
Journal of Convex Analysis

Volume 18 (2011), No. 3, 749–768

Characterization of Weakly

Efficient Solutions for Non-Regular

Multiobjective Programming Problems

with Inequality-Type Constraints∗

B. Hernández-Jiménez†
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1. Introduction

In many real-life optimization problems, multiple objectives must be taken into ac-
count that may be related to the economical, technical, social and environmental
aspects of optimization problems.

In this paper we study the general Multiobjective Optimization Problem:

Min f(x) = (f1(x), . . . , fp(x)),
s.t. x ∈ A,

(MOP)

where the feasible region A is expressed as a finite number of inequality constraints,
that is, A = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}. Let fj : R

n −→ R j = 1, ..., p and
gi : R

n −→ R, i = 1, . . . ,m.

In this paper, we assume that all the functions are Fréchet differentiable and that
gi, i = 1, . . . ,m is twice Fréchet differentiable when necessary. We denote the first-
and second-order derivatives for a scalar function by ∇gi, ∇

2gi and the first-order
derivative for a vector function by f ′.

We say that a function is twice Fréchet differentiable at a point x, when it is Fréchet
differentiable on a neighborhood of x, and its derivative is Fréchet differentiable at x.

All vectors are row vectors. We use the superscript t to denote transposition.

The multiple objectives in an optimization problem are usually incommensurate and
in conflict one another. This means that in general, a multiple objective optimization
problem does not have a single solution that can optimize all objectives simultane-
ously. Because of this, the goal in multiple optimization is not search for optimal
solutions but instead to find efficient (non-inferior, non-dominated or Pareto-optimal)
solutions that can best attain the prioritized multiple objectives.

The weakly efficient solution is an important concept in mathematical modeling,
economics, decision theory, optimal control and game theory. However, finding the
weakly efficient solution set of (MOP) is not an easy task. Many authors have stud-
ied sufficient and necessary optimality conditions of the Karush-Kuhn-Tucker type
(hereafter KKT conditions) involving weakly efficient solutions for a multiobjective
programming problem ([19], [13], [10]).

But, as it is well known, the KKT conditions are necessary for optimality if the
problem (MOP) is regular and are sufficient if (MOP) is a convex problem.

In the past few years, numerous papers have appeared in the literature reflecting
further generalizations in these categories. Kaul et al. [9] considered a differentiable
multiobjective optimization problem involving generalized Type I functions. They
investigated KKT type necessary and sufficient conditions under generalized Type
I assumptions. Combining the concepts of Type I and uninvex functions, Rueda et

al. [18] gave optimality conditions and duality in various settings (real valued, frac-
tional, multiobjective). Suneja and Srivastava [20] introduced generalized d-Type I
functions, which are defined in terms of the directional derivative for a multiobjective
optimization problem. In [16] and [17], it was proved that the equivalence between
minima and Karush-Kuhn-Tucker points, established by Martin [12] for scalar differ-
entiable optimization problems when the problem verifies the KKT-invexity, remains
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true for differentiable vector optimization problems. To this end, vector Karush-
Kuhn-Tucker points and KKT-pseudoinvex vector problems were accurately defined.
Moreover, it was proved that these new generalized convexity assumptions are the
weakest necessary conditions to characterize the weak Pareto solution set completely.

In some approaches to optimization problems, the necessary optimality conditions
are derived under the same constraint qualifications as in nonlinear programming,
with a scalar-valued objective function. Constraint qualifications are often assumed,
but do not always hold. A problem whose constraints do not verify any regularity
conditions is called a non-regular problem. The relevance of these scalar problems
and important references that contain meaningful practical examples are given in [2]
and [5].

In [8], Izmailov presented a constructive description of the tangent cone to the ad-
missible set at a particular feasible point for mathematical programming problems
with non-regular inequality-type constraints, and meaningful necessary optimality
conditions were provided on the basis of the above description of the tangent cone.
Later, Avakov et al. [3] proved first- and second-order necessary conditions for a lo-
cal extremum for a scalar-valued minimization problems with equality and inequality
constraints when the constraints do not satisfy any regularity assumptions.

For the non-regular scalar case, convexity notions are scarce or absent, only one work
[6] presents meaningful generalized convexity notions. This concept is the weakest
possible that ensures that the necessary optimality condition given by Izmailov in [8]
is sufficient, and thus the solution set for the scalar case is characterized.

But for the multiobjective non-regular case, there are no optimality conditions for
weakly efficient solutions and there are no generalized convexity notions to charac-
terize the optimal solutions set.

In this paper, we give necessary optimality conditions for a multiobjective problem
whose constraints do not necessarily verify any constraint qualification, based on
Izmailov’s description of its tangent cone in the 2-regular case. Furthermore, we
present a suitable definition of Karush-Kuhn-Tucker points and, to ensure that the
optimality conditions obtained are also sufficient to characterize the complete weakly
efficient solutions set, we define a new concept of generalized convexity since the
existing ones in the literature are not valid in the non-regular case. Finally, taking
into account the ideas of Martin and Osuna-Gómez ([12], [17]) we prove that the
concept of generalized convexity given here is the weakest possible to ensure the
sufficiency of the necessary optimality conditions presented.

This work is organized as follows. In Section 1, we recall some classic results and def-
initions on optimality conditions and convexity for multiobjective regular problems.
In Section 2, we recall some definitions and results from Izmailov’s paper [8] for non-
regular problems. In Section 3, we present necessary optimality conditions for weakly
efficient solutions of (MOP). In Section 4, we show some illustrative examples and in
Section 5 we define a proper generalized convexity notion for the non-regular case,
which makes the necessary optimality conditions also sufficient. Finally, in Section
6, we present our conclusions.
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2. Optimality conditions for multiobjective regular or non-degenerate
problems

The following convention for vectors of Rn will be followed throughout this paper:

• x < y ⇔ xi < yi, ∀ i ∈ {1, . . . , n};

• x ≦ y ⇔ xi ≤ yi, ∀ i ∈ {1, . . . , n};

• x ≤ y ⇔ xi ≤ yi and x 6= y.

• x > y ⇔ xi > yi, ∀ i ∈ {1, . . . , n};

• x ≧ y ⇔ xi ≥ yi, ∀ i ∈ {1, . . . , n};

• x ≥ y ⇔ xi ≥ yi and x 6= y.

We first recall some definitions and results that are needed for the main results of
this work.

Definition 2.1. A point x∗ ∈ A is said to be an efficient (Pareto) solution of (MOP)
if and only if there exists no x ∈ A such that f(x) ≤ f(x∗).

At times, locating efficient points is quite costly. As a result, a more general concept
appears, namely the weakly efficient solution, which, under certain conditions, has
better topological properties than the efficient solution [15].

Definition 2.2. A point x∗ ∈ A is said to be a weakly efficient (weak Pareto) solution
of (MOP) if and only if there exists no x ∈ A such that f(x) < f(x∗).

Obviously every efficient solution is a weakly efficient solution.

Definition 2.3. A feasible point x∗ ∈ A is said to be a vector Fritz-John point
(hereafter VFJP) for (MOP), if there exists (λ∗, µ∗) ∈ Rp+m, (λ∗, µ∗) ≧ 0, such that

{
λ∗f ′(x∗) + µ∗g′(x∗) = 0,

µ∗g(x∗)t = 0.
(1)

Definition 2.4. A feasible point x∗ ∈ A is said to be a vector Karush-Kuhn-Tucker
point (hereafter VKKTP) for (MOP) if there exists (λ∗, µ∗) ∈ Rp+m, (λ∗, µ∗) ≧ 0,
λ∗ 6= 0 such that {

λ∗f ′(x∗) + µ∗g′(x∗) = 0,

µ∗g(x∗)t = 0.
(2)

The following necessary optimality conditions for weakly efficiency are well known
(see, e.g. [7] and [17]).

Theorem 2.5. Let x∗ ∈ A be a weakly efficient solution for (MOP) then x∗ is a

VFJP for (MOP).

If we add a constraint qualification, we can ensure that λ∗ 6= 0, so we have a VKKTP
for (MOP).

Theorem 2.6. Assume that x∗ ∈ A is a weakly efficient solution for (MOP) and

that a constraint qualification is satisfied at x∗. Then x∗ is a VKKTP for (MOP).
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The reverse result is not true in general, so a generalized convexity notion is intro-
duced to completely characterize the weakly efficient solution set, that is, to ensure
that every VKKTP is a weakly efficient solution. The weakest convexity notion, is
the KKT-pseudoinvexity [17].

Definition 2.7. The problem (MOP) is said to be a vector KKT-pseudoinvex prob-
lem on A, if there exists η : Rn × Rn → Rn such that for all x, x∗ ∈ A, it is verified

{
f(x)− f(x∗) < 0 ⇒ η(x, x∗)f ′(x∗)t < 0,

−η(x, x∗)∇gi(x
∗)t ≥ 0, ∀i ∈ I(x∗),

where I(x∗) = {i = 1, ...,m : gi(x
∗) = 0}.

Theorem 2.8. Every VKKTP is a weakly efficient solution if and only if (MOP) is
a vector KKT-pseudoinvex problem on A.

3. Description of the tangent cone for non-regular problems

The results presented in Section 2 do not make sense if the problem does not satisfy
any constraint qualifications to ensure that the weakly efficient solutions can be char-
acterize by the VKKTP. Therefore, it is of great interest to find results that extend
those presented above for the non-regular case.

If the constraints of the problem do not satisfy any regularity assumptions, the tan-
gent cone cannot be characterized by the linear approximations of the active con-
straints at a feasible point, and in consequence, meaningful optimality conditions
cannot be established. Therefore, Izmailov proposed in [8] to use the second-order
approximations of the active constraints at a feasible point in order to characterize
the tangent cone in the 2-regular case and to use it to establish optimality conditions
that will not be linear.

Based on the following scalar optimization problem,

Min φ(x),
s.t. x ∈ A,

(SOP)

Izmailov characterized a regular problem, and we shall prove that this characteriza-
tion implies that its constraints satisfy a constraint qualification.

Proposition 3.1 ([8]). The constraints of (SOP) are regular at x∗ ∈ A on the ele-

ment h ∈ Rn satisfying the condition h ∈ G′
A(x

∗) = {h ∈ Rn : ∇gi(x
∗)ht ≤ 0,∀i ∈

I(x∗)} if and only if

∃ h̃ ∈ Rn : ∇gi(x
∗)h̃t < 0, ∀ i ∈ I(x∗).

Note that the regularity condition can be defined regardless of the specific element h,
and it is valid for the multiobjective problem we are studying in this paper (MOP)
since its constraints are the same.

Definition 3.2. The vector h ∈ Rn is said to be tangent to the set A at the point
x∗ if there exist a number ǫ > 0 and a mapping r(·) : [0, ǫ) −→ Rn such that
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x∗ + th + r(t) ∈ A ∀ t ∈ [0, ǫ) with ‖r(t)‖
t

→ 0 as t → 0+. The set of all vectors that
are tangent to the set A at the point x∗ forms a cone, called the tangent cone to the
set A at the point x∗, and it is denoted by TA(x

∗).

We shall prove that the regularity characterization given in Proposition 3.1 implies
the Abadie constraint qualification (G′

A(x
∗) = TA(x

∗)), which is the weakest possible
in the multiobjective case, as was shown in [1]. First, however, we need the following
results:

Lemma 3.3. If h ∈ Rn, gi, i ∈ I(x∗), are Fréchet differentiable at x∗ ∈ A satisfying

∇gi(x
∗)ht < 0, then, for any mapping r(·) : R+ → Rn with the property that ‖r(δ)‖ =

o(δ), as δ → 0+, there exists ǫ > 0 such that

gi(x
∗ + δh+ r(δ)) < 0, ∀ δ ∈ (0, ǫ).

Proof. Using Taylor’s formula

gi(x
∗ + δh+ r(δ))

= gi(x
∗) + δ∇gi(x

∗)ht +∇gi(x
∗)r(δ)t + ‖δh+ r(δ)‖α(x∗, δh+ r(δ)).

Dividing by δ > 0 and taking the limit as δ → 0+, we obtain

lim
δ→0+

gi(x
∗ + δh+ r(δ))

δ
= ∇gi(x

∗)ht < 0,

then there exists ǫ > 0 such that gi(x
∗ + δh+ r(δ)) < 0, ∀ δ ∈ (0, ǫ).

Proposition 3.4. The vector h ∈ Rn is tangent to the set A at the point x∗ if and

only if it is tangent to the set {x ∈ Rn : gi(x) ≤ 0, i ∈ Ih(x
∗)} at this point x∗, where

Ih(x
∗) = {i ∈ I(x∗) : ∇gi(x

∗)ht = 0}.

Proof. Let us show that T{x∈Rn:gi(x)≤0, i∈Ih(x∗)}(x
∗) ⊆ TA(x

∗), since the other inclu-
sion is trivial.

If h ∈ T{x∈Rn:gi(x)≤0, i∈Ih(x∗)}(x
∗), by definition there exist ǫ > 0 and r : [0, ǫ) → Rn,

such that gi(x
∗ + δh+ r(δ)) ≤ 0, for all δ ∈ [0, ǫ), i ∈ Ih(x

∗).

As I = I(x∗) ∪ Ic(x∗) :

• For i ∈ Ic(x∗) we have gi(x
∗) < 0 and using the continuity property for gi , we

obtain gi(x
∗ + δh+ r(δ)) ≤ 0, for δ > 0 that is sufficiently small.

• As I(x∗) = Ih(x
∗) ∪ Ich(x

∗) :
– For i ∈ Ih(x

∗) it is verified.
– For i ∈ Ich(x

∗), we know gi(x
∗) = 0 and ∇gi(x

∗)ht < 0. By Lemma 3.3, it
follows gi(x

∗ + δh+ r(δ)) < 0, for δ > 0 sufficiently small.

Then h ∈ TA(x
∗) since there are ǫ > 0 and r : [0, ǫ) → Rn such that x∗+δh+r(δ) ∈ A,

for all t ∈ [0, ǫ) and ‖r(t)‖
t

→ 0 as t → 0+.
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Remark 3.5. Proposition 3.4 implies that the tangent cone at a feasible point is
characterized by constraints whose index set is Ih(x

∗) = {i ∈ I(x∗) : ∇gi(x
∗)ht = 0},

that is,
h ∈ TA(x

∗) ⇔ h ∈ T{x∈Rn:gi(x)≤0, i∈Ih(x∗)}(x
∗).

Remark 3.6. Proposition 3.4 guarantees that if Ih(x
∗) = ∅ and h ∈ G′

A(x
∗), then

h ∈ TA(x
∗) because ∇gi(x

∗)ht < 0, ∀ i ∈ I(x∗).

We recall now the necessary definitions and results about feasible and admissible di-
rections which can be found in any book on mathematical programming, for instance
in [14]:

Definition 3.7. In the conditions of our problem, d ∈ Rn is a feasible direction at
x∗ ∈ A if ∇gi(x

∗)dt < 0, ∀ i ∈ I(x∗).

The set of all feasible directions at x∗ ∈ A is a cone.

Definition 3.8. d ∈ Rn is said to be an admissible direction for (SOP) at x∗ if d =
∇k(0) = (∇ki(0))i=1,2,...,n is tangent to the curve arc k(θ) at x∗, where k : R+ → Rn

is a mapping satisfying the conditions:

a) k(0) = x∗.

b) for θ > 0 sufficiently small, k(0) ∈ A.

The set of all admissible directions is a cone.

Through the above definitions we have the following result concerning regular prob-
lems:

Proposition 3.9. The characterization of the regular problem given in Proposition

3.1 implies the Abadie constraint qualification TA(x
∗) = G′

A(x
∗).

Proof. By Definition 3.7, h̃ in Proposition 3.1 is a feasible direction, therefore, the
cone of feasible directions R is nonempty, and its closure coincides with the linearized
cone (cl(R) = G′

A(x
∗)[14]).

As the cone of feasible directions is contained in the cone of admissible directions, and
their closures verify the same relation, it follows that the closure of the admissible
directions cone is the tangent cone; this implies the Abadie constraint qualification
TA(x

∗) = G′
A(x

∗) [4].

In general TA(x
∗) ⊆ G′

A(x
∗), but in non-regular problems the last inclusion is strict,

that is, the Abadie constraint qualification does not hold. This is also the weakest
sufficient condition in the multiobjective case, as was shown in [1].

Thus, the tangent cone cannot be characterized by the linear approximations of the
active constraints at a feasible point, so Izmailov [8] proposed to use the 2-regularity
theory in order to characterize the tangent cone. He defined the following sets with
h ∈ G′

A(x
∗):

Hh(x
∗) =

{
y ∈ Rn : ∇gi(x

∗)yt +
1

2
∇2gi(x

∗)[h, h] ≤ 0 ∀ i ∈ Ih(x
∗)

}
,
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and

H(x∗) = {h ∈ Rn : ∇gi(x
∗)ht ≤ 0, ∀ i ∈ I(x∗) and Hh(x

∗) 6= ∅}.

Izmailov proved that the set H(x∗) is the set of vectors satisfying the first- and
second-order necessary conditions of tangency at x∗. For each element y ∈ Hh(x

∗),
let

Jhy(x
∗) =

{
i ∈ Ih(x

∗) : ∇gi(x
∗)yt +

1

2
∇2gi(x

∗)[h, h] = 0

}

and

Jh(x
∗) =

⋂

y∈Hh(x∗)

Jhy(x
∗),

i.e., Jh(x
∗) is the index set of the active constraints that satisfy as an equality the

first-and second-order necessary condition for tangency at x∗.

Using the above sets, Izmailov gave the following definition of 2-regularity.

Definition 3.10. The constraints of a scalar problem are said to be 2-regular at x∗

on the element h ∈ H(x∗) if gi, i ∈ Ih(x
∗) are twice Fréchet differentiable at x∗ ∈ A,

and there exist ξ̃, η̃ ∈ Rn such that

i) ∇gi(x
∗)ξ̃t ≤ 0, ∀ i ∈ Ih(x

∗),

ii) ∇gi(x
∗)η̃t +∇2gi(x

∗)[h, ξ̃] < 0, ∀ i ∈ Jh(x
∗).

We say that a problem is 2-regular at x∗ ∈ A on the element h ∈ H(x∗) if the
constraints are 2-regular at x∗ on the element h ∈ H(x∗).

Remark 3.11. Note that the 2-regularity property is a local one since it depends
on the element h and that it can also be used for a multiobjective problem with
inequality-type constraints since its constraints are the same.

Therefore with the last definition, Izmailov gave a second-order sufficient condition
for tangency to characterize the tangent cone in the non-regular case, using the 2-
regularity property.

Theorem 3.12. Let x∗ ∈ A and gi, i ∈ I(x∗) be Fréchet differentiable at x∗. Given

an element h ∈ H(x∗), let gi, i ∈ Ih(x
∗) be twice Fréchet differentiable at x∗ and let

the constraints of the problem be 2-regular at the point x∗ on the element h ∈ H(x∗).
Then h ∈ TA(x

∗).

Let the set H(x∗) of elements h ∈ H(x∗), such that the constraints of the problem
are 2-regular at x∗ on the element h.

Up to now, there were no results about optimality conditions and generalized convex-
ity notions for the multiobjective non-regular case. The scalar non-regular case was
studied by Izmailov in [8] and by Hernández-Jiménez et al. in [6]. The multiobjective
regular case was studied by Osuna-Gómez et al. in [17]. Our purpose is to generalize
the results given in [6] and [17] for the multiobjective non-regular case.
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4. Necessary Optimality conditions for non-regular multiobjective opti-
mization problems

We now give the necessary definitions and results in order to establish necessary and
sufficient optimality conditions based on the 2-regularity of the problem.

First, we need to define the analogues of the vector Karush-Kuhn-Tucker points for
non-regular multiobjective programming problems:

Definition 4.1. A feasible point x∗ ∈ A for (MOP) is said to be a Vector General-
ized Karush-Kuhn-Tucker point (hereafter VGKKTP) for (MOP) with respect to an

element h ∈ H(x∗) if there exists (ν∗(h), λ∗(h)) ∈ Rp+m
+ , λ∗(h) = (λ∗

i (h))i∈I , µ
∗
i (h) ≥

0, i ∈ Jh(x
∗), ν∗(h) 6= 0, satisfying:





ν∗(h)f ′(x∗) +
∑

i∈I

λ∗
i (h)∇gi(x

∗) +
∑

i∈Jh(x∗)

µ∗
i (h)h∇

2gi(x
∗) = 0,

∑

i∈Jh(x∗)

µ∗
i (h)∇gi(x

∗) = 0,

λ∗
i (h)gi(x

∗) = 0, i ∈ I,

(3)

where λ∗
i (h)gi(x

∗) = 0, i ∈ I are the complementary slackness conditions.

Remark 4.2. Using the above complementary slackness conditions, (3) can be re-
written as





ν∗(h)f ′(x∗) +
∑

i∈I(x∗)

λ∗
i (h)∇gi(x

∗) +
∑

i∈Jh(x∗)

µ∗
i (h)h∇

2gi(x
∗) = 0,

∑

i∈Jh(x∗)

µ∗
i (h)∇gi(x

∗) = 0.
(4)

Remark 4.3. Observe that in Definition 4.1 it is not necessary for ν∗(h) to be strictly
positive; it is sufficient that ν∗(h) 6= 0.

The definition of GKKTP given in [6] in the scalar case, and the definition of VKKTP
given in [17] in the regular case when (Jh(x

∗) = ∅ [8]) are particular instances of
Definition 4.1 given here.

We give now a geometric form of the necessary condition of optimality for weakly
efficient solutions, which we then use to give another, more practical form.

Theorem 4.4. If x∗ ∈ A is a weakly efficient solution for (MOP), then

D(f, x∗) ∩ TA(x
∗) = ∅,

where D(f, x∗) = {h ∈ Rn : f ′(x∗)ht < 0} is the cone of the descent directions for

the objective function.

Proof. Let h ∈ TA(x
∗); then there exist ǫ1 > 0 and r(·) : [0, ǫ) → Rn such that

x∗ + δh+ r(δ) ∈ A, ∀ δ ∈ [0, ǫ1) with ‖r(δ)‖ = o(δ), as δ → 0+.

As fi is Fréchet differentiable at x∗ ∈ A, for every i = 1, · · · , p, by definition fi(x
∗ +

δh+r(δ))−fi(x
∗) = ∇fi(x

∗)(δh+r(δ))t+α(x∗; δh+r(δ))‖δh+r(δ)‖ with α(x∗; δh+
r(δ)) → 0, for all δ ∈ [0, ǫ2) and δ → 0+.



758 B. Hernández-Jiménez et al. / Characterization of Weakly Efficient ...

Taking ǫ′ < ǫ = min{ǫ1, ǫ1} and by the assumption that x∗ is a weakly efficient
solution and x∗ + δh + r(δ) ∈ A, ∀ δ ∈ [0, ǫ′), then there exists i ∈ {1, · · · , p} such
that fi(x

∗ + δh+ r(δ))− fi(x
∗) ≥ 0.

So, δ∇fi(x
∗)ht +∇fi(x

∗)r(δ)t + α(x∗; δh + r(δ))‖δh + r(δ)‖ ≥ 0; dividing by δ > 0
and taking the limit as δ → 0+,

lim
δ→0+

fi(x
∗ + δh+ r(δ))− fi(x

∗)

δ
= ∇fi(x

∗)ht ≥ 0, ∀ δ ∈ [0, ǫ′)

for some i ∈ {1, · · · , p} and then h /∈ D(f, x∗). Therefore, we obtain D(f, x∗) ∩
TA(x

∗) = ∅.

Remark 4.5. The necessary optimality condition can be interpreted as follows: if
x∗ ∈ A is a weakly efficient solution for (MOP), then the system f ′(x∗)ht < 0 has no
solution h ∈ TA(x

∗).

Considering the definitions and results given above we prove the following necessary
condition of optimality. It is not necessary for the constraints of the problem to
satisfy any constraint qualification.

Theorem 4.6. Let x∗ ∈ A be a weakly efficient solution for (MOP). Assume that

the constraints are 2-regular at x∗ on an element h ∈ H(x∗) and that f ′(x∗)ht ≦ 0.
Then x∗ is a VGKKTP with respect to h ∈ H(x∗).

Proof. Consider the following additional functions:

Ψ : Rn × Rn → R
p

, Ψ(σ) = f ′(x∗)ξt;

Gi : R
n × Rn → R, Gi(σ) = ∇gi(x

∗)ξt, i ∈ Ih(x
∗);

Ki : R
n × Rn → R, Ki(σ) = ∇gi(x

∗)ηt +
1

2
∇2gi(x

∗)[ξ]2, i ∈ Jh(x
∗),

where σ = (ξ, η) ∈ Rn × Rn.

We will choose the element h̄ ∈ Hh(x
∗) such that Jhh̄(x

∗) = Jh(x
∗), i.e.,

∇gi(x
∗)h

t
+

1

2
∇2gi(x

∗)[h]2 = 0, ∀ i ∈ Jh(x
∗).

Let σ∗ = (h, h̄) ∈ Rn × Rn.

Moreover, let ξ̄ and η̄ ∈ Rn be solutions of the system equations in Definition 3.10,
which definitely exist because the constraints are 2-regular at x∗ on h ∈ H(x∗), and

let σ̄ = (ξ̄, η̄) be one that satisfies

{
i) ∇gi(x

∗)ξ̄t ≤ 0, ∀ i ∈ Ih(x
∗),

ii) ∇gi(x
∗)η̄t +∇2gi(x

∗)[ξ̄, h] < 0, ∀ i ∈ Jh(x
∗).

Consider the following auxiliary vector optimization problem

Min Ψ(σ) = f ′(x∗)ξt

s.t: σ ∈ B = {σ ∈ Rn × Rn/Gi(σ) ≤ 0, i ∈ Ih(x
∗), Ki(σ) ≤ 0, i ∈ Jh(x

∗)}.
(MOP’)
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Obviously, σ∗ ∈ B, and all the constraints of problem (MOP’) are active at the point
σ∗. For any feasible solution σ = (ξ, η) ∈ B sufficiently close to σ∗, (σ ∈ E(σ∗) ∩B)
we have

∇gi(x
∗)ξt < 0, ∀i ∈ I(x∗)\Ih(x

∗), (5)

that is,
Iξ(x

∗) ⊆ Ih(x
∗). (6)

Also,
∇gi(x

∗)ξt ≤ 0, ∀ i ∈ Ih(x
∗), (7)

and

∇gi(x
∗)ηt +

1

2
∇2gi(x

∗)[ξ]2 < 0, ∀ i ∈ Ih(x
∗)\Jh(x

∗), (8)

and thus by (6) we have
Jξ(x

∗) ⊆ Jh(x
∗). (9)

Finally, for such σ,

∇gi(x
∗)ηt +

1

2
∇2gi(x

∗)[ξ]2 ≤ 0, ∀ i ∈ Jh(x
∗), (10)

and thus from (7) and (10) for any σ = (ξ, η) ∈ B ∩ E(σ∗), we obtain ξ ∈ H(x∗).

Moreover by condition ii) in Definition 3.10 and (9), for any such σ,

∇gi(x
∗)η̄t +∇2gi(x

∗)[ξ̄, h] < 0, ∀ i ∈ Jξ(x
∗), (11)

and it follows from the first condition in Definition 3.10 and from (6) that

∇gi(x
∗)ξ̄t ≤ 0, ∀ i ∈ Iξ(x

∗). (12)

Let us show that the constraints of the original vector problem (MOP) are 2-regular

at x∗ on ξ ∈ H(x∗). For this, we must find ξ, η ∈ Rn such that{
∇gi(x

∗)ξ̄t ≤ 0, ∀ i ∈ Iξ(x
∗),

∇gi(x
∗)η̄t +∇2gi(x

∗)[ξ̄, ξ] < 0, ∀ i ∈ Jξ(x
∗).

By (12) ξ̄ ∈ Rn is guaranteed to exist satisfying the first inequality. The second one

is also guaranteed by (11) and because σ = (ξ, η) is sufficiently close to σ∗ = (h, h).

Thus, the constraints of (MOP) are 2-regular at x∗ on ξ ∈ H(x∗). Then, by the
sufficient second-order tangency condition, Theorem 3.12, we get ξ ∈ TA(x

∗). By
Theorem 4.4, ξ is not a solution of the system f ′(x∗)ξt < 0.

Thus, the system f ′(x∗)ξt < 0 has no solution in B′ = E(σ) ∩B.

As by hypothesis f ′(x∗)ht ≦ 0 and there is no ξ ∈ B′ such that f ′(x∗)ξt < 0, then σ∗

is a local weakly efficient solution for the vector auxiliary problem (MOP’).

Applying Theorem 4.4, we have TB(σ
∗)∩D(Ψ, σ∗) = ∅. Thus, ∇Ψ(σ∗)σt = f ′(x∗)ξt <

0 has no solution σ = (ξ, η) ∈ TB(σ
∗).

We now consider any element σ = (ξ, η) ∈ Rn × Rn satisfying the conditions

∇Gi(σ
∗)σt = ∇gi(x

∗)ξt ≤ 0, ∀ i ∈ Ih(x
∗), (13)



760 B. Hernández-Jiménez et al. / Characterization of Weakly Efficient ...

∇Ki(σ
∗)σt = ∇gi(x

∗)ηt +∇2gi(x
∗)[ξ, h] ≤ 0, ∀ i ∈ Jh(x

∗). (14)

By virtue of the tangency conditions, the definition of 2-regularity and (13)–(14), for

σ∗ = (h, h), σ = (ξ, η) and σ = (ξ, η), we have

Gi(σ
∗ + sσ + s2τ σ̄) = ∇gi(x

∗)(h+ sξ + s2τ ξ̄)t

= s∇gi(x
∗)ξt + s2τ∇gi(x

∗)ξ̄t ≤ 0, ∀ i ∈ Ih(x
∗),

(15)

for any τ ∈ R+ and any s ∈ R+.

Moreover,

Ki(σ
∗ + sσ + s2τ σ̄)

= ∇gi(x
∗)(h̄+ sη + s2τ η̄)t +

1

2
∇2gi(x

∗)[h+ sξ + s2τ ξ̄]2

= ∇gi(x
∗)h̄t +

1

2
∇2gi(x

∗)[h]2 + s(∇gi(x
∗)ηt +∇2gi(x

∗)[ξ, h])

+ s2τ(∇gi(x
∗)η̄t +∇2gi(x

∗)[ξ, h]) +
s2

2
∇2gi(x

∗)[ξ]2 + o(s2)

≤ 0, ∀ i ∈ Jh(x
∗),

(16)

for any sufficiently small s ∈ R+, if the number τ > 0 is sufficiently large.

By the definition of the tangent cone, (15) and (16) imply that any σ = (ξ, η) ∈
Rn × Rn, satisfying (13) and (14) is in the cone generated by the constraints of B,
that is, σ ∈ TB(σ

∗).

As σ∗ = (h, h) ∈ B is a local weakly efficient solution of the vector auxiliary problem
(MOP’) and we have just shown that σ ∈ TB(σ

∗) satisfies (13) and (14), ∇Ψ(σ∗)σt �

0 for any σ satisfying (13) and (14).

Thus, the system 



∇Ψ(σ∗)σt < 0,

∇Gi(σ
∗)σt ≤ 0, ∀ i ∈ Ih(x

∗),

∇Ki(σ
∗)σt ≤ 0, ∀ i ∈ Jh(x

∗),

has no solution σ ∈ Rn × Rn.

By Motzkin’s Theorem [11], there exist ν∗(h) ≥ 0, ν∗(h) ∈ Rp, λ∗
i (h) ≥ 0, i ∈

Ih(x
∗), µ∗

i (h) ≥ 0, i ∈ Jh(x
∗) such that

ν∗(h)∇Ψ(σ∗) + λ∗(h)G′
Ih
(σ∗) + µ∗(h)K ′

Jh
(σ∗) = 0,

that is,

ν∗(h)[f ′(x∗) 0] + λ∗(h)[g′Ih(x
∗) 0] + µ∗(h)[g′′Jh(x

∗)[h] g′Jh(x
∗)] = [0, 0],

and so




ν∗(h)f ′(x∗) +
∑

i∈Ih(x∗)

λ∗
i (h)∇gi(x

∗) +
∑

i∈Jh(x∗)

µ∗
i (h)h∇

2gi(x
∗) = 0,

∑

i∈Jh(x∗)

µ∗
i (h)∇gi(x

∗) = 0,
(17)
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whereG′
Ih
(σ∗) = [g′Ih(x

∗) 0] ∈ Mcard(Ih(x∗))×n, K
′
Jh
(σ∗) = [g′′Jh(x∗) 0] ∈ Mcard(Ih(x∗))×n,

g′Ih(x
∗) ∈ Mcard(Ih(x∗))×n, g′Jh(x

∗) ∈ Mcard(Jh(x∗))×n and the corresponding rows of

g′Ih(x
∗) and g′Jh(x

∗) represent the first-order derivatives of gi, i ∈ Ih(x
∗) and gi, i ∈

Jh(x
∗). The rows of g′′Jh(x

∗) are the second-order derivatives of gi, i ∈ Jh(x
∗), that

is, ∇2gi(x
∗) ∈ Mn×n.

Taking λ∗
i (h) = 0, ∀ i ∈ I(x∗)\ Ih(x

∗) and using the Definition 4.1, x∗ is a VGKKTP

with respect to the element h ∈ H(x∗).

5. Examples

We show that the VKKTP do not completely characterize the set of the weakly
efficient solutions for the non-regular case.

Example 5.1. Consider the following multiobjective problem, where f(x) = (x1 +
x2 − x3, x2 − x3), x

∗ = (0, 0, 0), and the constraints are defined by the functions

g1(x) = −x1 + x2
2 + 2x2

3, g2(x) = x1 − 2x2
2 − x2

3 and g3(x) = −x2. The feasible point
x∗ is a weakly efficient solution of the problem, since it is a minimum for f1(x

∗).
The problem is non-regular at that point, but the constraints are 2-regular at x∗ on

h ∈ {(0, α, β) ∈ R3, α2 ≥ β2, α > 0}. Then H(x∗) = H(x∗)\{0} (see Example 4.4
in [6]).

We can show that x∗ is not a VKKTP, there do not exist ν ∈ R2
+ \ {0}, λ ∈ R3

+ such
that

νf ′(x∗) +
∑

i∈I(x∗)

λi∇gi(x
∗) = 0 ⇔





ν1 − λ1 + λ2 = 0,

ν1 + ν2 − λ3 = 0,

−(ν1 + ν2) = 0.

Let us prove that x∗ is a VGKKTP point with respect to some h ∈ H(x∗). Consid-

ering h ∈ H(x∗), we have

f ′(x∗)ht =

(
α− β
α− β

)
.

If α = β, h = (0, α, α), α > 0, then I(x∗) = {1, 2, 3}, Jh(x
∗) = {1, 2} and f ′(x∗)ht =

0.

The conditions for a VGKKTP in matrix form are



ν∗
1(h)

ν∗
1(h) + ν∗

2(h)
−(ν∗

1(h) + ν∗
2(h))


+ λ∗

1(h)




−1
0
0


+ λ∗

2(h)




1
0
0


+ λ∗

3(h)




0
−1
0




+ µ∗
1(h)




0
2α
4α


+ µ∗

2(h)




0
−4α
−2α


 =




0
0
0


 ,

µ∗
1(h)




−1
0
0


+ µ∗

2(h)




1
0
0


 =




0
0
0


 .
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Thus, 



ν∗
1(h) = λ∗

1(h)− λ∗
2(h),

µ∗
1(h) = µ∗

2(h) =
ν∗
1(h) + ν∗

2(h)

2α
, α > 0.

λ∗
3(h) = 0.

A solution is, ν∗(h) = (1, 0), λ∗(h) = (1, 0, 0), µ∗(h) =
(

1
2α
, 1
2α

)
, α > 0.

So x∗ is not a VKKTP; it is a VGKKTP.

Let us show by examples that the hypothesis f ′(x∗)ht ≦ 0 is necessary to ensure the
thesis of Theorem 4.6.

Example 5.2. Considering the problem in the last example, if α = −β, h =
(0, α,−α), α > 0, then I(x∗) = {1, 2, 3}, Jh(x

∗) = {1, 2} and f ′(x∗)ht =
(
2α
2α

)
> 0.

The conditions for a VGKKTP are the same as in Example 5.1, so x∗ = (0, 0, 0) is a
VGKKTP.

Likewise if α > β = 0, or if α > β > 0, then I(x∗) = {1, 2, 3}, Jh(x
∗) = ∅ and

f ′(x∗)ht > 0. In the two cases, the conditions for a VGKKTP are

ν∗(h)f ′(x∗) +
∑

i∈I(x∗)

λ∗
i (h)∇gi(x

∗) = 0,

which has no solution ν∗(h) 6= 0. Therefore, in this case (f ′(x∗)ht > 0), x∗ is not a
VGKKTP with respect to any h.

Taking the same feasible set as in Example 5.1 and constructing different vector
problems with the objective functions (x1 + x2 − x3,−x3), (x1 + x2 − x3, 2x2 − x3)
and (x1 + 2x2 − x3,−x3), we find that x∗ = (0, 0, 0) is a weakly efficient solution,
and the constraints are 2-regular at x∗ on any element h ∈ H(x∗)\{0}. We conclude
that if f ′(x∗)ht ≥ 0 or f ′(x∗)ht � 0 is verified, then we cannot ensure that x∗ is a
VGKKTP with respect to the element h. �

6. Generalized convexity and characterization of weakly efficient solu-
tions for non-regular multiobjective optimization problems

Taking into account the ideas presented in [6] and [17] we study the multiobjective
non-regular case. Moreover, we prove that the non-regular scalar case studied in [6]
and the regular multiobjective case studied in [17] are particular instances of the one
presented here. We have seen in Section 4 that a weakly efficient solution of a mul-
tiobjective problem (regular or non-regular) always satisfies a KKT type optimality
condition. However, we cannot ensure that of all the points that satisfy a KKT type
optimality condition are weakly efficient solutions, so we cannot completely charac-
terize the set of efficient solutions. Therefore to establish the converse of Theorem 4.6,
it is necessary to introduce new notions of generalized convexity, since the existing
ones in the literature are not valid for non-regular problems.

Definition 6.1. (MOP) is said to be a vector 2-KKT-pseudoinvex problem at x∗ ∈ A

with respect to an element h ∈ H(x∗), if there exist ηh : Rn × Rn → Rn and
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γh : Rn × Rn → Rn such that for all x ∈ A, the following conditions are satisfied:





f(x)− f(x∗) < 0 ⇒ ηh(x, x
∗)f ′(x∗)t < 0,

−ηh(x, x
∗)∇gi(x

∗)t ≥ 0, ∀ i ∈ I(x∗),

−∇2gi(x
∗)[ηh(x, x

∗), h]− γh(x, x
∗)∇gi(x

∗)t ≥ 0, ∀ i ∈ Jh(x
∗).

(18)

(MOP) is said to be a vector 2-KKT-pseudoinvex problem at x∗ ∈ A, if it is a vector

2-KKT-pseudoinvex problem at x∗ with respect to all h ∈ H(x∗).

(MOP) is said to be a vector 2-KKT-pseudoinvex problem on A, if it is a vector
2-KKT-pseudoinvex problem at all elements of A.

Remark 6.2. The definition of a vector KKT-pseudoinvex problem (Definition 2.7)
is a particular case of the definition of a vector 2-KKT-pseudoinvex problem (Defini-
tion 6.1) when the problem is regular at x∗ (Jh(x

∗) = ∅).

We prove now the last main result of this paper:

Theorem 6.3. Let x∗ ∈ A. Every VGKKTP with respect to some element h ∈ H(x∗)
is a weakly efficient solution for (MOP) if and only if (MOP) is a vector 2-KKT-

pseudoinvex problem on A.

Proof. Suppose that x∗ is a VGKKTP with respect to some element h ∈ H(x∗) that
is not a weakly efficient solution for the problem. Then, there exists x ∈ A such that
f(x) < f(x∗).

As x∗ is a VGKKTP with respect to h ∈ H(x∗), there are ν∗(h) ∈ Rp
+, ν∗(h) 6=

0, λ∗
i (h) ≥ 0, i ∈ I(x∗), µ∗

i (h) ≥ 0, i ∈ Jh(x
∗), such that

{
ν∗(h)f ′(x∗) + λ∗(h)g′I(x∗)(x

∗) + µ∗(h)hg′′Jh(x∗)(x
∗) = 0,

µ∗(h)g′Jh(x∗)(x
∗) = 0.

(19)

where the corresponding rows of g′I(x
∗) and g′Jh(x

∗) represent the first-order deriva-

tives of gi, i ∈ I(x∗) and gi, i ∈ Jh(x
∗). The rows of g′′Jh(x

∗) are the second-order

derivatives of gi, i ∈ Jh(x
∗).

The problem is a vector 2-KKT-pseudoinvex problem at x∗ with respect to h ∈ H(x∗),
so f(x)− f(x∗) < 0 ⇒ f ′(x∗)ηh(x, x

∗) < 0, and therefore

ηh(x, x
∗)(ν∗(h)f ′(x∗))t < 0. (20)

Multiplying (191) and (192) by ηh(x, x
∗) and γh(x, x

∗), respectively, summing and
using (192)

ηh(x, x
∗)[ν∗(h)f ′(x∗) + λ∗(h)g′I(x∗)(x

∗) + µ∗(h)hg′′Jh(x∗)(x
∗)]t = 0. (21)

Using (20) and (21), we have:

−ηh(x, x
∗)[λ∗(h)g′I(x∗)(x

∗) + µ∗(h)hg′′Jh(x∗)(x
∗)]t < 0. (22)
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As (MOP) is a vector 2-KKT-pseudoinvex problem and λ∗(h), µ∗(h) ≧ 0,

{
−ηh(x, x

∗)(λ∗(h)g′I(x∗)(x
∗))t ≥ 0,

−µ∗(h)g′′Jh(x∗)(x
∗)[ηh(x, x

∗), h] + γh(x, x
∗)(µ∗(h)g′Jh(x∗)(x

∗))t ≥ 0.
(23)

Summing the latest inequalities and by virtue of (192), we have

−ηh(x, x
∗)[λ∗(h)g′I(x∗)(x

∗) + µ∗(h)hg′′Jh(x∗)(x
∗)]t ≥ 0, (24)

which stands in contradiction to (22). Therefore, x∗ is a weakly efficient solution for
(MOP).

Conversely, we now suppose that every VGKKTP is a weakly efficient solution and
we have to prove that (MOP) is a vector 2-KKT-pseudoinvex problem.

It would be sufficient to prove that for a fixed x∗ ∈ A, if the system

{
f(x)− f(x∗) < 0

x ∈ A
(25)

has a solution, then the system





ηh(x, x
∗)f ′(x∗)t < 0,

−ηh(x, x
∗)∇gi(x

∗)t ≥ 0, ∀ i ∈ I(x∗),

−∇2gi(x
∗)[ηh(x, x

∗), h]− γh(x, x
∗)∇gi(x

∗)t ≥ 0, ∀ i ∈ Jh(x
∗).

(26)

has a solution ηh(x, x
∗), γh(x, x

∗) ∈ Rn.

If (25) has a solution, then x∗ is not a weakly efficient solution for (MOP), and

by hypothesis it is also not a VGKKTP either with respect to any h ∈ H(x∗).
Therefore, there are no ν∗(h) ∈ Rp

+, ν∗(h) 6= 0; λ∗
i (h) ∈ R+, i ∈ I(x∗); and no

µ∗
i (h) ∈ R+, i ∈ Jh(x

∗) such that the system

{
ν∗(h)f ′(x∗) + λ∗(h)g′I(x∗)(x

∗) + µ∗(h)hg′′Jh(x∗)(x
∗) = 0,

µ∗(h)g′Jh(x∗)(x
∗) = 0.

(27)

has a solution for any h ∈ H(x∗).

In matrix form,

−ν∗(h)[f ′(x∗) 0]− λ∗(h)[g′I(x
∗) 0]− µ∗(h)[hg′′Jh(x

∗) g′Jh(x
∗)] = 0

has no solution for any h ∈ H(x∗).

By Slater’s alternative theorem [11], for each h ∈ H(x∗) there exist

ηh(x
∗), γh(x

∗) ∈ Rn,
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such that the following system has a solution:





[f ′(x∗) 0]

[
ηh(x

∗)

γh(x
∗)

]
< 0,

[g′I(x
∗) 0]

[
ηh(x

∗)

γh(x
∗)

]
≦ 0,

[hg′′Jh(x
∗) g′Jh(x

∗)]

[
ηh(x

∗)

γh(x
∗)

]
≦ 0.

(28)

Equivalently, 



ηh(x
∗)f(x∗)t < 0,

−ηh(x
∗)g′I(x

∗)t ≧ 0,

−g′′Jh(x
∗)[ηh(x

∗), h] + γh(x
∗)g′Jh(x

∗)t ≧ 0

(29)

has a solution.

Therefore, for all x ∈ A with f(x) − f(x∗) < 0, there exist ηh(x, x
∗) := ηh(x

∗) ∈ Rn

and γh(x, x
∗) := γh(x

∗) ∈ Rn for each h ∈ H(x∗) such that the system (26) has a
solution. So (MOP) is a vector 2-KKT-pseudoinvex problem at x∗ with respect to

all elements h ∈ H(x∗). This proves that (MOP) is a vector 2-KKT-pseudoinvex
problem on A.

Remark 6.4.

• The previous proof provides a constructive method for finding vectors ηh(x, x
∗),

γh(x, x
∗) ∈ Rn, ∀ h ∈ H(x∗) that appear in the definition of a vector 2-KKT-

pseudoinvex problem.

• The Theorem 2.8 in [17], which generalizes Martin’s result in [12], is a particular
case of the Theorem 6.3 when the problem is regular.

Let us show with the following example that the 2-KKT-pseudoinvexity is the weakest
condition to characterize the weakly efficient solutions for a non-regular constrained
multiobjective programming problem.

Example 6.5. Consider the following multiobjective problem, where f(x) = (−x1,
−(x1 + x2)), x

∗ = (0, 0, 0), and the constraints are defined by the functions g1(x) =
−x1+x2

2+2x2
3, g2(x) = x1−2x2

2−x2
3, g3(x) = −x2, g4(x) = x1−1 and g5(x) = x2−1.

This problem is not a regular problem at the feasible point x∗ = (0, 0, 0), because
I(x∗) = {1, 2, 3}, and so the active constraints are the same as in Example 5.1.
Therefore, H̄(x∗) = {(0, α, β) : α2 ≥ β2, α > 0}.

x∗ is not a weakly efficient solution because there exists x = (1, 1, 0) another feasible
point, such that f(x) = (−1,−2) ≤ (0, 0) = f(x∗).

We prove that x∗ is a VGKKTP for all h ∈ H̄(x∗):

1. Let h = (0, α, α), α > 0, (α = β) or h = (0, α,−α), α > 0, (α = −β). Then
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Jh(x
∗) = {1, 2} and the VGKKTP conditions are:





ν∗
1(h) = λ∗

3(h) + λ∗
2(h)− λ∗

1(h),

ν∗
2(h) = −λ∗

3(h),

µ∗
1(h) = µ∗

2(h) = 0.

For example, λ∗(h) = (1, 2, 0), ν∗(h) = (1, 0) and µ∗(h) = (0, 0) is a solution for the
above system, so x∗ is a VGKKTP with respect to h = (0, α, α) or h = (0, α,−α), α >
0.

2. Let h = (0, α, β) with α > β = 0 or α > β > 0; then Jh(x
∗) = ∅, and the

VGKKTP conditions are

{
−ν∗

1(h)− ν∗
2(h) = λ∗

1(h)− λ∗
2(h),

ν∗
2(h) = −λ∗

3(h).

Taking ν∗(h) = (1, 0) and λ∗(h) = (1, 2, 0), x∗ is a VGKKTP with respect to h.

Finally, we will check that the problem is not a vector 2-KKT-pseudoinvex problem
on the feasible set, since it is not a vector 2-KKT-pseudoinvex problem at x∗ with
respect to all h ∈ H̄(x∗). By example, let x = x = (1, 1, 0) a feasible point; then
the second condition to be a 2-KKT-pseudoinvex problem at x∗ with respect to all
h ∈ H̄(x∗) is:

−(ηh1
(x, x∗), ηh2

(x, x∗), ηh3
(x, x∗))




−1 1 0
0 0 −1
0 0 0


 ≥ 0 ⇔

{
ηh1

(x, x∗) = 0,

ηh2
(x, x∗) ≥ 0.

Therefore, the first condition stays:

(−1,−2) ≧ (0, ηh2
(x, x∗), ηh3

(x, x∗))




−1 −1
0 −1
0 0


 = (0,−ηh2

(x, x∗)).

−1 ≥ 0 is a contradiction, so the problem is not a vector 2-KKT-pseudoinvex problem
on the feasible set.

7. Conclusions

Up to now, there were no results on generalized convexity notions and optimality
conditions for non-regular vector problems in the literature. Our paper covers them,
and generalizes the results and definitions in the scalar non-regular case [6]. In the
particular case that the problem is a regular one, the definitions and results existing
in the literature are particular instances of the ones presented in this paper.

In the scalar case, the definition of Generalized Karush-Kuhn-Tucker point (GKKTP)
given in [6] is a particular case of the definition of VGKKTP (Definition 4.1).

If (MOP) is a regular problem, Jh(x
∗) = ∅ [8], then we have verified that
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• The definition of a VKKTP (Definition 2.4) is a particular case of the definition
of a VGKKTP (Definition 4.1).

• The definition of a vector KKT-pseudoinvex problem (Definition 2.7) is a particu-
lar instance of the definition of a vector 2-KKT-pseudoinvex problem (Definition
6.1).

• The Theorem 2.8 in [17], which generalizes Martin’s result in [12], is a particular
case of the Theorem 6.3.

Taking into account the 2-regularity theory and the description of the tangent
cone based on the second-order derivatives proposed by Izmailov, we give a nec-
essary condition for optimality that is sufficient under a generalized convexity
notion for vector problems whose constraints do not necessarily satisfy a con-
straint qualification. We completely characterize the set of weakly efficient so-
lutions for those problems, and the generalized convexity notion defined here is
the weakest to characterize it.
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