framework the customary assumption of the cutting plane property (CPP)
of the related operator is investigated. Since this property cannot be expected in saddle-point-
problems, it should be considered as rather restrictive. This paper contributes to the situation
when the CPP fails to hold. For this situation, interior proximal(-like) methods have only been
constructed for polyhedral sets up to now.

Under very mild assumptions (not implying the CPP) we show that whenever the sequence of iterates
(generated by the BPPA) is convergent, its limit can only be a solution of the given problem. Further,
using a (known) slight modification of Bregman functions, we show – still without using the CPP
– that the sequence generated by the BPPA is convergent to a solution when the feasible set has
some special nonlinear structure like a ball.
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1. Introduction

Let us consider the following variational inequality problem. Given a set K ⊂ Rn

and a multi-valued operator F : Rn
→ 2Rn

, the problem V I(K,F ) is to

find x∗ ∈ K and f ∗ ∈ F (x∗) : 〈f ∗, x− x∗〉 ≥ 0 ∀x ∈ K. (1)

Here, 〈a, b〉 = bTa denotes the canonical inner product in Rn
; the set of solutions of

V I(K,F ) will be denoted by SOL(K,F ).

For the further discussion, we will make use of the following assumption.

Assumption A.

(A.1) Existence of solutions: Throughout this article, x∗ ∈ K is an arbitrary solution
and f ∗ ∈ F (x∗) is a vector fulfilling (1).

(A.2) The set K admits the following representation:

K = {x ∈ R
n : gi(x) ≤ 0, i ∈ I1 ∪ I2},
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where the functions gi : Rn
→ R are affine for i ∈ I1 and convex and continu-

ously differentiable (but not affine) for i ∈ I2. Further assume that the set

M = {y ∈ K : ∃ j ∈ I2 : gj(y) = 0}

contains no line segments.

(A.3) There is some x̃ ∈ K such that gj(x̃) < 0 for all j ∈ I1 ∪ I2 (strong version of
Slater’s constraint qualification).

(A.4) dom(F ) ∩ int(K) 6= ∅.

For the sake of generality, the operator F will be assumed to have some pseudomono-
tonicity properties (in the sense of Karamardian [16]) only; see e.g. [6, 9, 17] for
sufficient conditions for assumption (A.1) in this situation. We shall give an exem-
plary result.

Theorem 1.1 (See [6], Theorem 2). Let K ⊂ Rn
be closed convex and F (x) be

nonempty, convex and compact for each x ∈ K. If F is upper semicontinuous (see
e.g. [9] for the definition) and pseudomonotone in the sense of Karamardian, then

SOL(K,F ) is nonempty and compact if and only if K∞∩
(

F (K)
)

◦

= {0}, where K∞

is the recession cone of the set K and
(

F (K)
)

◦

is the polar cone of F (K).

Of course, some proofs and assumptions (both with respect to existence results as
well as the results below) simplify when F is maximal monotone or also single-valued
and continuous.

Assumptions (A.2) and (A.3) represent the state of the art in the existence theory
of Bregman-like functions [15]. Property (A.3) here is equivalent to the requirement
int(K) 6= ∅, which is useful for the discussion of methods providing an interior-point-
effect. For example, if all non-affine constraints are strictly convex and the Slater
CQ holds, the described set satisfies (A.2) and (A.3). Assumptions of type (A.4) are
usual.

For ease of reference, we give a definition of some classes of monotonicity. We restrict
ourselves to the classes which are most important on the one hand in the existing
literature concerning proximal-like methods and which are most important for the
following discussion on the other hand. The reader is referred to [7] for a more
detailed overview.

Definition 1.2 (Notions of (pseudo)monotonicity). In the situation ∅ 6= D ⊂

S ⊂ Rn
, the mapping F : S → 2Rn

is said to be

• monotone on D if 〈fx − f y, x − y〉 ≥ 0 for all x, y ∈ D, fx ∈ F (x) and
f y ∈ F (y), andmaximal monotone if the graph of F is not properly contained
in the graph of another monotone operator,

• paramonotone on D or also monotone+ on D if it is monotone on D and
〈fx − f y, x− y〉 = 0 implies fx ∈ F (y) and f y ∈ F (x),

• pseudomonotone on D if for any x, y ∈ D and any fx ∈ F (x) and f y ∈ F (y)
the inequality 〈f y, x− y〉 ≥ 0 implies 〈fx, x− y〉 ≥ 0,

• pseudomonotone∗ on D if it is pseudomonotone and for x, y ∈ D and any
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fx ∈ F (x), f y ∈ F (y) the following implication holds true:

〈fx, y − x〉 = 0 = 〈f y, y − x〉 ⇒ ∃ k > 0 : k · fx ∈ F (y). (2)

• pseudomonotone with respect to SOL(K,F ) on D if for arbitrary x ∈ D,
fx ∈ F (x) and any x∗ ∈ SOL(K,F ) the following holds: 〈fx, x∗ − x〉 ≤ 0.

It is very easy to establish some relations between the above notions. For example,

paramonotonicity ⇒ monotonicity ⇒ pseudomonotonicity.

We will now define another central operator property.

Definition 1.3 (Cutting plane property / cut property / CPP, see [7, 10]).
The operator F is said to have the cutting plane property (for short: cut property /
CPP) on a set K, when the following implication holds:

x∗ ∈ SOL(K,F ),

x∗∗ ∈ K,

f ∗∗ ∈ F (x∗∗),

〈f ∗∗, x∗ − x∗∗〉 ≥ 0,























⇒ x∗∗ ∈ SOL(K,F ).

It is well-known that paramonotone and pseudomonotone∗ operators have the cut
property (see e.g. [11], Proposition 2.3 and [7], Proposition 5). More general, among
the pseudomonotone mappings, pseudomonotone∗ operators are – under very mild
additional assumptions – exactly those which have the cut property, see Theorem 4.1
in [10].

However, following Remark 1.2 in [12], the cut property cannot be expected in the
discussion of saddle-point-problems of the Lagrangian of a convex program. In this
sense, it is a rather restrictive assumption and thus worth a discussion.

The Bregman Proximal Point Algorithm described below is a powerful tool for the sta-
ble solution of variational inequalities. Ill-posed (and possibly constrained) problems
are solved by means of well-posed unconstrained ones. However, paramonotonicity
and other properties implying the cut property are very customary for the discussion
of this method, take e.g. [4, 5, 13, 19, 21], where also other remarks on the BPPA can
be found. In [18] an extended BPPA method for (in general) not even pseudomono-
tone problems with composed operators (and a composed sort of cut property) is
studied.

Up to now, proximal-like methods not requiring the cut property but still providing
an interior-point-effect have only been constructed for polyhedral sets K (see e.g.
[1, 8]).

Our central purposes are the following:

• Without using the cut property we will show that if the generated sequence of
iterates is convergent, then its limit has to be a solution.
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• The geometrical structure (convexity) of the solution set is investigated also for
operators without the cut property.

• We give a large class of feasible sets for which the method generates iterates that
converge to a solution of the considered problem without using the cut property.

2. Bregman-like functions and the BPPA

2.1. Bregman-like functions

Definition 2.1 (Bregman-like functions, see [13]). Let S ⊂ R
n be a nonempty

set. A function h : cl(S) → R is said to be a Bregman-like function with zone S,
when the following holds:

(B.1) S is an open and convex set.

(B.2) h is continuous and strictly convex on cl(S).

(B.3) h ∈ C1(S).

(B.4) The set M(x, α) := {y ∈ S : Dh(x, y) ≤ α} is bounded for all fixed α ∈ R

and x ∈ cl(S), where the Bregman distance is defined by

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉, (3)

when x ∈ cl(S), y ∈ S.

(B.5) If {zk}k∈N is a sequence in S, converging to z ∈ cl(S), at least one of the
following statements holds:
(a) Dh(z, zk) → 0 for k → ∞.
(b) If z 6= z is another point in cl(S), then Dh(z, zk) → ∞ (k → ∞).

(B.6) Let {zk} ⊂ cl(S) and {yk} ⊂ S be two sequences and assume that one of these
sequences is convergent. If further Dh(zk, yk) → 0 (k → ∞) holds, then the
other sequence converges to the same limit as well.

A Bregman-like function h is said to be zone-coercive, if additionally

(B.7) ∇h(S) = R
n

and boundary coercive, if the following implication holds:

(B.8) When {yk} ⊂ S and yk → y ∈ ∂S, then

lim
k→∞

〈∇h(yk), x− yk〉 = −∞ ∀x ∈ S,

equivalently Dh(x, y
k) → +∞ for k → ∞.

One readily recognizes that the difference between such Bregman-like functions and
standard Bregman functions can be found in condition (B.5). Property (B.6) follows
from (B.2) and (B.3) (see Theorem 2.4 in [21]), and zone-coercive functions are also
boundary coercive (see Theorem 4.5 in [2] for some detail). Furthermore it is well-
known that Dh is a non-negative function and Dh(x, y) = 0 if and only if x = y (since
h is strictly convex), but Dh is not a distance function in general.

Now let us discuss the existence of a (zone-coercive) Bregman-like function with
zone int(K) when K ⊂ R

n admits a description by (A.2) and (A.3). Kaplan and
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Tichatschke [13, 14, 15] considered for fixed κ > 0

h(x) :=
m
∑

i=1

φ(gi(x)) +
κ

2
· ||x||2, (4)

where gi are the constraints describing K as in Assumption (A.2).

Constructing φ according to the following construction assignments, one gets a broad
class of Bregman-like functions.

Lemma 2.2 (Construction of Bregman-like functions) (see [15]). Let the

function φ : R→ R used in (4) be constructed with the following properties:

(C.1) φ is strictly convex, continuous, increasing with domφ = (−∞, 0] and contin-
uously differentiable on (−∞, 0).

(C.2) It holds t · φ′(t) → 0 and φ′(t) → ∞ for t ↑ 0.

Then the function h, defined by (4), is a strongly convex (with modulus κ) and zone-
coercive Bregman-like function with zone int(K), where K has the properties described
in Assumption A.

Note that there are functions φ satisfying (C.1)–(C.2), e.g. the potential-like function
φ(t) = −(−t)p with p ∈ (0, 1) fixed. However, even if φ is chosen as above, the
standard Bregman condition (B.5)a) is not always fulfilled (see Example 1 in [13]).

In the following we assume that h is a zone-coercive Bregman-like function with zone
int(K), which is known to imply dom(∇h) = int(K). Doing so, K ⊂ R

n is an
arbitrary set which admits a description like in (A.2) and (A.3). Especially, in the
absence of affine constraints the boundary ∂K cannot contain any line segment.

Algorithm 2.3: BPPA for V I(K,F ).

1. Let some x0 ∈ int(K) be given. Choose χ0 > 0 and set k := 0.

2. If xk solves the problem V I(K,F ) → STOP.

3. Find the next iterate xk+1 ∈ int(K) and fk ∈ F (xk+1) such that:

〈fk + χk

(

∇h(xk+1)−∇h(xk)
)

, x− xk+1〉 ≥ 0 ∀x ∈ k, (5)

being equivalent to

fk + χk

(

∇h(xk+1)−∇h(xk)
)

= 0. (6)

4. Choose χk+1 > 0, set k := k + 1 and go to Step 2.

Algorithm 2.3 describes the method discussed in the sequel. Concerning F , the
assumption of maximal monotonicity is quite natural – however, inspired by [19],
we shall only assume pseudomonotonicity properties of F and some additional as-
sumptions (related to closedness of the graph etc.) that are more or less implied by
maximality, at least usual requirements even in the monotone case. With respect to
well-definedness of this method we refer to the discussion in [19] or, for the maximal
monotone case, to [4].
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For the sake of simplicity, we leave out inexactness concerning the solution of the
subproblems as well as ε-enlargements (defined for maximal monotone operators).
Nevertheless, these aspects could be integrated as usual without any further restric-
tions on the given problem, cf. [15, 19, 21].

3. Customary convergence analysis

Let us begin with the convergence analysis of Algorithm 2.3. This section is essentially
dedicated to an illustration of the usual convergence proofs using the cut property.
To do so, we need some additional assumptions.

Assumption A (continuation).

(A.5) There are χ, χ > 0 such that χ ≤ χk ≤ χ < ∞ for all k ∈ N (boundedness of

regularization parameters).

(A.6) Whenever {zk} → z and fk ∈ F (zk), then there is a subsequence fkl → f ∈
F (z).

(A.7) dom(F ) ∩K is a closed convex set.

There are some methods not requiring that χk has to be bounded from above. How-
ever, since χ can be chosen arbitrarily, this is not very restrictive. The choice of χ is
more important: For example, when F is not monotone, there are situations in which
χ could be chosen such that the regularized subproblems nevertheless have strongly
monotone operators. Such a situation occurs e.g. when F is Lipschitz continuous
(and thus weakly monotone), see Theorems 1 and 2 in [19].

Example 3.1. Consider the pseudomonotone operator F : R→ 2R,
F (x) =











1, x < 0

[1
2
, 1], x = 0

1
2
, x > 0.

Although this operator obviously has Lipschitz continuous minorants (e.g. the zero
mapping), there is no χ > 0 such that the regularized operators F +χ(∇h−∇h(xk))
are strongly monotone, where h is any Bregman(-like) function. However, e.g. when
using the classical prox-regularization given by h(x) = 1

2
||x||2, the regularized opera-

tors are at least coercive for any χ > 0 which guarantees the existence of at least one
solution of each subproblem in the BPPA.

Assumption (A.6) is necessary when passing to the limit and also appears in e.g. [13].
When F is maximal monotone with K ⊂ int(dom(F )), then F is locally bounded
on K [20] and has a closed graph, of course. Thus property (A.6) is valid in this
situation. However, assumption (A.6) can be completely omitted in the maximal
monotone case, see Lemma 4.5 and Proposition 4.6 in [21].

The following theorem gives several auxiliary results.

Theorem 3.2 (See [19], Theorem 5). Suppose that (A.1)–(A.5) hold true and that
x∗ ∈ SOL(K,F ) is an arbitrary solution. Assume that the operator F is pseudomono-
tone with respect to the solution set SOL(K,F ) and let again {xk} denote the sequence
generated by Algorithm 2.3. Then the following statements hold true:
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1. The sequence {Dh(x
∗, xk)} is convergent.

2. The sequence {xk} is bounded.

3. The series
∑

∞

k=0 Dh(x
k+1, xk) is convergent.

4. The series
∑

∞

k=0〈f
k, x∗ − xk+1〉 is convergent.

5. χk〈∇h(xk+1)−∇h(xk), x∗ − xk+1〉 → 0 for k → ∞.

Corollary 3.3 (See [19], Corollary 1). As a direct consequence of the above theo-
rem, we obtain the following:

1. {xk} has cluster points, and each cluster point belongs to K.

2. Since the sequence {xk} is bounded, it is convergent iff it has exactly one cluster
point.

3. If {xkl} → x denote a convergent subsequence and a cluster point, respectively,
then we also have {xkl+1} → x.

In view of Theorem 3.2 it is clear that

〈fkl , x∗ − xkl+1〉 → 0 (7)

has to hold. Surely, xkl+1 → x is convergent. The customary line of analysis is as
follows: Whenever F has the cut property, one can show that each cluster point of
{xk} belongs to SOL(K,F ). Afterwards, usually a result is applied which states that
if every cluster point of {xk} is a solution, then the entire sequence converges to its
only cluster point, i.e. to a solution.

We point this out in an exemplary way.

Lemma 3.4 (See [19], Lemma 8). Let F : Rn
→ 2Rn

be a locally bounded opera-

tor. If the graph of F is closed, then we have that {fkl} → f for some f ∈ F (x) with

the property that 〈f, x∗ − x〉 = 0 for any x∗ ∈ SOL(K,F ).

Theorem 3.5 (See [19], Theorem 6). Assume that the assumptions of Lemma
3.4 hold true and that F either is pseudomonotone∗ or Clarke’s subdifferential of
a pseudoconvex function f . Then each cluster point of {xk} is a solution of the
considered problem.

The next theorem stems from the discussion of monotone problems, but analyzing
the proof we see that no monotonicity properties of F are required. This result will
be extended in Theorem 4.6 below.

Theorem 3.6 (See [13], Lemma 1). If each cluster point of {xk} is a solution
of V I(K,F ), then the sequence {xk} generated by Algorithm 2.3 converges to some
x∗ ∈ SOL(K,F ).

It is easy to see that the previous analysis proves the convergence of {xk} to a solution
of V I(K,F ).

Since Theorem 3.2 only requires pseudomonotonicity with respect to the solution set,
but no additional assumption like the cut property, we will make use of Theorem 3.2
and Corollary 3.3 for the rest of the present paper.
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Beginning with the next section, we present new results including a new line of
convergence analysis of the BPPA.

4. A fundamental lemma and its consequence

Let {xk} denote the sequence generated by Algorithm 2.3. The following lemma will
be crucial for the subsequent analysis and only requires (A.6) and the assumptions
of Theorem 3.2.

Lemma 4.1. If the assumptions of Theorem 3.2 and property (A.6) hold true, then
for arbitrary, but fixed x ∈ K there is a cluster point x = x(x) of {xk} such that

〈f, x− x〉 ≥ 0, (8)

where f ∈ F (x) is appropriately chosen.

Proof. Consider the related sequence {Dh(x, x
k)} of Bregman distances. Two cases

may occur.

Assume that {Dh(x, x
k)} converges. Then we have in view of the well-known three-

point-formula and Theorem 3.2:

0 = lim
k→∞

Dh(x, x
k)−Dh(x, x

k+1)

= lim
k→∞

〈∇h(xk+1)−∇h(xk), x− xk+1〉+ lim
k→∞

Dh(x
k+1, xk) (9)

= lim
k→∞

〈∇h(xk+1)−∇h(xk), x− xk+1〉,

which somehow generalizes some parts of Theorem 3.2. Now consider any convergent
subsequence {xkl} → x and assume {fkl} → f ∈ F (x) in view of (A.6). Passing to
the limit in the scheme

〈fkl + χkl

(

∇h(xkl+1)−∇h(xkl)
)

, z − xkl+1〉 ≥ 0 ∀ z ∈ K, (10)

we obtain in view of (9) for z = x:

〈f, x− x〉 ≥ 0, (11)

which, as stated above, holds true for any cluster point x.

Now assume that {Dh(x, x
k)} does not converge. Then this sequence cannot be

monotonically decreasing, since it would otherwise be convergent as a non-negative
sequence.

Thus, there are infinitely many k ∈ N such that Dh(x, x
k+1) ≥ Dh(x, x

k). Let

{kl} ⊂ N be a subsequence such that

Dh(x, x
kl+1) ≥ Dh(x, x

kl) ∀ l ∈ N. (12)

Then we have, again using the three-point-formula and Theorem 3.2:

0 ≥ lim sup
l→∞

Dh(x, x
kl)−Dh(x, x

kl+1) (13)

= lim sup
l→∞

〈∇h(xkl+1)−∇h(xkl), x− xkl+1〉+ lim
l→∞

Dh(x
kl+1, xkl)

= lim sup
l→∞

〈∇h(xkl+1)−∇h(xkl), x− xkl+1〉.
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Since the corresponding subsequence {xkl} is bounded, there is a convergent subse-

quence {xklj } → x. Theorem 3.2 and property (B.6) now imply that also {xklj+1} →
x. Thus, passing to the limit j → ∞ in the iteration scheme and remembering (13)
and (A.6), we obtain

0 ≤ lim inf
j→∞

〈fklj + χklj

(

∇h(xklj+1)−∇h(xklj )
)

, x− xklj+1〉

≤ lim sup
j→∞

〈∇h(xklj+1)−∇h(xklj ), x− xklj+1〉+ lim sup
j→∞

〈fklj , x− xklj+1〉

≤ lim sup
j→∞

〈fklj , x− xklj+1〉

= 〈f, x− x〉,

where again, in view of (A.6), without loss of generality {fkl} → f ∈ F (x) is assumed.

The previous result shall be related to the cut property.

Remark 4.2. 1. It is important to note that the above proof unfortunately does not
exclude that the cluster point x in (8) can depend on x. Also f can depend on x, at
least as long as F is not single-valued.

2. Of course, if F has the cut property, convergence of {xk} is well-known. Thus, {xk}
only has one cluster point; in consequence, this cluster point x would not depend on
x.

3. In fact, we have shown that if {Dh(x, x
k)} converges, property (8) holds true for

any convergent subsequence of {xk}, that is, any cluster point x fulfills (8).

4. If {Dh(x, x
k)} does not converge, property (8) holds true for any cluster point x of

{xk} such that there is a subsequence {xkn} → x fulfilling Dh(x, x
kn+1) ≥ Dh(x, x

kn)
for all n ≥ n0.
If one knew that the entire sequences {Dh(x, x

k)} necessarily is monotonically in-
creasing for any x ∈ K, (8) would be valid for each cluster point x and any x ∈ K,
in other words, each cluster point would be a solution. This establishes a relation
between monotonicity of the sequences {Dh(x, x

k)} and the convergence of {xk}.

Lemma 4.1 enables us to prove the following central theorem. Recall that a set-valued

mapping F : Rn
→ 2Rn

is called upper hemicontinuous on K if for all u, v ∈ K the
mapping

λ 7→ F (λu+ (1− λ)v) (14)

is upper semicontinuous on [0, 1], that is, F is upper semicontinuous restricted to the
line segments of K. (Especially, maximal monotone operators are upper hemicontin-
uous; see [20] for continuity properties of set-valued mappings.)

Theorem 4.3. Let the sequence {xk} be generated by Algorithm 2.3 and F be pseu-
domonotone (with respect to the solution set) with non-empty, convex and compact
values and upper hemicontinuous on K ∩ dom(F ).1 If {xk} is convergent, then its
limit point is a solution of V I(K,F ).
1These assumptions hold for F maximal monotone with K ∩ dom(F ) ⊂ int(dom(F )).
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Proof. Since {xk} is convergent, it has exactly one cluster point x (thus, if F (x) is
a singleton, the assertion is already proved). By Lemma 4.1 we know that for each

y ∈ K there is some f = f(y) ∈ F (x) with

〈f, y − x〉 ≥ 0. (15)

Formulated in other terms, for every y ∈ K,

max
f∈F (x)

p(f, y) ≥ 0, (16)

where p(f, y) = 〈f, y − x〉. Obviously, p is bilinear, the set K is convex, and since
F is assumed to have convex and compact values, we can apply Lemma 1 in [3] to
obtain the existence of f ◦ ∈ F (x) with

0 ≤ p(f ◦, y) = 〈f ◦, y − x〉 ∀ y ∈ K, (17)

which just means that x ∈ SOL(K,F ).

An analysis similar to (15)–(17) is helpful to prove the following lemma which extends
Theorem 2.3.5 in [9]. Again, the maximal monotone case is included as a special
situation.

Lemma 4.4. If F is pseudomonotone with respect to the solution set, has non-empty
convex and compact values on K and, further, is upper hemicontinuous on K, then
the set SOL(K,F ) is convex.

Proof. It will be sufficient to establish the following equations:

SOL(K,F ) = M1 := {x ∈ K : 〈f, y − x〉 ≥ 0 ∀y ∈ K, ∀f ∈ F (y)}

= M2 :=
⋂

y∈K

{x ∈ K : 〈f, y − x〉 ≥ 0 ∀f ∈ F (y)}

= M3 := {x ∈ K : ∃f ∈ F (y) : 〈f, y − x〉 ≥ 0 ∀y ∈ K}

= M4 :=
⋂

y∈K

{x ∈ K : ∃f ∈ F (y) : 〈f, y − x〉 ≥ 0}

It is easy to see that SOL(K,F ) ⊂ M1 due to pseudomonotonicity (w.r.t. SOL(K,F ))
of F . Further, M2 is just another notation for M1; the same holds for M3 and M4.
Further, M2 ⊂ M4 (M1 ⊂ M3 respectively) is trivial to see. Hence,

SOL(K,F ) ⊂ M1 = M2 ⊂ M3 = M4 (18)

is already proven and it remains to show that M4 ⊂ SOL(K,F ).

Let x∗ ∈ M4 and z ∈ K, λ ∈ [0, 1] be arbitrary. Let y(λ) := λz + (1 − λ)x∗, thus
y(λ) ∈ K due to the convexity of K.

Since x∗ ∈ M4 we know that for any λ ∈ (0, 1) there is f = f(λ) ∈ F (y(λ) such that

0 ≤ 〈f(λ), y(λ)− x∗〉 = 〈f(λ), λ(z − x∗)〉,
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consequently, 〈f(λ), z − x∗〉 ≥ 0.

Due to upper hemicontinuity of F , the operator F is upper semicontinuous along the
line segment [x∗, z]. Thus, for any n ∈ N there exists some number λn > 0 such that

F (y(λ)) ⊂ F (x∗) +B 1

n
(0) ∀λ ∈ (0, λn], (19)

where Br(x) denotes the closed ball with radius r around some x.

Hence, for λ ∈ (0, λn] there exists a decomposition of the form

f(λ) = f ∗(λ) + γ(λ)

where f ∗(λ) ∈ F (x∗) and γ(λ) ∈ B 1

n
(0).

Of course we might assume λn < 1 for every n ∈ N. We have

0 ≤ 〈f(λ), z − x∗〉 = 〈f ∗(λ), z − x∗〉+ 〈γ(λ), z − x∗〉

≤ 〈f ∗(λ), z − x∗〉+ ||γ(λ)|| · ||z − x∗||

≤ 〈f ∗(λ), z − x∗〉+
1

n
||z − x∗||

by means of the Cauchy-Schwarz inequality.

Choosing in particular λ = λn this just means

〈f ∗(λn), z − x∗〉 ≥ −
1

n
||z − x∗||.

Now let n → ∞. Then λn → 0 and y(λn) → x∗ and, according to Assumption (A.6),

we can assume that f ∗(λn) → f ∈ F (x∗) holds.

Since z ∈ K was arbitrary, F has nonempty, convex and compact values, K is convex
and the mapping

p(f, y) = 〈f, z − x∗〉

is bilinear and fulfils

max
f∈F (x∗)

p(f, z) ≥ 0

for every z ∈ K, it again follows from Lemma 1 in [3] that there is some f ◦ ∈ F (x∗)
such that

p(f ◦, z) ≥ 0 ∀ z ∈ K,

that is, 〈f ◦, z − x∗〉 ≥ 0 for every z ∈ K, i.e. x∗ ∈ SOL(K,F ). Consequently,
M4 ⊂ SOL(K,F ), and since each Mi is convex (e.g. M2 as an intersection of convex
sets), SOL(K,F ) has to be convex as well.

Remark 4.5. It is easy to see that when F is maximal monotone (with int(dom(F ))
⊂ K) or even single-valued and continuous, both the formulation of Theorem 4.3 and
a fortiori the proof get significantly simpler. However, we chose this way to cover a
rather general case.
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We close this section with another useful result.

The following theorem generalizes Theorem 3.6 since no assumption on every cluster
point is required to obtain the same result. Using this theorem, it will be sufficient
to show that there is one cluster point of {xk} that is a solution, it will no longer be
necessary to show that every cluster point of {xk} is a solution.

Theorem 4.6. Assume that h is a Bregman-like function with zone int(K) and
{zk} ⊂ int(K) be a sequence such that {Dh(z, z

k)} converges for at least one cluster
point z, being the limit of some subsequence {zkl} of {zk}.

Then we have {zk} → z, i.e. the entire sequence converges to its (only) cluster point.

Proof. Suppose that the first alternative in (B.5) holds (i.e. we are discussing the
case of a standard Bregman function). Due to the convergence zkl → z we obtain

from (B.5)(a) that Dh(z, z
kl) → 0 for l → ∞, i.e. D = 0 has to be valid. Now

Dh(z, z
k) → 0 for k → ∞ and (B.6) yield the assertion zk → z for k → ∞.

On the other hand, if (B.5)(b) holds, consider two convergent subsequences

zkl → z and zkm → z′,

and suppose z 6= z′. Then (B.5)(b) yieldsDh(z, z
km) → ∞, but that is a contradiction

to the assumed convergence of the latter sequence. Therefore, there can only be one
cluster point; hence, convergence is proved.

In consequence, it suffices to show that for one cluster point the corresponding se-
quence of Bregman distances is convergent, for example, since this (single) cluster
point is a solution. Note that in the latter proof no special property of F is required.

The following section deals with the investigation of some conditions permitting to
conclude that {xk} indeed is convergent.

5. Convergence analysis

We first show that deducing convergence of {xk} is no problem if there is a solution
in int(K).

Theorem 5.1. Let the assumptions of Theorem 3.2 as well as (A.6), (A.7) hold true.
Then the following are equivalent:

1. SOL(K,F ) ∩ int(K) 6= ∅.

2. {xk} has all cluster points in int(K).

3. {xk} has one cluster point in int(K).

4. {xk} converges to a solution in int(K).

Proof. It will be sufficient to prove “1. ⇒ 2.� and “3. ⇒ 4.�.

“1. ⇒ 2.� Let again {xkl} → x denote a convergent subsequence. In view of
Corollary 3.3 we directly obtain {xkl+1} → x.

Now for some x∗∗ ∈ SOL(K,F )∩ int(K) we know that Dh(x
∗∗, xkl) converges, which

directly implies the convergence of 〈∇h(xkl), x∗∗ − xkl〉.
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On the other hand, since a zone-coercive Bregman-like function especially is boundary
coercive, we can conclude that x and therefore each cluster point of the generated
sequences has to belong to int(K).

“3. ⇒ 4.� Now let {xkl} → x denote a convergent subsequence such that x ∈ int(K).
As a consequence, we have

∇h(xkl+1)−∇h(xkl) → 0, l → ∞.

Now pass to the limit (l → ∞) in the iteration scheme (5). In view of x−xkl+1 → x−x
and x ∈ int(K) it follows fkl → 0. Now (A.6) implies 0 ∈ F (x), i.e. x ∈ SOL(K,F ).
Thus, one cluster point of {xk} is a solution and by Theorem 4.6 the entire sequence
{xk} converges to this solution.

Note that the original version of Theorem 4.6, i.e. Theorem 3.6, would not be sufficient
for the preceding proof.

Besides some sufficient condition for the existence of a solution in int(K), e.g. in [18],
also convexity of the solution set (cf. Lemma 4.4) may be useful, see below.

As a consequence of the above results, we can concentrate on the situation that
convergence of {xk} is unknown. The following lemma is helpful in this situation.

Lemma 5.2. Consider the situation of Theorem 3.2.

1. If {xk} has a cluster point x in int(K), then {xk} → x ∈ SOL(K,F ).

2. If no cluster point of {xk} belongs to int(K), it holds that

lim
k→∞

dist(xk, ∂K) = 0. (20)

Proof. The first assertion has already been proved above.

Thus, consider the second assertion and assume the contrary. Then there is some
ε > 0 and a subsequence {xkl} such that dist(xkl , ∂K) ≥ ε holds true for each l ∈ N.
Since {xkl} is bounded, we can without loss of generality assume that it is convergent
to some x.

Due to dist(x, ∂K) = liml→∞ dist(xkl , ∂K) ≥ ε we obtain x ∈ int(K), that is, {xk}
has a cluster point in int(K). As one prefers to conclude: This is contradictory to
the assumption, and on the other hand, it implies convergence of {xk} in view of
Theorem 5.1.

Thus, for the remaining discussion we can assume that the sequence {xk} has to
approach the boundary ∂K. Convergence of {xk} → x would imply (via boundary
coerciveness)

lim
k→∞

〈∇h(xk), x− xk〉 → −∞ ∀x ∈ int(K), (21)

which is by definition of Dh and continuity of h equivalent to

lim
k→∞

Dh(x, x
k) → +∞ ∀x ∈ int(K). (22)

However, we can prove this result – which may be considered as a necessary condition
for convergence of {xk} – even without known convergence of {xk}.
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Lemma 5.3. If in the situation of Theorem 3.2 the sequence {xk} has no cluster
points in int(K), then for the generated sequence {xk} it holds

lim
k→∞

Dh(x, x
k) → +∞ ∀x ∈ int(K). (23)

Proof. In view of Lemma 5.2 we know ||∇h(xk)|| → +∞ for k → ∞. Since h

is strictly convex, we have dom(∇h∗) = ∇h(int(K)) = Rn
, where h∗ denotes the

conjugate function of h (see [2]). Thus, ∇h(xk),∇h(x) ∈ int(dom(h∗)) follows.

Since Dh∗(·,∇h(x)) is coercive by Theorem 3.7 in [2], we can conclude

Dh(x, x
k) = Dh∗(∇h(xk),∇h(x)) → +∞ for k → ∞. (24)

As the following theorem shows, the preceding results can be used to obtain conver-
gence of {xk} to a solution of V I(K,F ) when the set K has a special (nonlinear)
structure, which is related to the existence theory of Bregman-like functions. Note
that for this central result we do not require any assumption implying the cut prop-
erty; especially, no paramonotonicity is required.

Theorem 5.4. Consider the situation of Lemma 5.3. Assume that ∂K, as described
by Assumption A, does not contain any line segment2 and that (A.6), (A.7) hold.
Then {xk} → x∗ ∈ SOL(K,F ).

Proof. Let {xkl} → x be a convergent subsequence with x ∈ ∂K. It can be shown
that in this situation for every z ∈ K, z 6= x, it has to hold

Dh(z, x
kl) → +∞, l → ∞. (25)

For z ∈ int(K) this follows from Lemma 5.3; in consequence, the assertion remains
to be shown for z ∈ ∂K only.

Indeed, consider the used definition (4) of Bregman-like functions:

h(x) =
m
∑

i=1

ϕ(gi(x)) +
κ

2
||x||2. (26)

We can assume that gj(x) = 0 for some j ∈ I2. From the convexity of ϕ◦gi and || · ||2

we obtain

Dh(z, x
kl) ≥ ϕ(gj(z))− ϕ(gj(x

kl))− ϕ′(gj(x
kl))〈∇gj(x

kl), z − xkl〉, (27)

since the remaining linearization terms in the definition of Dh are non-negative.

In view of (C.2) it follows that ϕ′(gj(x
kl)) → +∞ for l → ∞, whereas

lim
l→∞

ϕ(gj(x
kl)) = 0 and lim

l→∞

〈∇gj(x
kl), z − xkl〉 = 〈∇gj(x), z − x〉

2In view of Assumption A this holds when there are no affine constraints, i.e. I1 = ∅.
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are simple consequences of continuity. Thus, in view of (27), it will be sufficient to
show 〈∇gj(x), z−x〉 < 0. Of course, we only have to consider the case z ∈ ∂K, since
for z ∈ int(K) the assertion Dh(z, x

kl) → +∞ already follows from Lemma 5.3.

For z ∈ ∂K we can conclude that v := 1
2
(z + x) ∈ int(K), since ∂K does not contain

any line segment. Thus, gj(v) < 0 and gj(x) = 0. In consequence,

0 > gj(v)− gj(x) = 〈∇gj(x), v − x〉 =
1

2
〈∇gj(x), z − x〉. (28)

Therefore, 〈∇gj(x), z − x〉 < 0, and in consequence, (25) holds.

Now let us turn to the conclusion of convergence of {xk}. Remember that the proof
presented here does not require the cut property.

Assume that x is not a solution. Then for any solution {Dh(x
∗, xkl)} → ∞, which

contradicts the convergence of {Dh(x
∗, xkl)}, shown in Theorem 3.2.

Thus, x has to be a solution and by Theorem 4.6, {xk} → x.

Remark 5.5. The assumptions on the special structure of the set K as well as the
non-existence of solutions in int(K) seem to imply that SOL(K,F ) is a singleton.

Indeed, at least under reasonable assumptions, SOL(K,F ) is a convex set. If there
were at least two solutions, thinking of the geometrical structure of K we directly
see that there has to be a solution in int(K). But this has been excluded beginning
with Lemma 5.2.

However, uniqueness of the solution in the discussed situation can also be reasoned
without convexity of SOL(K,F ). The following results (derived from analogue results
for a more general problem and a more general iteration scheme in [18]) establish a
crucial relation between the structure of the set K and the solution set.

Lemma 5.6 (cf. Lemma 6.2 in [18]). When properties of K,F and h guarantee
the convergence of the sequences {xk} (to a solution) and {Dh(x

∗, xk)}, and there is
more than one solution, then there is at least one solution x∗ with gi(x

∗) < 0 for all
i ∈ I2.

Proof. Assume that there are two solutions x∗, x∗∗, but gl(x
∗) = gj(x

∗∗) = 0 holds
true for some j, l ∈ I2. Without loss of generality we may assume {xk} → x∗ (indeed,
if {xk} would converge to a solution x∗∗∗ fulfilling gi(x

∗∗∗) < 0 for all i ∈ I2 the
assertion directly follows). Then we have, due to the convexity of the functions ϕ◦gi,

Dh(x
∗∗, xk) ≥ ϕ(gl(x

∗∗))− ϕ(gl(x
k))− ϕ′(gl(x

k))〈∇gl(x
k), x∗∗ − xk〉. (29)

Now due to (C.2) we have

lim
k→∞

ϕ′(gl(x
k)) = +∞, (30)

and due to simple continuity arguments the limits

ϕ(0) = lim
k→∞

ϕ(gl(x
k)) and lim

k→∞

〈∇gl(x
k), x∗∗ − xk〉 = 〈∇gl(x

∗), x∗∗ − x∗〉 (31)
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exist. M := {y ∈ K : ∃j0 ∈ I2 : gj0(y) = 0} contains x∗, x∗∗ as elements, but since it
does not contain any line segment by (A.2), we have 1

2
(x∗ + x∗∗) =: v /∈ M . Hence,

especially gl(v) < 0 and therefore, just using convexity of gl,

0 > gl(v)− gl(x
∗) ≥ 〈∇gl(x

∗), v − x∗〉 =
1

2
〈∇gl(x

∗), x∗∗ − x∗〉 (32)

Now, concatenating (29)–(32) we obtain Dh(x
∗∗, xk) → +∞ for k → ∞, which

obviously is a contradiction to the convergence of {Dh(x
∗∗, xk)}.

One directly obtains two interesting (and important) consequences.

Corollary 5.7 (cf. Corollary 6.3 in [18]). Suppose that the assumptions of Lem-
ma 5.6 are fulfilled.

1. The sequence {xk} generated by the BPPA converges to a solution x∗ with
gi(x

∗) < 0 for all i ∈ I2.

2. If there are no affine restrictions, i.e. if I1 = ∅, there is at least one solution
x∗ ∈ SOL(K,F ) ∩ int(K).

Proof. 1. Assume {xk} → x∗ and that there is another solution x∗∗. Then conver-
gence of {Dh(x

∗∗, xk)} is known. On the other hand, if gl(x
∗) = 0 for some l ∈ I2,

then following the proof of Lemma 5.6, we have {Dh(x
∗∗, xk)} → ∞, which is a

contradiction. Hence gi(x
∗) < 0 for every i ∈ I2.

2. According to Lemma 5.6 there is a solution x∗ which fulfills gi(x
∗) < 0 for each

i ∈ I2, but in the absence of affine constraints, gi(x
∗) < 0 holds for every i = 1, . . . ,m,

i.e. x∗ ∈ int(K).

Especially, assuming the non-existence of solutions in int(K), Corollary 5.7 reasons
that uniqueness of the solution is not restrictive. If there is more than one solution,
then there is one solution in the interior, and thus convergence is ensured by Theorem
5.1. In other words, considering separate situations permits to conclude convergence
in the entire framework.

We shall remark that the extended convergence sensing property (B.5) is crucial
for the above analysis. This extension of the standard Bregman property (B.5)(a)
has been introduced in [5] and further investigated in [13, 14, 15] for the existence of
Bregman-like functions. However, the methods discussed in these references explicitly
require paramonotonicity of F .

The following result summarizes the preceding discussion.

Theorem 5.8. Let the assumptions of Theorem 3.2 as well as (A.6) and (A.7) hold
true3 and suppose that ∂K does not contain any line segment.4 Then the sequence
{xk} generated by the BPPA converges to a solution.

3Especially, F is just assumed to be pseudomonotone with respect to SOL(K,F ).
4cf. Assumption A. This is especially true if every describing constraint gi is strictly convex, and
therefore e.g. balls are covered.
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Consequently, in this situation the cut property (and thus also paramonotonicity etc.)
are no longer necessary for the convergence of the sequence {xk} (generated by the
BPPA) to a solution of the given problem.

6. Concluding Remarks

We considered the classical Bregman Proximal Point Algorithm which transforms an
ill-posed constrained variational inequality into well-posed unconstrained systems of
equations.

In the discussion of the BPPA the assumption of paramonotonicity and related prop-
erties implying the cut property are very customary ones. Since these properties
are not given in saddle-point-problems of the Lagrangian of a convex program, they
should be considered as rather restrictive.

The present paper contains a new analysis for the BPPA which permits:

• to show under only slightly more restrictive assumptions that if the generated
sequence of iterates is convergent, then its limit has to be a solution,

• to prove convexity of the solution set under similar assumptions,

• to show using weak hypotheses that if the the boundary of the feasible set K
does not contain any line segment, the method generates a sequence of iterates
that converges to a solution.

If F : Rn
→ Rn

is pseudomonotone∗, then we obtain a new and shorter proof that
each cluster point is a solution of V I(K,F ). Indeed:

Lemma 6.1. If F : Rn
→ Rn

is pseudomonotone∗ and the assumptions of Theorem
3.2 hold, then the generated sequence {xk} converges to some x∗ ∈ SOL(K,F ).

Proof. Suppose (in view of Theorem 4.6) that there is a cluster point x which is not
a solution. Then there is z ∈ K such that

〈F (x), z − x〉 < 0. (33)

From Theorem 3.2 we know that

〈F (x), x− x∗〉 = 0, (34)

and since F is pseudomonotone, we have 〈F (x∗), x−x∗〉 = 0. Now pseudomonotoni-
city∗ yields the existence of k > 0 such that F (x) = kF (x∗). Summing up (33) and
(34), we obtain the contradiction

k · 〈F (x∗), z − x∗〉 = 〈F (x), z − x〉+ 〈F (x), x− x∗〉 < 0. (35)

Let us shortly justify why we think that the iterates should also converge to a solution
if K has a more general structure. To do this, we assume the contrary, namely that
{xk} does not convergence. In view of the above results, this would have the following
consequences:
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• In view of Theorems 4.3 and 5.1: There are at least two subsequences {xkl} → x,
{xkj} → x∞ with x∞ 6= x, and every cluster point belongs to ∂K.

• In view of Theorems 4.6 and 3.2: {Dh(·, x
k)} is divergent for every cluster point

x of {xk}, but convergent for any solution x∗ ∈ SOL(K,F ).

• In view of Theorems 4.6 and 3.2: None of the cluster points is a solution. That
is, for each cluster point x there is some z = z(x) ∈ K such that

〈f, z − x〉 < 0 (36)

for f ∈ F (x) as above (without loss of generality, by continuity one might assume
z ∈ int(K) to obtainDh(z, x

k) → ∞ from Lemma 5.3). However, such a z cannot
be a solution of V I(K,F ), since for every solution x∗ it holds (following Theorem
3.2)

〈f, x∗ − x〉 = 0. (37)

Remark 6.2. As shown above, convergence of {xk} is related to Bregman distances.
Let us point this out in some thoughts.

If {xkl} → x is a convergent subsequence, but x is not a solution, due to continuity
we have 〈fkl , z − xkl+1〉 < 0 for l large enough. But in view of the iteration scheme
this implies

0 < 〈∇h(xkl+1)−∇h(xkl), z − xkl+1〉

= Dh(z, x
kl)−Dh(z, x

kl+1)−Dh(x
kl+1, xkl)

Thus, Dh(z, x
kl) > Dh(z, x

kl+1) for all l sufficiently large. Since without loss of
generality z ∈ int(K), this has to fit together with the proven fact {Dh(z, x

k)} → ∞.

At this place we can see that if the divergent sequence {Dh(z, x
k)} was shown to be

monotonically increasing, a contradiction would be obtained.
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