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We consider the Marcinkiewicz function space MW and its subspace of order continuous elements
M

0

W
. We provide criteria for a function in the unit ball of MW or M0

W
to be a smooth point.

The description of smooth points in specific spaces have been of interest to many
authors since the Banach spaces were born [1]. It is a part of basic knowledge of the
isometric structure of Banach spaces with many applications to best approximation,
isometries, optimization, projections or local geometry [4, 8, 10, 14, 15]. Let us
mention for instance that characterization of smooth points in Lorentz spaces have
been done in [4], in Orlicz spaces in [5], in Musielak-Orlicz spaces in [3], in Orlicz-
Lorentz spaces in [13], or in the Lorentz spaces Γp,w in [6]. The smooth points in
both Lorentz and Marcinkiewicz sequence spaces with decreasing weight have been
studied in [10].

In this note, our goal is to characterize the smooth points of the unit ball in Marcinkie-
wicz function spaces. We will consider here only the case of a decreasing weight
function.

Marcinkiewicz and Lorentz spaces play an important role in the theory of Banach
spaces. They are key objects in the interpolation theory of linear operators [2, 12].
Marcinkiewicz spaces go back to the theorem on weak type operators [14, Th. 2.b.15]
originally due to J. Marcinkiewicz in the 1930-ties.

We will start by agreeing on some notations. Let L0 be the set of all real-valued
| · |-measurable functions defined on (0,∞), where | · | is the Lebesgue measure on
R. The distribution function df of a function f ∈ L0 is given by df (λ) = |{t > 0 :
|f(t)| > λ}|, for all λ ≥ 0. For f ∈ L0 we define its decreasing rearrangement as
f ∗(t) = inf{s > 0 : df (s) ≤ t}, t > 0. The functions df and f ∗ are right-continuous
on (0,∞). As usual by f ∧ g we denote the essential minimum of f, g ∈ L0.

A positive decreasing function w ∈ L0 is called the weight function whenever

limt→0+ w(t) = ∞, limt→∞w(t) = 0, W (t) =
∫ t

0
w < ∞ for all t > 0, and W (∞) =

∫∞

0
w = ∞.
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The Marcinkiewicz space MW [9, 12] is the space of all functions f ∈ L0 satisfying

‖f‖W = sup
t>0

∫ t

0
f ∗(s)ds

W (t)
<∞.

We also define

M0
W =

{

f ∈MW : lim
t→0+,∞

∫ t

0
f ∗

W (t)
= 0

}

.

The space MW equipped with the norm ‖ · ‖W is a Banach space. The subspace M0
W

is closed in MW and it is the subspace of all order continuous elements of MW which
also coincides with the closure of all bounded functions of finite measure supports [9,
Theorem 2.3]. It is also well known that M0

W is an M-ideal in MW [9, Theorem 2.4].

Recall that the Lorentz space Λ1,w is a subset of L0 such that

‖f‖1,w :=

∫ ∞

0

f ∗w =

∫ ∞

0

f ∗(t)w(t)dt <∞.

The space (Λ1,w, ‖ · ‖1,w) is isomorphically isometric to the dual of M0
W [12, Theorem

5.4]. The functionals on MW induced by elements from Λ1,w are called regular, while
the functionals that vanish on M0

W are called singular. By the M -ideal property of
M0

W in MW , every functional φ ∈ (MW )∗ has a unique representation φ = ψ + ξ,
where ψ ∈ Λ1,w, ξ is singular, and ‖φ‖ = ‖ψ‖1,w + ‖ξ‖.

Given a Banach space (X, ‖ · ‖), we will denote by SX and BX respectively, the unit
sphere and the unit ball of the space. Recall that x ∈ BX is a smooth point of the
ball BX if x has a unique norm-one supporting functional, that is there is a unique
φ ∈ X∗ such that φ(x) = ‖x‖ or alternately ‖φ‖ = φ(x) = 1.

The next two theorems are our main results characterizing smooth points in Marcin-
kiewicz spaces M0

W and MW .

Theorem 1. Let f ∈ SM0
W
. Then f is a smooth point in M0

W if and only if there

exists a unique 0 < a <∞ such that

1 = ‖f‖W =

∫ a

0
f ∗

W (a)
. (1)

Theorem 2. A function f ∈ SMW
is a smooth point in MW if and only if

lim sup
t→0

∫ t

0
f ∗

W (t)
< 1 and lim sup

t→∞

∫ t

0
f ∗

W (t)
< 1,

and there exists a unique a ∈ (0,∞) such that

∫ a

0
f ∗

W (a)
= 1.

In order to prove these theorems we need several lemmas and propositions.
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Lemma 3. Let f ∈ SMW
. If

lim sup
t→0

∫ t

0
f ∗

W (t)
= 1 or lim sup

t→∞

∫ t

0
f ∗

W (t)
= 1

then there exists a decomposition f = f1 + f2 such that |f1| ∧ |f2| = 0 and ‖f1‖W =
‖f2‖W = 1.

Proof. Case 1. Assume that tn → ∞ and limn→∞

∫

tn

0
f∗

W (tn)
= 1. Without loss of

generality we can assume that (tn) is an increasing sequence.

We claim that there exist a sequence of sets (Fn) and a sequence of positive numbers
(sn) such that Fi ∩ Fj = ∅, for all i 6= j, |Fn| ≤ sn and for all n ∈ N,

∫

Fn
|f |

W (sn)
≥ 1−

1

2n
.

By [2, Lemma 2.5], we can find a sequence of sets (En) such that En ⊂ En+1, |En| = tn
and

∫ tn
0
f ∗ =

∫

En
|f |. By the assumption, there exists n1 ≥ 1 such that

∫

En1

|f |

W (tn1
)
=

∫ tn1

0
f ∗

W (tn1
)
≥ 1−

1

2
.

Set F1 = En1
and s1 = tn1

. Then, for n ≥ n1,

∫ tn
0
f ∗

W (tn)
=

∫

En1

|f |+
∫

En\En1

|f |

W (tn)
=

∫

En1

|f |

W (tn)
+

∫

En\En1

|f |

W (tn)
,

so in view of W (tn) → ∞ we have

1 = lim
n→∞

∫ tn
0
f ∗

W (tn)
= lim

n→∞

∫

En\F1
|f |

W (tn)
.

Therefore there exists n2 > n1 such that

∫

En2
\F1

|f |

W (tn2
)

≥ 1−
1

22
.

Let now F2 = En2
\ En1

and s2 = tn2
. So F2 ∩ F1 = ∅,

∫

F2
|f |

W (s2)
≥ 1−

1

22
and |F2| ≤ |En2

| = tn2
= s2.

Proceeding further by induction we shall find a subsequence (nk) ∈ N such that

∫

Enk+1
\Enk

|f |

W (tnk
)

≥ 1−
1

2k
, k ∈ N.
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Setting Fk = Enk+1
\ Enk

and sk = tnk
we get the claim.

Now define the sets

G1 =

(

∞
⋃

n=1

F2n−1

)

∪

(

R+ \
∞
⋃

n=1

Fn

)

and G2 =
∞
⋃

n=1

F2n.

Set f1 = fχG1
and f2 = fχG2

. Then for all n ∈ N, in view of the claim and the
Hardy-Littlewood inequality,

1−
1

22n−1
≤

∫

F2n−1
|f |

W (s2n−1)
=

∫ |F2n−1|

0
f ∗
1

W (s2n−1)
≤

∫ s2n−1

0
f ∗
1

W (s2n−1)
≤

∫ s2n−1

0
f ∗

W (s2n−1)
≤ 1,

so

1 = ‖f‖W ≥ lim
n→∞

∫ s2n−1

0
f ∗
1

W (s2n−1)
= 1.

Hence ‖f1‖W = 1. Similarly ‖f2‖W = 1 and the first case is complete since f = f1+f2.

Case 2. Assume that tn → 0 and limn→∞

∫

tn

0
f∗

W (tn)
= 1. Without loss of generality we

can assume that (tn) is a decreasing sequence.

We will show by induction that we can find a sequence Fk ⊂ (0,∞) of disjoint sets,
(sk) ⊂ (0,∞) and (nk) ⊂ N, nk → ∞ such that for all k ∈ N, |Fk| ≤ sk and

1 ≥

∫

Fk

|f |

W (sk)
≥ 1−

1

2nk−1−1
,

where n0 = 1. As in case 1, we can find a sequence of sets (En) such that En ⊃ En+1,

|En| = tn and
∫ tn
0
f ∗ =

∫

En
|f |. Without loss of generality assume that for all n ∈ N,

1 ≥

∫ tn
0
f ∗

W (tn)
=

∫

En
|f |

W (tn)
≥ 1−

1

2n
. (2)

We can write
∫

E1
|f |

W (t1)
=

∫

E1\En
|f |

W (t1)
+

∫

En
|f |

W (t1)
(3)

so

lim
n→∞

∫

En
|f |

W (t1)
= 0.

Choose n1 ≥ 1 such that
∫

En1

|f |

W (t1)
<

1

22
. (4)

Hence from (2), (3) and (4),

∫

E1\En1

|f |

W (t1)
≥ 1−

1

2
−

1

22
= 1−

3

22
.
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Let F1 = E1 \ En1
and s1 = t1. Then |F1| ≤ s1 and

1 ≥

∫

E1
|f |

W (t1)
≥

∫

F1
|f |

W (t1)
≥ 1−

3

22
.

In view of (2), for n > n1,

∫

En1
\En

|f |

W (tn1
)

=

∫

En1

|f |

W (tn1
)
−

∫

En
|f |

W (tn1
)
≥ 1−

1

2n1
−

∫

En
|f |

W (tn1
)
.

Note that limn→∞

∫

En
|f |

W (tn1
)
= 0, so there exists n2 > n1 such that

∫

En2

|f |

W (tn1
)
<

1

22n1
.

Hence

1 ≥

∫

En1

|f |

W (tn1
)
≥

∫

En1

|f |

W (tn1
)
−

∫

En2

|f |

W (tn1
)
≥ 1−

1

2n1
−

1

22n1
≥ 1−

2n1 · 2

22n1
= 1−

1

2n1−1
.

Letting F2 = En1
\ En2

and s2 = tn1
, we get that |F2| < s2, F1 ∩ F2 = ∅ and

∫

F2
|f |

W (s2)
≥ 1−

1

2n1−1
.

Proceeding further by induction we prove the claim.

Define now the sets G1, G2 and the functions f1, f2 like in the first case. By the claim
and the Hardy-Littlewood inequality, for all k ∈ N,

1−
1

2nk−1−1
≤

∫

Fk

|f |

W (sk)
≤

∫ sk
0
f ∗

W (sk)
≤ 1.

Hence

1 = ‖f‖W ≥ lim
k→∞

∫ s2k−1

0
f ∗
1

W (s2k−1)
= 1,

and so ‖f1‖W = 1. Similarly, ‖f2‖W = 1 and the proof is complete.

It is well known that MW contains an isomorphic copy of l∞ and M0
W contains an

isomorphic copy of c0. In fact MW is not order continuous since fn = wχ(0,1/n) ↓ 0,
but ‖fn‖W = 1 and so by [11, Theorem 4, page 295],MW contains an isomorphic copy
of l∞. Applying now [11, Theorem 9, page 298], M0

W contains an isomorphic copy of
c0 since it does not satisfy the Fatou property in view of fn = wχ(0,n) ↑ χ(0,∞) /∈M0

W .
Using Lemma 3, we can now prove something more.

Corollary 4. MW contains an isomorphic and isometric copy of l∞.
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Proof. Let f = w. By Lemma 3, there exist w1, w2 ≥ 0 such that w = w1 + w2,
w1 ∧ w2 = 0 and ‖w1‖W = ‖w2‖W = 1. By induction, there exists a sequence (wn)
such that wi ∧ wj = 0 for all i 6= j, w =

∑∞
n=1wi and ‖wn‖W = 1, for all n ∈ N.

We claim that the closed linear span of (wn) in MW is isometric to l∞. Indeed, let
m ∈ N and (λn)

∞
n=1 ⊂ R. Then

∥

∥

∥

∥

∥

m
∑

n=1

λnwn

∥

∥

∥

∥

∥

W

≤ sup
t>0

∫ t

0
(max1≤n≤m |λn|

∑m
n=1wn)

∗

W (t)
= max

1≤n≤m
|λn| sup

t>0

∫ t

0
(
∑m

n=1wn)
∗

W (t)

≤ max
1≤n≤m

|λn|‖w‖W ≤ ‖(λn)‖∞.

Also for all n = 1, · · · ,m, and any m ∈ N,

∥

∥

∥

∥

∥

m
∑

n=1

λnwn

∥

∥

∥

∥

∥

W

≥ |λn| · ‖wn‖W = |λn|.

Hence
∥

∥

∥

∥

∥

m
∑

n=1

λnwn

∥

∥

∥

∥

∥

W

≥ ‖(λn)‖∞,

and the proof is complete.

Proposition 5. Let f ∈ SMW
. If

lim sup
t→0

∫ t

0
f ∗

W (t)
= 1 or lim sup

t→∞

∫ t

0
f ∗

W (t)
= 1

then there exist two different norm-one supporting functionals at f .

Proof. By Lemma 3, there is a decomposition of f = f1 + f2 such that |f1| ∧ |f2| =
0 and ‖f1‖W = ‖f2‖W = 1. The two-dimensional subspace spanned by {f1, f2}
is isometric to the two-dimensional space l2∞ with supremum norm. In fact, this
isometry is given by Tfi = ei, i = 1, 2, where e1 = (1, 0) and e2 = (0, 1). Thus
Tf = T (f1 + f2) = (1, 1). The point (1, 1) is not smooth in l2∞, and so by the
Hahn-Banach theorem, f is not smooth in MW .

Lemma 6. Let f ∈ SMW
(or f ∈ SM0

W
). If there exist 0 < a < b <∞ such that

‖f‖W =

∫ a

0
f ∗

W (a)
=

∫ b

0
f ∗

W (b)
,

then there exist two different regular norm-one supporting functionals at f .

Proof. By [2, Theorem 2.5], choose the sets E(a), E(b) ⊂ (0,∞) such that |E(a)| =
a, |E(b)| = b, E(a) ⊂ E(b) and

∫ a

0

f ∗ =

∫

E(a)

|f |,

∫ b

0

f ∗ =

∫

E(b)

|f |.
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Define

φ1(g) =
1

W (a)

∫

E(a)

(sign f) · g, and φ2(g) =
1

W (b)

∫

E(b)

(sign f) · g.

Then we have that φ1(f) = φ2(f) = 1. It follows that ‖φ1‖ = 1, since

|φ1(g)| ≤
1

W (a)

∫

E(a)

|g| ≤
1

W (a)

∫ a

0

g∗ ≤ ‖g‖W .

Similarly ‖φ2‖ = 1, so φ1 and φ2 are norm-one supporting functionals at f . Now
consider g = χE(b) sign f . Then φ1(g) 6= φ2(g), so φ1 6= φ2.

Lemma 7. Let f ∈ SMW
(or f ∈ SM0

W
) and φ be a supporting regular functional at

f induced by h ∈ Λ1,w. If for some t0 > 0,
∫ t0
0
f ∗ <

∫ t0
0
w, then there exists s > 0

such that h∗(t0) = h∗(t0 + s), that is h∗ is constant on some right neighborhood of t0.

Proof. Assume for a contrary that for all s > 0, h∗(t0) > h∗(t0 + s). We will show
that

∫ ∞

0

h∗f ∗ <

∫ ∞

0

h∗w, (5)

which is a contradiction since then

‖φ‖ = φ(f) =

∫ ∞

0

hf ≤

∫ ∞

0

h∗f ∗ <

∫ ∞

0

h∗w = ‖h‖1,w = ‖φ‖.

Note that since ‖f‖W = supt>0

∫

t

0
f∗

W (t)
= 1, we have that for all t > 0,

∫ t

0
f ∗ ≤

∫ t

0
w.

Therefore by Hardy’s Lemma,
∫∞

0
h∗f ∗ ≤

∫∞

0
h∗w.

To prove (5), notice that by the integration by parts formula,
∫ ∞

0

h∗(t)f ∗(t) dt =

∫ ∞

0

h∗(t)d

(
∫ t

0

f ∗(s)ds

)

= h∗(t)

∫ t

0

f ∗(s)ds
∣

∣

∣

∞

0
+

∫ ∞

0

(
∫ t

0

f ∗(s)ds

)

d(−h∗(t)). (6)

The measure µ defined on (0,∞) as d(−h∗(t)) = dµ(t) is positive on any (t0, t0 + s),
s > 0, by the assumption h∗(t0) > h∗(t0 + s) and right-continuity of h∗. Also the

assumption
∫ t0
0
f ∗ <

∫ t0
0
w implies that the inequality

∫ t

0
f ∗ <

∫ t

0
w must be satisfied

on some interval (t0, t0 + s). Since also
∫ t

0
f ∗ ≤

∫ t

0
w for every t ≥ 0, we must have

that
∫ ∞

0

(
∫ t

0

f ∗(s) ds

)

d(−h∗(t)) <

∫ ∞

0

(
∫ t

0

w(s) ds

)

d(−h∗(t)).

Notice also that

h∗(t)

∫ t

0

f ∗(s) ds
∣

∣

∣

∞

0

= lim
t→∞

h∗(t)

∫ t

0

f ∗(s) ds ≤ lim
t→∞

h∗(t)

∫ t

0

w(s) ds = h∗(t)

∫ t

0

w(s) ds
∣

∣

∣

∞

0
.

Combining the above two inequalities we get the claim.
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Lemma 8. Let f ∈ SMW
(or f ∈ SM0

W
). If there exists a unique number 0 < a <∞

such that

1 = ‖f‖W =

∫ a

0
f ∗

W (a)
,

then f has a unique regular norm-one supporting functional.

Proof. Let φ, induced by h ∈ Λ1,w, be a norm-one supporting functional of f . Then

φ(f) =

∫ ∞

0

fh = 1 = ‖φ‖ = ‖h‖1,w =

∫ ∞

0

h∗w.

We have that
∫ t

0
f ∗ <

∫ t

0
w, for all 0 < t < a. So by Lemma 7, h∗ is constant on

some right neighborhood of t, for all 0 < t < a, so h∗(t) = α, for all 0 < t < a.
We apply the same lemma for t > a, so h∗(t) = β, for all t ≥ a. But h ∈ Λ1,w, so
limt→∞ h∗(t) = 0, therefore β = 0. It follows that h∗(t) = αχ(0,a), hence h(t) is given
by

h(t) = α(t)χA(t),

where A is some set with |A| = a and α(t) is a measurable function such that
|α(t)| = α.

Since φ is a supporting functional, so

1 = ‖φ‖ = ‖h‖1,w = φ(f) =

∫ ∞

0

hf ≤

∫ ∞

0

h∗f ∗

=

∫ a

0

αf ∗ = α

∫ a

0

w =

∫ ∞

0

αχ(0,a)w =

∫ ∞

0

h∗w = ‖h‖1,w = 1.

Therefore α = 1
W (a)

. Also,
∫∞

0
hf =

∫∞

0
h∗f ∗, so

∫ ∞

0

hf =

∫ ∞

0

α(t)f(t)χA(t) dt =

∫ ∞

0

αf ∗(t)χ(0,a)(t) dt

= α

∫

E(a)

|f | =

∫ ∞

0

α|f(t)|χE(a)(t) dt,

where E(a) is the set such that |E(a)| = a and
∫ a

0
f ∗ =

∫

E(a)
|f |. So we have that

∫ ∞

0

α(t)f(t)χA(t)dt =

∫ ∞

0

α|f(t)|χE(a)(t)dt. (7)

We want to show now that A = E(a) a.e.. We show first that

∫

A

|f | =

∫ a

0

f ∗ =

∫

E(a)

|f |.

Since |α(t)| = α, we obtain that α(t) = α signα(t), therefore we have

1 =

∫ ∞

0

hf =

∫ ∞

0

α(t)χA(t)f(t) dt =

∫ ∞

0

α signα(t)χA(t)f(t) dt.
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Hence

1

α
=

∫ ∞

0

signα(t)χA(t)f(t) dt ≤

∫

A

|f(t)| dt ≤ sup

{
∫

B

|f(t)| dt : |B| = a

}

=

∫ a

0

f ∗(t) dt = W (a) =
1

α
.

So we got that
∫

A

|f(t)| dt =

∫ a

0

f ∗(t) dt =

∫

E(a)

|f(t)| dt =
1

α
. (8)

We show now that for all t > a, we have that

f ∗
−(a) := lim

s→a−
f ∗(s) > f∗(t). (9)

Let first 0 < c < a. Then by the assumption

1 =

∫ a

0
f ∗

∫ a

0
w

=

∫ a−c

0
f ∗

∫ a−c

0
w

∫ a−c

0
w

∫ a

0
w

+

∫ a

a−c
f ∗

∫ a

0
w

<

∫ a−c

0
w

∫ a

0
w

+

∫ a

a−c
f ∗

∫ a

0
w

,

that is
∫ a

a−c

w <

∫ a

a−c

f ∗.

We have then that for all 0 < c < a,

1 <

∫ a

a−c
f ∗

∫ a

a−c
w

≤
f ∗(a− c)a

w(a)a
=
f ∗(a− c)

w(a)
,

therefore w(a) < f∗(a− c), for all 0 < c < a, and it follows that

f ∗
−(a) = lim

s→a−
f ∗(s) ≥ w(a). (10)

Now let t > a. Since
∫ a

0
f ∗ =

∫ a

0
w and

∫ t

0
f ∗ <

∫ t

0
w, then for all t > a,

∫ t

a
f ∗ <

∫ t

a
w.

Now by the inequality (10),

f ∗(t)(t− a) ≤

∫ t

a

f ∗ <

∫ t

a

w ≤

∫ t

a

w(a) = w(a)(t− a) ≤ f ∗
−(a)(t− a),

and (9) is proven. So by (8) and (9), we have that A = E(a) a.e.. Therefore by (7),
∫ ∞

0

α(t)f(t)χE(a)(t) dt =

∫ ∞

0

α|f(t)|χE(a)(t) dt.

We also have that, for a.a.t,

α(t)f(t)χE(a)(t) ≤ α|f(t)|χE(a)(t),

so from both we get that α(t)f(t) = α|f(t)| a.e. on E(a). Therefore signα(t) =
sign f(t) a.e. on E(a), and since A = E(a) a.e. and α = 1

W (a)
, it follows that h(t) =

1
W (a)

sign f(t)χE(a)(t), and φ is uniquely determined by h.
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Remark 9. Let 0 < G(t) < F (t) for all t ∈ (t1, t2), where 0 < t1 < t2 <∞. Assume
that F,G : (0,∞) → [0,∞) are continuous and there exists a ∈ (t1, t2) such that

max
t∈[t1,t2]

F (t) = F (a) = 1,

and for all t 6= a, F (t) < F (a). Then

max
t∈[t1,t2]

G(t) < 1.

Proof. If G assumes maximum on [t1, t2] at z ∈ [t1, t2], then for all t ∈ (t1, t2), G(t) ≤
G(z) < F (z) < F (a) = 1. By continuity of G, for all t ∈ [t1, t2], G(t) ≤ F (z) < 1, so
maxt∈[t1,t2]G(t) < 1. If G assumes maximum at t1 or t2, say at t1, then by continuity
of G and F, for all t ∈ [t1, t2], G(t) ≤ G(t1) ≤ F (t1) < F (a) = 1.

Now we are ready to prove Theorems 1 and 2.

Proof of Theorem 1. Let (1) be satisfied. The space M0
W contains all order con-

tinuous elements of MW , so the dual of M0
W coincides with the space of regular

functionals, and by Lemma 8, f has a unique supporting functional.

Now let f be a smooth point. If (1) is not satisfied, since f ∈ M0
W , there exist

0 < a < b <∞ such that
∫ a

0
f ∗

W (a)
=

∫ b

0
f ∗

W (b)
= 1.

By Lemma 6 there are more than one norm-one supporting functionals at f , so f is
not a smooth point.

Proof of Theorem 2. If f is a smooth point inMW , the result follows from Lemma
6 and Proposition 5.
Let now

sup
t>0

∫ t

0
f ∗

W (t)
=

∫ a

0
f ∗

W (a)
= 1,

for some unique a ∈ (0,∞). Let ε > 0. Then there exist 0 < t1 < a < t2 < ∞ such
that for all 0 < t ≤ t1 and for all t ≥ t2,

∫ t

0
f ∗

W (t)
≤ 1− ε.

Let
s1 = inf{t : f ∗(t) = f ∗(a)} and s2 = sup{t : f ∗(t) = f ∗(a)}.

We have s2 <∞ since limt→∞ f ∗(t) = 0.

We shall consider two cases. First, suppose s1 = 0. We observe that W (t)/t is a
strictly decreasing function on (0,∞). Then for all 0 ≤ t ≤ a, f ∗(t) = f ∗(a) and

1 = sup
0<t≤a

∫ t

0
f ∗

W (t)
= sup

0<t≤a

tf∗(a)

W (t)
=
af∗(a)

W (a)
.
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It follows that f ∗(t) < f∗(a), for all t > a. Indeed, if not, then f ∗(t) = f ∗(a), for
t ∈ (0, b), for some b > a. Then

1 ≥ sup
0<t≤b

∫ t

0
f ∗

W (t)
=
f ∗(a)b

W (b)
>
f ∗(a)a

W (a)
= 1,

which is a contradiction. Let E(ti) ⊂ (0,∞), i = 1, 2, be such that |E(ti)| = ti,
∫ ti
0
f ∗ =

∫

E(ti)
|f |, and E(t2) ⊃ E(t1). Let’s define g(t) = f(t)χE(t1)∪E(t2)c . Denote by

F (t) =
∫

t

0
f∗

W (t)
and G(t) =

∫

t

0
g∗

W (t)
. Then

g∗(t) =

{

f ∗(t), if t ∈ (0, t1);

f ∗(t+ t2 − t1), if t ∈ [t1,∞).

Notice that g∗(t) ≤ f ∗(t), for all t > 0, and g∗(t) < f∗(t), for all t ∈ (t1, t2). Hence
G(t) < F (t), for all t ∈ (t1, t2), so by the previous remark, maxt∈[t1,t2]G(t) < 1. We
also have for 0 < t < t1,

G(t) =

∫ t

0
g∗

W (t)
=

∫ t

0
f ∗

W (t)
≤ 1− ε,

and for t > t2,

G(t) =

∫ t

0
g∗

W (t)
<

∫ t

0
f ∗

W (t)
≤ 1− ε.

Therefore ‖g‖W < 1.

Now let 0 < s1 ≤ a ≤ s2 < ∞. Let z1 = min{s1, t1} and z2 = max{s2, t2}. In this
case, define g(t) = f(t)χE(z1)∪E(z2)c , where E(zi) ⊂ (0,∞), i = 1, 2, are such that

|E(zi)| = zi and
∫ zi
0
f ∗ =

∫

E(zi)
|f |. Then

g∗(t) =

{

f ∗(t), if t ∈ (0, z1);

f ∗(t+ z2 − z1), if t ∈ [z1,∞).

Then g∗(t) ≤ f ∗(t) for all t > 0 and g∗(t) < f∗(t) for all t ∈ [z1, z2]. So G(t) < F (t)
on [z1, z2] and by the previous remark, maxt∈[z1,z2]G(t) < 1. It follows analogously as
in the previous case that ‖g‖W < 1.

In both cases, ‖g‖W < 1 and f−g has support with finite measure and it is bounded.
Thus f − g ∈M0

W .

Consider φ ∈ (MW )∗ a norm-one supporting functional at f . Then φ has a unique
representation φ = ψ + ξ, where ψ ∈ Λ1,w and ξ is singular, that is ψ(g) =

∫∞

0
gh,

for all g ∈ MW and some unique h ∈ Λ1,w, and ξ(g) = 0, for all g ∈ M0
W [9]. φ is a

supporting functional, so by the M-ideal property of M0
W in MW we have

‖φ‖ = ‖ψ‖+ ‖ξ‖ ≥ ψ(f) + ξ(f) = φ(f) = ‖φ‖,

therefore φ and ξ are supporting functionals. Then ξ(f − g) = 0, and so

‖ξ‖ = ξ(f) = ξ(g) + ξ(f − g) = ξ(g) ≤ ‖ξ‖ · ‖g‖ < ‖ξ‖.



390 A. Kamińska, A. M. Parrish / Smooth Points in Marcinkiewicz Function ...

Hence ξ = 0 and φ is a regular functional. By Lemma 8, φ is unique and f is a
smooth point.

We finish with the result in sequence spaces that can be proved analogously as Theo-
rem 1. It completes the earlier result on smooth points in Marcinkiewicz sequence
spaces in [10]. Let m0

W = d∗(w, 1) be a subspace of order continuous elements in
Marcinkiewicz sequence spaces mW = d∗(w, 1) [10].

Theorem 10. An element x ∈ Sm0
W

is a smooth point in m0
W if and only if there

exists i0 ∈ N such that

1 =

∑i0
j=1 x

∗(j)

W (i0)
> sup

n6=i0

∑n
j=1 x

∗(j)

W (n)
.
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Translations of Mathematical Monographs 54, AMS, Providence (1982).

[13] F. E. Levis, H. H. Cuenya: Gâteaux differentiability in Orlicz-Lorentz spaces and
applications, Math. Nachr. 280(11) (2007) 1282–1296.

[14] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces II, Springer, Berlin (1979).

[15] I. Singer: The Theory of Best Approximation and Functional Analysis, CBMS-NSF
Regional Conference Series in Applied Mathematics 13, SIAM, Philadelphia (1974).


