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1. Introduction

We deal with existence and multiplicity of solutions of the problem

{
α∆2u+ β∆u ∈ ∂Ψ(u) in Ω,

Bu = 0 on ∂Ω,
(1)

where α ≥ 0, −∞ < β < αλ1, (λk is the kth eigenvalue of (−∆, H1
0 (Ω))), and the

principal λ1-eigenfunction is φ1, normalized such that
∫
Ω
φ2
1dx = 1,

∆2u =
N∑

i,j=1

∂4u

∂2xi∂2xj

.
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The boundary condition Bu = 0 on ∂Ω means that

u = 0 on ∂Ω if α = 0 and u = ∆u = 0 on ∂Ω if α > 0, (trace sense).

For each function u ∈ L2(Ω), we set

F (x, s) =

∫ s

0

f(x, t)dt and Ψ(u) =

∫

Ω

F (x, u)dx,

where f : Ω×R → R is a suitable measurable function.

The functional Ψ(u) is locally Lipschitz continuous and its subdifferential is denoted
by ∂Ψ(u), (cf. Sections 3, 5 for details).

By a solution of (1) we mean an element u ∈ H := H1
0 (Ω) ∩H2(Ω) such that

α∆2u+ β∆u ∈ ∂Ψ(u) and Bu = 0 on ∂Ω.

Our aim is to find multiple solutions of (1), under the condition

lim
|t|→+∞

f(x, t)

t
= µ1, x ∈ Ω,

where µ1 := λ1(αλ1 − β) is the first eigenvalue of the eigenvalue problem

{
α∆2u+ β∆u = µu in Ω,

Bu = 0 on ∂Ω,
(2)

(cf. Section 4 for a recall). In order to establish our main result we need some nota-
tions and definitions which, for the reader’s convenience will be recalled on Sections
3, 4, 5.

At first consider the space H endowed with the inner product

〈u, v〉H = α

∫

Ω

∆u∆v − β

∫

Ω

∇u∇v, u, v ∈ H

and corresponding norm
‖u‖2 = 〈u, u〉H .

As a consequence of the inequality below

∫

Ω

|∆u|2 ≥ λ1

∫

Ω

|∇u|2 , (3)

H is a Hilbert space, details in Section 4.

It will be shown that the solutions of (1) are the critical points (in a suitable sense)
of the energy functional

I(u) =
1

2

(
α

∫

Ω

|∆u|2 − β

∫

Ω

|∇u|2
)
−

∫

Ω

F (x, u), u ∈ H.
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In order to establish our main result we set

f(x, t) = lim inf
s→t

f(x, s), f(x, t) = lim sup
s→t

f(x, s)

and we shall assume that there are functions τ ∈ L2(Ω), F∞ ∈ L1(Ω) with F∞ ≥ 0

and Ĥ ∈ L1(Ω) satisfying the following basic conditions:

(f1)
(i) max{

∣∣f(x, t)− µ1t
∣∣ ,
∣∣f(x, t)− µ1t

∣∣} |t|→∞
−→ 0 a.e. x ∈ Ω,

(ii) |f(x, t)− µ1t| ≤ τ(x) a.e. x ∈ Ω,

(f2)
(i)

(
F (x, t)− µ1

2
t2
) |t|→∞
−→ F∞(x) a.e. x ∈ Ω,

(ii) |F (x, t)| ≤ µ1

2
t2 + Ĥ(x) a.e. x ∈ Ω.

Our main result is

Theorem 1.1. Assume that f : Ω ×R → R is measurable, f(x, 0) = 0 a.e. x ∈ Ω
and satisfies (f1)(i)(ii), (f2)(i)(ii). Assume, in addition, the conditions:

There exist m ∈ L∞(Ω), δ > 0, 0 ≤ m < µ1, m 6≡ 0 such that,

(f3)

(i) F (x, t) ≤
µ2

2
t2, a.e. x ∈ Ω, t ∈ R, where µ2 = λ2(αλ2 − β),

(ii) F (x, t) ≤
m(x)t2

2
, a.e. x ∈ Ω, |t| ≤ δ.

There exist numbers t± ∈ R with t− < 0 < t+ such that

(f4)

∫

Ω

(F (x, t±φ1)− F∞(x)) > µ1
(t±)

2

2
.

Then (1) admits at least three non-trivial solutions, say u−, u+, u0 ∈ H satisfying

{
α∆2u+ β∆u ∈ [f(x, u(x)), f(x, u(x))] a.e. x ∈ Ω,

Bu = 0 on ∂Ω (trace sense),

I(u+) = min

{
I(v) | v ∈ H,

∫

Ω

vφ1 > 0

}
< 0,

I(u−) = min

{
I(v) | v ∈ H,

∫

Ω

vφ1 < 0

}
< 0,

and
I(u0) = inf

γ∈Γ
max
0≤t≤1

I(γ(t)) > 0,

where
Γ = {γ ∈ C([0, 1], H) | γ(0) = 0, γ(1) = t+φ1}.
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2. Background

In [1] Benci, Bartolo and Fortunato proved that the problem

{
−∆u− λku+ g(u) = 0 in Ω,

u = 0 on ∂Ω,

where λk, (k ≥ 1) is an eigenvalue of (−∆, H1
0 (Ω)), admits a solution if g is a smooth

function such that

g(t)
|t|→∞
−→ 0, G(t) ≤ G∞, t ∈ R, g′(0) = sup

t∈R
g′(t).

In [5], Goncalves and Miyagaki improved the result above by requiring g to be con-
tinuous and to satisfy the conditions

g(t)
|t|→∞
−→ 0, G(t)

|t|→∞
−→ G∞ ∈ R,

and one of the following sets of conditions,

m < 0, 2G(t) ≤ mt2, t ∈ R, G∞ ≤ 0,

m > 0, 2G(t) ≤ mt2, t ∈ R, G∞ ≥ 0,

for some number m.

Goncalves and Miyagaki in [6] and Costa and Silva in [3] showed results on existence
of two solutions.

Later on, in [7], Goncalves and Miyagaki proved that under the set of conditions

g(t)
|t|→∞
−→ 0, G(t)

|t|→∞
−→ 0

2G(t) ≥ mt2, |t| ≤ δ for some δ > 0 and m ∈ (0, λ1),

2G(t) ≥ (λ1 − λ2)t
2, t ∈ R,

∫

Ω

(G(t±φ1)−G∞) < 0, for some t− < 0 < t+.

the problem

−∆u− λ1u+ g(u) = 0 in Ω, u ∈ H1
0 (Ω)

admits at least three non-trivial solutions.

Such result was extended for multivalued quasilinear equations by Kourogenis and
Papageorgiou [11].

We refer the reader to Filipakis and Papageorgiou [13], Kyritsi and Papageorgiou
[14], Halidias and Naniewicz [15], Fiacca, Matzakos, Papageorgiou and Servadei [16],
Liu and Guo [17] and their references for further related results.
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3. Abstract Framework

In this section we recall, for the reader’s convenience, some definitions and bassic
results on the critical point theory of locally Lipschitz continuous functionals as de-
veloped by Clarke [4, 9], Chang [10].

LetX be a real Banach space. A functional I : X → R is locally Lipschitz continuous,
I ∈ Liploc(X,R) for short, if given u ∈ X there is an open neighborhood V := Vu ⊂ X
and some constant K = KV > 0 such that

|I(v2)− I(v1)| ≤ K ‖v2 − v1‖ , vi ∈ V, i = 1, 2.

The directional derivative of I at u in the direction of v ∈ X is defined by

I0(u; v) = lim sup
h→0, λ↓0

I(u+ h+ λv)− I(u+ h)

λ
.

One shows that I0(u; .) is subadditive and positively homogeneous in the sense that

I0(u; v1 + v2) ≤ I0(u; v1) + I0(u; v2) and I0(u;λv) = λI0(u; v),

for u, v, v1, v2 ∈ X and λ > 0.

Using those facts there is some K = Ku > 0 such that

∣∣I0(u; v1)− I0(u; v2)
∣∣ ≤ I0(u; v1 − v2)

≤ K ‖v1 − v2‖ .

Hence I0(u; .) is continuous, convex and its subdifferential at z ∈ X is given by

∂I0(u; z) =
{
µ ∈ X∗; I0(u; v) ≥ I0(u; z) + 〈µ, v − z〉, v ∈ X

}
,

where 〈., .〉 is the duality pairing between X∗ and X. The generalized gradient of I
at u is the set

∂I(u) =
{
µ ∈ X∗; 〈µ, v〉 ≤ I0(u; v), v ∈ X

}
.

Since I0(u; 0) = 0, ∂I(u) is the subdifferential of I0(u; 0).

A few definitions and properties will be recalled below.

∂I(u) ⊂ X∗ is convex, non-empty and weak*-compact,

m(u) = min {‖µ‖X∗ ;µ ∈ ∂I(u)} ,

and
∂I(u) = {I ′(u)} , if I ∈ C1(X,R).

A critical point of I is an element u0 ∈ X such that 0 ∈ ∂I(u0) and a critical value
of I is a real number c such that I(u0) = c for some critical point u0 ∈ X.

If an element u0 ∈ X is a local minimum of I ∈ Liploc(X;R) then it is a critical point
of I.
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For each u, v ∈ X,
I0(u; v) = max{〈µ, v〉 | µ ∈ ∂I(u)}.

Let C ⊂ X be non-empty set. The support of C at ξ ∈ X∗ is defined by

σ(C, ξ) = sup{〈ξ, x〉 | x ∈ C}.

If X is a reflexive space and Σ ⊂ X∗, the support of Σ at v ∈ X can be defined of
the following way

σ(Σ, v) = sup{〈ξ, v〉 | ξ ∈ Σ.}, v ∈ X.

The support function σ defined enjoys the following properties:

S1) For each x0 ∈ X
σ({x0}, ξ) = 〈ξ, x0〉, ξ ∈ X∗.

S2) If B ⊂ X, B∗ ⊂ X∗ are the unit balls, then

σ(B, ξ) = ||ξ||X∗ , σ(B∗, v) = ||v||X , ξ ∈ X∗, v ∈ X.

S3) If C,D ⊂ X are non-empty, closed and convex and Σ,∆ ⊂ X∗ are non-empty,
weak*-closed and convex then

(i) C ⊂ D ⇔ σ(C, ξ) ≤ σ(D, ξ), ξ ∈ X∗,

(ii) Σ ⊂ ∆ ⇔ σ(Σ, v) ≤ σ(∆, v), v ∈ X.

S4) Given ξ ∈ X∗ and w ∈ X,
(i) σ(C1 + C2, ξ) = σ(C1, ξ) + σ(C2, ξ);
(ii) σ(Σ1 + Σ2, w) = σ(Σ1, w) + σ(Σ2, w);
(iii) σ(λC, ξ) = λσ(C, ξ), λ > 0;
(iv) σ(λΣ, w) = λσ(Σ, w), λ > 0,

where Ci ⊂ X and Σi ⊂ X∗.

S5) If X is reflexive, I0(x; v) can be viewed as the support function of ∂I(x) ⊂ X∗.

Some definitions and critical point theorems will be recalled below.

Let I ∈ Liploc(X,R) and assume that C ⊂ X is convex c is a real number. The
non-smooth functional I satisfies the (PS)c,C condition if any sequence (un) ⊂ C
such that

I(un)
n→∞
−→ c and m(un)

n→∞
−→ 0,

admits a subsequence which converges to some point of C.

The theorem below improves results by Mizoguchi [18], Goncalves & Miyagaki [7].

Theorem 3.1. Let I : X → R be locally Lipschitz continuous, bounded from below.
Assume that X is reflexive and C ⊂ X is a convex, closed set such that int(C) 6= ∅.
Set

c = inf
u∈C

I(u).
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Assume in addition that

I(ũ) < inf
∂C

I(u) for some ũ ∈ int(C). (4)

Then I admits a local minimum u ∈ int(C) if

I satisfies (PS)c,C .

Proof. Let
d(x, y) = ‖x− y‖ , x, y ∈ C.

Then C = (C, d) is a complete metric space. Let ǫ > 0. By Ekeland’s Variational
Principle, (cf. Ekeland [21]), there is uǫ ∈ C such that both

I(uǫ) < inf
u∈C

I(u) + ǫ (5)

and
I(uǫ) < I(u) + ǫ ‖u− uǫ‖ , u 6= uǫ, u ∈ C. (6)

By (4), there is ǫ > 0 such that

0 < ǫ < inf
u∈∂C

I(u)− inf
u∈int(C)

I(u). (7)

By (5) and (7) we have

I(uǫ) < inf
u∈C

I(u) + ǫ

≤ inf
u∈int(C)

I(u) + ǫ

< inf
u∈∂C

I(u),

showing that uǫ ∈ int(C). By (6) the functional

J(u) = I(u) + ǫ ‖u− uǫ‖ , u ∈ C,

has a local minimum say uǫ ∈ int(C). Thus,

(J(uǫ + λv)− J(uǫ))/λ ≥ 0, v ∈ X, λ > 0, small.

Hence,
(I(uǫ + λv)− I(uǫ)) /λ+ ǫ ‖v‖ ≥ 0,

so that
lim sup
λ→0+

(I(uǫ + λv)− I(uǫ)) /λ+ ǫ ‖v‖ ≥ 0.

Thus
I0(uǫ; v) + ǫ ‖v‖ ≥ 0, v ∈ X. (8)

Using the reflexivity again,

I0(uǫ; v) + ǫ ‖v‖ = σ(∂I(uǫ), v) + ǫσ(B∗, v), v ∈ X,
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where
B∗ = {ξ ∈ X∗ | ‖ξ‖X∗ ≤ 1}.

It follows by S4(ii)–(iv) that

I0(uǫ; v) + ǫ ‖v‖ = σ(∂I(uǫ) + ǫB∗, v), v ∈ X,

and by (8),
σ(∂I(uǫ) + ǫB∗, v) ≥ σ({0}, v), v ∈ X.

Since ∂I(uǫ) + ǫB∗ and {0} are convex, non-empty, weak*-closed subsets of X∗ we
have by S3,

{0} ⊂ ∂I(uǫ) + ǫB∗.

So there are µǫ ∈ ∂I(uǫ) and η ∈ B∗ such that

µǫ + ǫη = 0

and so
m(uǫ) = min {‖µ‖X∗ ;µ ∈ ∂I(uǫ)} ≤ ‖µǫ‖H∗ ≤ ǫ.

Thus
I(uǫ)

ǫ→0
−→ c.

Setting ǫ = 1
n
, we have

m(un)
n→∞
−→ 0 and I(un)

n→∞
−→ c.

If I satisfies the (PS)c,C condition and C is closed and convex, we have by eventually
passing to a subsequence,

un
n→∞
−→ u in X,

for some u ∈ int(C).

So
I(un)

n→∞
−→ I(u) and I(u) = min

v∈C
I(v).

We state below the Mountain Pass Theorem for locally Lipschitz continuous func-
tionals, (cf. Ambrosetti and Rabinowitz [20], Chang [19]).

Theorem 3.2. Let I ∈ Liploc(X,R) be such that I(0) = 0. Assume that there exist
ρ, r > 0 and e ∈ X with ‖e‖ > r such that

I(e) ≤ 0 and inf
‖u‖=r

I(u) ≥ ρ.

Set
c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)),

where
Γ = {γ ∈ C([0, 1], X) | γ(0) = 0 and γ(1) = e} .

Then c ≥ ρ and there is a sequence (un) ⊂ X such that

I(un)
n→∞
−→ c and m(un)

n→∞
−→ 0.
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4. Some properties of the operator Lu = α∆2u+ β∆u

At first let us show (3). Indeed, by the generalized Green’s Identity,

∫

Ω

∇u∇v = −

∫

Ω

u∆v, u, v ∈ H,

which gives ∫

Ω

|∇u|2 ≤ ‖u‖L2(Ω) ‖∆u‖L2(Ω) .

Applying the standard inequality below (cf. Gupta and Kwong [8, p. 474]),

λ1
2

∫

Ω

u2 ≤

∫

Ω

|∆u|2

we get (3).

Using (3) and −∞ < β < αλ1, it follows easily that

〈u, v〉H = α

∫

Ω

∆u∆v − β

∫

Ω

∇u∇v, u, v ∈ H

defines an inner product in H and

‖u‖2 = 〈u, u〉H

is its corresponding norm. Now, standard arguments can be applied to show that H
is a Hilbert space.

By minimization technique one shows easily that for each ξ ∈ L2(Ω) the problem

{
α∆2u+ β∆u = ξ in Ω

Bu = 0 on ∂Ω,
(9)

admits a solution in H, which is in fact unique. A solution operator

S : L2(Ω) → H

ξ 7→ S(ξ) = u

is well defined and satisfies

‖S(ξ)‖ ≤ c ‖ξ‖L2(Ω) , ξ ∈ L2(Ω), for some c > 0,

with S : L2(Ω) → L2(Ω) being compact and symmetric operator.

As a consequence, the eigenvalues of S form a sequence labeled (µn) and actually

µn

n→∞
−→ 0, µn > 0.

It is an easy matter to check that the eigenvalues of (2) are given by µn = 1/µn and
the following properties hold true,

(10) µn = λn(αλn − β),
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where the corresponding eigenfunctions are the (−∆, H1
0 (Ω)) eigenfunctions φn. From

definitions of µ1 and µ2, a direct computation leads to the following inequalities

(11) µ1

∫

Ω

|v|2 ≤ α

∫

Ω

|∆v|2 − β

∫

Ω

|∇v|2 , v ∈ H,

and

(12) µ2

∫

Ω

|w|2 ≤ α

∫

Ω

|∆w|2 − β

∫

Ω

|∇w|2 , w ∈ H,

∫

Ω

wφ1 = 0.

5. Liploc Functionals and Results on Multivalued Equations

The result below will be used in the sequence and the reader is referred to Chang
[10], Costa and Goncalves [2] for further details.

Theorem 5.1. Assume that f : Ω × R → R is measurable satisfying (f1)(ii) and
f, f : Ω×R → R are N-measurable, that is, for each u ∈ L2(Ω), we have

(f5) x 7→ f(x, u(x)) and x 7→ f(x, u(x)) are Lebesgue measurable.

If

Ψ(u) =

∫

Ω

F (x, u), u ∈ L2(Ω)

then Ψ : L2(Ω) → R is Liploc and

∂Ψ(u) ⊂ [f(x, u(x)), f(x, u(x))], a.e. x ∈ Ω.

Moreover, setting Ψ̂ ≡ Ψ |H we have

∂Ψ̂(u) ⊂ ∂Ψ(u), u ∈ H.

Proposition 5.2. Assume (f1)(ii) and (f5) and set

Φ(u) =
1

2
‖u‖2 −

∫

Ω

F (x, u), u ∈ H.

If u0 ∈ H is a critical point of Φ, then u0 ∈ H4(Ω) and

{
α∆2u0(x) + β∆u0(x) ∈ [f(x, u0(x)), f(x, u0(x))] a.e. x ∈ Ω

Bu0 = 0 on ∂Ω, (trace sense).

Proof. Let

Q(u) =
1

2
‖u‖2 , u ∈ H.

Then
Φ(u) = Q(u)− Ψ̂(u), u ∈ H.
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Since Q is a C1−functional, we derive

0 ∈ {Q′(u0)} − ∂Ψ̂(u0)

and so
0 ≡ Q′(u0)− µ0,

for some
µ0 ∈ ∂Ψ̂(u0).

It follows that
〈0, v〉 = 〈Q′(u0), v〉H − 〈µ0, v〉H , v ∈ H.

By Theorem 5.1, µ0 = ξ for some ξ ∈ L2(Ω),

0 = α

∫

Ω

∆u0∆v − β

∫

Ω

∇u0∇v −

∫

Ω

ξv, v ∈ H (13)

and
ξ(x) ∈ [f(x, u0(x)), f(x, u0(x))] a.e. x ∈ Ω.

By the elliptic regularity theory u0 ∈ H4(Ω) and

α∆2u0 + β∆u0 = ξ a.e. in Ω,

so that
α∆2u0(x) + β∆u0(x) ∈ [f(x, u0(x)), f(x, u0(x))] a.e. x ∈ Ω.

In order to show that

Bu0 = 0 on ∂Ω in sense of trace,

we assume that α > 0, (the other case is standard).

Since

α

∫

Ω

∆u0∆v − β

∫

Ω

∇u0∇v =

∫

Ω

ξv, v ∈ H,

and there is an only w ∈ H such that

∆w = ξ in Ω, w = 0 on ∂Ω.

From the Generalized Green Identity, we derive

α

∫

Ω

∆u0∆v + β

∫

Ω

u0∆v =

∫

Ω

w∆v.

Thus ∫

Ω

(
∆u0 −

1

α
w +

β

α
u0

)
∆v = 0.

Since for each h ∈ L2(Ω), there is an only v ∈ H such that

∆v = h in Ω, v = 0 on ∂Ω
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we have ∫

Ω

(
∆u0 −

1

α
w +

β

α
u0

)
h = 0, h ∈ L2(Ω).

Thus,

∆u0 =
1

α
w −

β

α
u0 ∈ H1

0 (Ω),

showing that
∆u0 = 0 on ∂Ω, (trace sense).

6. Proof of Theorem 1.1

Consider the energy functional associated to (1),

I(u) =
1

2
‖u‖2 −

∫

Ω

F (x, u(x))dx, u ∈ H.

By Theorem 5.1 and Proposition 5.2, I ∈ Liploc(H) and its critical points are solutions
of (1).

In the sequel, we shall establish a few technical lemmas involving the functional I.

Lemma 6.1. Let C ⊂ H be closed, convex and non-empty. Assume (f1)(i)(ii) and
(f2)(i)(ii). If, in addition, c 6= −

∫
Ω
F∞ then

I satisfies (PS)c,C .

Proof. Let (un) ⊂ C be a sequence such that

I(un)
n→+∞
−→ c and m(un)

n→∞
−→ 0,

where
m(un) = min {‖µ‖H′ | µ ∈ ∂I(un)} .

Hereafter, we denotes by µn ∈ ∂I(un) the linear functional that verifies the equality
m(un) = ‖µn‖H′ . Repeating the same arguments used in the proof of Proposition
5.2, there is vn ∈ ∂Ψ(un) such that

〈µn, φ〉 = α

∫

Ω

∆un∆φ− β

∫

Ω

∇un∇φ−

∫

Ω

vnφ, ∀φ ∈ H

and
vn(x) ∈ [f(x, u(x)), f(x, u(x))], a.e. x ∈ Ω.

Combining these information with (f1)(ii), we reach

|vn(x)| ≤ µ1|un(x)|+ τ(x) a.e. x ∈ Ω. (14)

Claim 1. {un} is bounded in H.
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Assume for while Claim 1 has been shown, we can suppose without loss of generality
that there is u ∈ C such that

un ⇀ u in H.

The Sobolev embedding combined with (14) implies that

∫

Ω

vn(un − u) → 0 as n → +∞.

From this, we can conclude that

α

∫

Ω

∆un∆(un − u)− β

∫

Ω

∇un∇(un − u) → 0.

Then (
α

∫

Ω

|∆un|
2 − β

∫

Ω

|∇un|
2

)
→

(
α

∫

Ω

|∆u|2 − β

∫

Ω

|∇u|2
)
,

which shows that

un → u in H.

Thus {un} satisfies (PS)c,C .

Verification of Claim 1. Set un = tnφ1 + wn, where
∫
Ω
wnφ1 = 0.

Let ǫ > 0. Using the notations in the proof of Proposition 5.2,

〈µn, wn〉 = ‖wn‖
2 −

∫

Ω

vnwn,

we have, by (11) and (12),

ǫ ‖wn‖ ≥‖wn‖
2 −

∫

Ω

vnwn,

= ‖wn‖
2 −

∫

Ω

(vnwn − µ1unwn)− µ1

∫

Ω

unwn

≥ ‖wn‖
2 − C ‖τ‖L2(Ω) ‖wn‖ −

µ1

µ2

‖wn‖
2

=

(
1−

µ1

µ2

)
‖wn‖

2 − C ‖τ‖L2(Ω) ‖wn‖ .

for some constant C > 0 and n large enough, showing that wn is bounded.

Now, assume by the way of contradiction that

‖un‖ −→ ∞.

From
un

‖un‖
=

tnφ1

‖un‖
+

wn

‖un‖
,
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we have

1 =

(
t2n ‖φ1‖

2 + ‖wn‖
2

‖un‖
2

) 1

2

,

and passing to the limit, we obtain

‖tnφ1‖

‖un‖
−→ 1.

Notice that
tnφ1

‖un‖
= −

wn

‖un‖
+

un

‖un‖
⇀ û

for some û ∈ H. Thus
tnφ1

‖un‖
→ û in H.

Notice that
û = t0φ1 for some t0 ∈ R.

Hence
un

‖un‖
−→ t0φ1,

and so
|un(x)| → ∞ a.e. x ∈ Ω.

For n large enough and ǫ > 0, we have

ǫ ‖wn‖ ≥

(
1−

µ1

µ2

)
‖wn‖

2 −

∫

Ω

(vn − µ1un)wn

≥

(
1−

µ1

µ2

)
‖wn‖

2 −

(∫

Ω

|vn − µ1un|
2

) 1

2

‖wn‖L2(Ω) ,

from where it follows that

(
ǫ+ C

(∫

Ω

|vn − µ1un|
2

) 1

2

)
‖wn‖ ≥

(
1−

µ1

µ2

)
‖wn‖

2 . (15)

By Theorem 5.1,

vn(x) ∈ [f(x, un(x)), f(x, un(x))] a.e. x ∈ Ω

which gives

f(x, un(x))− µ1un(x) ≤ vn(x)− µ1un(x) ≤ f(x, un(x))− µ1un(x) a.e. x ∈ Ω

and consequently

|vn(x)− µ1un(x)| ≤ max{
∣∣f(x, un(x))− µ1un(x)

∣∣ ,
∣∣f(x, un(x))− µ1un(x)

∣∣}
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By (f1)(i)(ii), there is h ∈ L2(Ω) such that

|vn(x)− µ1un(x)|
2 n→∞

−→ 0 and |vn(x)− µ1un(x)|
2 ≤ τ 2(x) a.e. x ∈ Ω.

Passing to the limit in (15) we have

2ǫ ‖wn‖ ≥

(
1−

µ1

µ2

)
‖wn‖

2

so that wn → 0 in H. Now, a straightforward computation yields

I(un) =
1

2
‖wn‖

2 −

∫

Ω

(
F (x, un)−

µ1

2
|un|

2
)
−

µ1

2

∫

Ω

|un|
2 .

Hence, Passing to the limit in the above sentence, we get c = −
∫
Ω
F∞(x), which is a

contradiction. This way, the verification of Claim 1 is finished, and so, the Lemma
6.1 is proved.

Lemma 6.2. Assume that f : Ω ×R → R is measurable. If the conditions (f2)(ii)
and

(f6) There exist two not identically zero functions m,Fσ ∈ L∞(Ω) with ‖m‖∞ < µ1,
σ ∈ (2, 2N

N−2
) if N ≥ 3 and σ ∈ (2,∞) if N ≤ 2, satisfying

F (x, t) ≤ min

{
µ2

2
,
m(x)

2
+ Fσ(x) |t|

σ−2

}
t2, a.e. x ∈ Ω, t ∈ R

hold, then there are a, b > 0 such that

I(u) ≥ a ‖u‖2 − b ‖u‖σ , u ∈ H.

Proof. From (f6), it follows that

I(u) ≥
1

2
‖u‖2 −

1

2

∫

Ω

mu2 −

∫

Ω

Fσ |u|
σ

≥
1

2
‖u‖2 −

1

2
‖m‖∞

∫

Ω

u2 − ‖Fσ‖∞

∫

Ω

|u|σ ,

which gives

I(u) ≥
1

2

(
1−

‖m‖∞
µ1

)
‖u‖2 − C ‖Fσ‖∞ ‖u‖σ , ∀u ∈ H.

The Lemma is proved by setting

a =
1

2

(
1−

‖m‖∞
µ1

)
and b = C ‖Fσ‖∞ .
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Existence of u+ and u−. Consider the closed, convex subsets of H,

C+ =

{
tφ1 + w ∈ H | t ≥ 0,

∫

Ω

wφ1 = 0

}

and

C− =

{
tφ1 + w ∈ H | t ≤ 0,

∫

Ω

wφ1 = 0

}
.

Notice that
int(C+), int(C−) 6= ∅

and

∂C+ = ∂C− =

{
w ∈ H |

∫

Ω

wφ1 = 0

}
.

Using (f3) we have for each w ∈ ∂C+,

I(w) =
1

2
‖w‖2 −

∫

Ω

F (x,w)

≥
1

2
‖w‖2 −

µ2

2

∫

Ω

w2 ≥ 0.

Using (f4), setting
u+ = t+φ1 ∈ C+,

where t+ is given by (f4), we have

I(u+) =
1

2
‖u+‖

2 −

∫

Ω

F (x, u+)

<
1

2
‖u+‖

2 −

∫

Ω

F∞ −
µ1

2

∫

Ω

(u+)
2

= −

∫

Ω

F∞ ≤ 0.

Hence,
I(u+) < 0 ≤ inf

∂C+
I(u).

On the other hand, we get by (f2)(ii)

I(tφ1 + w) =
1

2
t2 ‖φ1‖

2 +
1

2
‖w‖2 −

∫

Ω

F (x, tφ1 + w),

≥
1

2
t2 ‖φ1‖

2 +
1

2
‖w‖2 −

µ1t
2

2

∫

Ω

φ2
1 −

µ1

2

∫

Ω

w2 −
∥∥∥Ĥ
∥∥∥
L1(Ω)

≥
1

2

(
1−

µ1

µ2

)
‖w‖2 −

∥∥∥Ĥ
∥∥∥
L1(Ω)

.

for u ∈ C+ and t ≥ 0.



C. O. Alves, J. Abrantes Santos, J. V. A. Goncalves / On Multiple Solutions ... 643

As a consequence,
I is bounded from below in C+,

and so
c+ = inf

C+
I > +∞.

Since

I(u+) < −

∫

Ω

F∞(x)dx

we have

c+ <

∫

Ω

F∞(x)dx,

and therefore, it follows by Lemma 6.1, that

I satisfies (PS)c+,C+ .

By Theorem 3.1 I admits a local minimum u+ ∈ int(C+) and in fact

I(u+) = c+ < 0.

In a similar way one shows that there is a local minimum of I, u− ∈ int(C−) such
that

I(u−) = c− < 0.

Existence of u0. Setting ‖u‖ = ρ, ρ > 0, we have by Lemma 6.2,

I(u) ≥ aρ2 − bρσ, u ∈ H.

Now, pick α > 0 such that

I(u) ≥ aρ2 − bρσ ≥ α > 0,

for ρ > 0 small enough.

Using I(0) = 0 and (f4),

I(t+φ1) < −

∫

Ω

F∞dx ≤ 0.

Setting e+ = t+φ1 we have

max{I(0), I(e+)} ≤ 0 < α < inf
‖u‖=ρ

I(u).

Since

c0 := inf
γ∈Γ

max
0≤t≤1

I(γ(t)) > α ≥ 0 ≥ −

∫

Ω

F∞,

I satisfies (PS)c0,H , (cf. Lemma 6.1).

By Theorem 3.2, c0 is a critical value of I and as a consequence there is a critical
point u0 ∈ H such that

I(u0) = c0.

This ends the proof of Theorem 1.1.
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