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A real valued function f : D → R defined on an open convex subset D of a normed space X is called
rationally (h, d)-convex if it satisfies

f (tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y)

for all x, y ∈ D and t ∈ Q ∩ [0, 1], where d : X ×X → R and h : [0, 1] → R are given functions.

Our main result is of Bernstein-Doetsch type. Namely, we prove that if f is locally bounded from
above at a point of D and rationally (h, d)-convex then it is continuous and (h, d)-convex.
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1. Introduction

Convexity and its generalizations are very important both in pure mathematics and
in applications. It is wildly known that in applications we can not state convexity
(generalized convexity) on the examined function, but we know some convexity like
(generalized convexity like) behavior on the function. This means, we do not know
whether the function in question is convex (generalized convex) or not, but we know
that it is close to a convex (generalized convex) function. So, examining approximate
convexity and approximate generalized convexity is an important task mainly in terms
of optimization theory.

On the other hand we can not know regularity on the unknown function in general.
Improving regularity of an unknown function is also an important and useful topic
not only in applications but in pure mathematics too. Improving regularity means
getting a stronger regularity property from a weaker one.
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Several authors have dealt with the above mentioned questions. The first approximate
convexity result is due to Hyers and Ulam [10], where the authors used a constant
error term. Another possibility to make a mathematical model of "being close to a
convex function" is to use a function error term, which depends on the distance of
the variables (see e.g. [12] or [15]).

Probably the most significant result in the early history of regularity theory of convex
functions was developed by Bernstein and Doetsch [1]. They proved that the local
boundedness from above at a point of a Jensen convex function implies its continuity
and convexity as well on the whole domain.

The starting point of this work is a very recent generalization of convexity, namely
h convexity. The sophisticated definition runs as follows: a real valued function
f : D → R is called h-convex, if

f (tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) (1)

for every x, y ∈ D, t ∈ [0, 1], where h : [0, 1] → R is a given function, and D

is a nonempty, open, convex subset of a normed space (X, ‖ · ‖). It is natural to
assume that h is nonnegative, furthermore h(t) and h(1 − t) is not equal to zero
at the same time. If it is, then we get the class of bounded functions from above
with zero. The concept of h convexity appeared first in [19] defined by Varošanec.
This is a far generalization not only of convexity (h(t) = t) but e.g. of s-convexity
(h(t) = ts , 0 < s ≤ 1) due to Breckner [3], and other classes of functions (see [19]
again) too.

We examine such functions which are "close to" an h-convex function in some sense.
A function, on which some natural requirements are made, measures the error. More
precisely: let d : X × X → R be given. A function f : D → R is said to be
(h, d)-convex if

f (tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y) (2)

for all x, y ∈ D and t ∈ [0, 1]. We are using two other concepts, rational (h, d)-
convexity and (t, h, d)-convexity, which mean f fulfills (2) only for all rational t or a
fixed t (0 < t < 1) respectively.

In the earlier investigations, ‖x − y‖p (p > 0) or a linear combination with positive
coefficients of such expressions were applied as an error term (see e.g. [12], [15],
[8]). These define metrics on X, where the distance of two points does not change
if we translate them, and they possess some kind of homogeneity property. Thus,
generalizing and summing of the previous attributes simultaneously, we assume that
d is a ψ-subhomogeneous, translation invariant semimetric, namely

(i) d(x, y)≥ 0,

(ii) d(x, y)= d(y, x),

(iii) d(x, y)≤ d(x, z) + d(z, y),

(iv) d(x+ z, y + z)= d(x, y),

(v) d(ux, uy)≤ ψ(u)d(x, y)



P. Burai, A. Házy / On Approximately h-Convex Functions 449

for all x, y, z ∈ X and u > 0, where the function ψ : R+ → R+ is bounded. The
first three property declare that d is a semimetric on X, (iv) states the translation
invariance of d, and (v) is the subhomogeneity of d with respect to ψ.

In the sequel d always denotes a continuous, ψ-subhomogeneous, translation invariant
semimetric.

2. Main results

We have two main results. The first one is a regularity theorem on rationally (h, d)-
convex, and (h, d)-convex functions. The second one is on (h, d)-convexity of ratio-
nally (h, d)-convex functions.

It is very important to note, that we suppose some technical conditions on h, namely
we assume

lim
t→0

h(t) = 0, lim
t→1

h(t) = 1, h(t) and h(1− t) not zero simultaneously (3)

henceforth. We draw the reader’s attention to the fact, that the special functions
mentioned in the introduction fulfill these conditions.

Theorem 2.1. Assume that d(x, x) = 0, and f : D → R is a rationally (h, d)-convex
or (h, d)-convex function. If f is locally bounded from above at a point of D, then it

is continuous on D.

Theorem 2.2. Assume that d(x, x) = 0, and f : D → R is a ratonally (h, d)-convex
function. If f is locally bounded from above at a a point of D, then it is (h, d)-convex.

It is clear that we cannot expect the continuity of f without continuity assumption
on d. Keeping in mind the nonnegativity of d, it seems natural at once to assume
d(x, x) = 0.

It is worthy to mention the fact, that these theorems do not remain true with (t, h, d)-
convexity assumption on f . On the other hand, it is an open problem, to find the
smallest (in some sense, e.g. measure, category etc.) subset of the unit interval, such
that the theorems remain true if f fulfills (2) only for all t from this subset. We know
that any dense subset of [0, 1] is enough.

3. Proofs of the main theorems

We begin with two lemmas. In the first one we deal with boundedness of (t, h, d)-
convex functions. We recall that a function f : D → R is called locally bounded from
above at a point of D (or locally upper bounded at a point of D), if there exists a
neighborhood U of this point such that f is locally bounded from above on U , and
f is locally bounded from above on D, if it is bounded from above at every point of
D. One can define local lower boundedness, and boundedness at a point or on the
whole domain in a similar way.

Lemma 3.1. If a (t, h, d)-convex function is locally bounded from above at a point

of its domain, then it is locally bounded on the whole domain.
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Proof. Let f : D → R be (t, h, d)-convex with a fixed t ∈]0, 1[, and locally bounded
from above at w ∈ D. First we prove that f is locally bounded from above on D.
Define the sequence of sets Dn by

D0 := {w}, Dn+1 := tDn + (1− t)D.

Then, it follows by induction that

Dn = tnw + (1− tn)D.

Using induction on n, we prove that f is locally upper bounded at each point of
Dn. By assumption f is locally upper bounded at w ∈ D0. Assume that f is locally
upper bounded at each point of Dn. For an arbitrary x ∈ Dn+1, there exist x0 ∈ Dn

and y0 ∈ D such that x = tx0 + (1 − t)y0. By the inductive assumption, there exist
constants r > 0 and M0 ≥ 0, such that f(x′) ≤ M0, and d(x′, x0) ≤ M0 for all
x′ ∈ B(x0, r), where B(x0, r) denotes the open ball centered at x0 with radius r.
Because of the continuity of d, we can choose r such a way, that the previous will be
true. Then, by the (t, h, d)-convexity of f , and the properties of d, we have

f (tx′ + (1− t)y0) ≤ h(t)f(x′) + h(1− t)f(y0) + d(x′, y0)

≤ h(t)M0 + h(1− t)f(y0) + d(x′, x0) + d(x0, y0)

≤ h(t)M0 + h(1− t)f(y0) +M0 + d(x0, y0) =:M.

Therefore, for y ∈ U := tB(x0, r) + (1− t)y0 = B (tx0 + (1− t)y0, tr) = B(x, tr), we
get that f(y) ≤ M . Thus, f is locally bounded from above at x ∈ Dn+1, so f is
locally bounded from above on Dn+1 .

On the other hand, one can easily see that

D =
∞
⋃

n=1

Dn.

Indeed, for fixed x ∈ D, define the sequence xn by

xn :=
x− tnw

1− tn
.

Therefore xn → x if n → ∞. Being the set open there exists an n0 ∈ N, such that
xn ∈ D if n ≥ n0. Therefore

x = tnw + (1− tn)xn ∈ tnw + (1− tn)D = Dn.

Thus f is locally bounded from above on D.

We prove now that f is locally bounded from below. Let q ∈ D be arbitrary. Since
f is locally bounded from above at the point q, there exist ̺ > 0 and M > 0 such
that f(x) ≤ M and d(x, q) ≤ M if x ∈ B(q, ̺). (Just like in the first part of the
proof, we can find such ̺, using the continuity of d.) Let x ∈ B(q, (1 − t)̺) and
y := 1

1−t
q − t

1−t
x. Then y is in B(q, t̺) ⊂ B(q, ̺). By (t, h, d)-convexity of f , and by

ψ-subhomogeneity and translation invariance of d, we get

f(q) = f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y)

≤ h(t)f(x) + h(1− t)f(y) + ψ

(

1

1− t

)

d(x, q),
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which implies

f(x) ≥
1

h(t)
f(q)−

h(1− t)

h(t)
f (y)−

1

h(t)
ψ

(

1

1− t

)

d(x, q)

≥
1

h(t)
f(q)−

h(1− t)

h(t)
M −

1

h(t)
ψ

(

1

1− t

)

M =:M∗.

Therefore f is locally bounded from below at any point of D.

Remark 3.2. We did not use (3) in the previous proof.

The next result states that the local upper boundedness of a rationally (h, d)-convex
function at a point of D yields its continuity at this point as well.

Lemma 3.3. Let d(x, x) = 0, and f : D → R be a rationally (h, d)-convex function.

If f is locally bounded from above at a point of its domain, then it is continuous at

the same point.

Proof. Let f be locally bounded from above at w ∈ D, then there exist constants
r > 0 and K ≥ 0 such that f(x) ≤ K for every x ∈ B(w, r). Let ε be an arbitrary
positive real number. Then there exists n0 ∈ N such that if n > n0 is an arbitrarily
fixed positive integer, the following three inequalities hold at the same time

h

(

1

n

)

K +

[

h

(

n− 1

n

)

− 1

]

f(w) <
ε

4
, (4)

(

h
(

1

n

)

h
(

n−1

n

)

)

K +

[

1−
1

h
(

n−1

n

)

]

f(w) <
ε

4
(5)

and
2

h
(

n−1

n

) < 3. (6)

Let r1 = min{r, ε
4
}. Using the continuity of d and the equality d(w,w) = 0, there

exists r′1 < r1 such that d(x,w) < r1 if x ∈ B(w, r′1), and let δ <
r′
1

n
. We prove that

|f(x)− f(w)| < ε (x ∈ B(w, δ)).

For x ∈ B(w, δ) there exist y, z ∈ B(w, r′1) such that

x =
1

n
y +

n− 1

n
w, so y = nx− (n− 1)w

w =
1

n
z +

n− 1

n
x, so z = nw − (n− 1)x.

Indeed,
‖y − w‖ = ‖nx− nw‖ < nδ < r′1,

and similarly
‖z − w‖ = ‖(n− 1)(x− w)‖ < (n− 1)δ < r′1;

that is y, z ∈ B(w, r′1).
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According to rational (h, d)-convexity of f ,

f(x) ≤ h

(

1

n

)

f(y) + h

(

n− 1

n

)

f(w) + d(y, w) (7)

≤ h

(

1

n

)

K + h

(

n− 1

n

)

f(w) + r1,

and

f(w) ≤ h

(

1

n

)

f(z) + h

(

n− 1

n

)

f(x) + d(z, x)

≤ h

(

1

n

)

K + h

(

n− 1

n

)

f(x) + d(z, w) + d(w, x) (8)

≤ h

(

1

n

)

K + h

(

n− 1

n

)

f(x) + 2r1.

Using (7) and (4) we get

f(x)− f(w) ≤ h

(

1

n

)

K +

[

h

(

n− 1

n

)

− 1

]

f(w) + r1 (9)

<
ε

4
+
ε

4
< ε

and using the inequality (8) we get

f(x) ≥
f(w)− h

(

1

n

)

K − 2r1

h(n−1

n
)

,

which together with (5) imply that

f(x)− f(w) ≥

[

1

h(n−1

n
)
− 1

]

f(w)−

(

h( 1
n
)

h(n−1

n
)

)

K −
2r1

h(n−1

n
)

> −

(

ε

4
+

2

h(n−1

n
)

ε

4

)

.

According to (6) we get

f(x)− f(w) > −
(ε

4
+ 3

ε

4

)

= −ε. (10)

The inequalities (9) and (10) show that |f(x)− f(w)| < ε, that is f is continuous at
w, so the proof is complete.

Proof of Theorem 2.1. According to Lemma 3.1, f is locally bounded at every
point of D. So, we can use Lemma 3.3, which implies the continuity of f at every
point of D.

Proof of Theorem 2.2. We prove that the function f is (t, h, d)-convex for all t ∈
[0, 1]. Let t ∈ [0, 1] arbitrary. Then there exists a sequence {tn}n∈N such that tn ∈
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Q∩]0, 1[ and tn → t (when n tends to ∞). Applying rational (h, d)-convexity of f ,
we get

f (tnx+ (1− tn)y) ≤ h(tn)f(x) + h(1− tn)f(y) + d(x, y). (11)

The local upper boundedness of f implies the continuity of f (according to Lemma
2.1). Therefore, taking the limit n→ ∞ in (11), we get

f (tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y),

which proves the (h, d)-convexity of f .

4. Corollaries and applications

In this section we show some applications of the previous results. We begin with a
corollary, which is an immediate consequence of Lemma 3.1. We call f (h, d)-convex
with respect to S ⊂]0, 1[, if f fulfills (2) only for all t ∈ S.

Corollary 4.1. Let f : D → R be a (h, d)-convex function with respect to S ⊂]0, 1[.
If f is locally bounded from above at a point of D, then it is locally bounded on D.

For the readers convenience we recall the following two theorems:

Theorem 4.2 (Steinhaus, [18]). Let A,B ⊂ Rn be arbitrary sets with positive

measure. Then int(A+B) 6= ∅.

Theorem 4.3 (Piccard, [16]). Let (X; +) be a topological group, and A,B ⊂ X

two sets of the second category with the Baire property. Then int(A+B) 6= ∅.

If the underlying space is of finite dimension, the local boundedness from above
assumption can be weakened. Using Theorem 2.1, Theorem 2.2 and Steinhaus’ and
Piccard’s theorems (cf. [18], [16]), we get the following two corollaries.

Corollary 4.4. Let D be an open, convex subset of Rn, f : D → R be a rationally

(h, d)-convex function, and d(x, x) = 0. If there exists a set S ⊂ D of positive

Lebesgue measure, such that f is bounded from above on S, then f is continuous, and

(h, d)-convex on D.

Corollary 4.5. Let D be an open, convex subset of Rn, f : D → R be a rationally

(h, d)-convex function, and d(x, x) = 0. If there exists a Baire-measurable set S ⊂ D

of second category, such that f is bounded from above on S, then f is continuous,

and (h, d)-convex on D.

Theorem 2.1, Theorem 2.2, Lemma 3.1, and Lemma 3.3 are far generalizations of
earlier theorems.

We get [2, Theorem 2] from Lemma 3.1 with d ≡ 0, and h(λ) = λs (λ ∈]0, 1[ is fixed
here).

With d ≡ 0, and h(t) = ts, we get [3, Satz 2.1] from Lemma 3.3. With the same
casting one can deduce [3, Satz 2.2 and Korollar 2.3] from Lemma 3.1, and Theorem
2.1 with Theorem 2.2 respectively.
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We have [11, Theorem 6.2.1, Theorem 6.2.2, Theorem 6.2.3 148 p.] from Lemma 3.1
(taking into account Remark 3.2) with h(t) = 1

2
and d ≡ 0.
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[14] Zs. Páles: Bernstein-Doetsch-type results for general functional inequalities, Rocz.
Nauk.-Dydakt., Pr. Mat. 17 (2000) 197–206.
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[19] S. Varošanec: On h-convexity, J. Math. Anal. Appl. 32 (2007) 303–311.


