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A function f is approximately convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) +R(α, ‖x− y‖),

for x, y ∈ domf , α ∈ [0, 1] and for a respective perturbation term R.

If the above inequality is assumed only for α = 1

2
, then the function f is called Jensen approximately

convex.

The relation between Jensen approximate convexity and approximate convexity has been investi-
gated in many papers, in particular for semiconcave functions in [1]. We improve an estimation
involved in such relation from [1] and show that our result is sharp.
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In the last fifty years there appeared several natural and strongly related versions of
approximate convexity: ε-convexity [6, 7], (ε, p)-convexity [3, 4, 5], paraconvexity [11,
12] and semiconcavity [1]. One of the most important from the applications point of
view is the notion of semiconcave functions [1, 2], it is a convenient tool in the study
of Hamilton-Jacobi equations and optimal control problems.

For the convenience of the reader we recall the definitions of the semiconcave func-
tion [1] (we slightly adapt the notation). Let S be a subset of RN . By [S] we denote
the set of all pairs (x, y) ∈ S × S such that the line segment [x, y] := {tx+ (1− t)y :
t ∈ [0, 1]} is contained in S. For a function u : S → R we define its concave difference
Cu : [S] → R by the formula

Cu(x, y; t) := tu(x) + (1− t)u(y)− u(tx+ (1− t)y) for (x, y) ∈ [S], t ∈ [0, 1].
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By M we denote the set of all nondecreasing upper semi-continuous functions ω :
R+ → R+ such that limt→0+ ω(t) = 0. Let ω ∈ M. We say that a function u : S → R

is ω-semiconcave if

Cu(x, y; t) ≤ t(1− t)ω(‖x− y‖)‖x− y‖ for (x, y) ∈ [S], t ∈ [0, 1]. (1)

We call ω a modulus of semiconcavity for u in S. If (1) holds for t = 1/2, we say that
u is Jensen ω-semiconcave. We say that u is (Jensen) semiconcave if it is (Jensen)
ω-semiconcave with a certain modulus of (Jensen) semiconcavity ω ∈ M.

In general it is not trivial to verify if the given function is semiconcave. Since the
Jensen semiconcavity is much easier to verify, the authors of [1] investigated the
problem when Jensen semiconcavity implies semiconcavity.

Theorem CS (Theorem 2.1.20). Let ω ∈ M and let

ω̃(r) :=
∞
∑

k=0

ω(r/2k).

If ω̃ admits only finite values1, then ω̃ ∈ M and every continuous Jensen ω-semi-
concave function is ω̃-semiconcave.

Moreover, if ω(r) = Cr, then we can take ω̃ = ω.

The most important and natural case, see [1, Remark 2.1.1], is when ω is the power
function ωp(r) = Crp for a certain p ∈ (0, 1]. The case when p > 1 trivializes since
by the result of Rolewicz [11] every ωp-semiconcave function with a convex domain
is concave. Approximately convex and concave functions with power form moduli
were extensively studied by many authors [1, 2, 4, 5, 8, 9], [11]–[14], [16]. The terms:
semiconcave, semiconvex, p-paraconvex, p-approximately convex function are in use.

From now on we assume that a function ωp has the form

ωp(r) := Crp where C > 0 and p ∈ (0, 1].

For p ∈ (0, 1] we define

Ap :=
1

2− 21−p
. (2)

As a direct consequence of Theorem CS we get the following result.

Corollary CS. Let p ∈ (0, 1] and let u : S → R be a continuous Jensen ωp-
semiconcave function. Then u is (2Apωp)-semiconcave if p < 1, and (A1ω1)-semi-
concave if p = 1.

One can show that for p = 1 the above result is sharp. There arises the question,
see [1, Remark 2.1.1], if in the case p ∈ (0, 1) the estimation given in Corollary CS can
be improved. We answer this question positively. We show that the constant from
Corollary CS can be improved from 2Ap to Ap and that the constant Ap is optimal.

1One can easily verify that it is equivalent to the condition ω̃(1) < ∞.
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Now we begin our investigations. We will need the functions dk : R → R defined as
follows

dk(x) :=
1

2k
dist(2kx;Z) for x ∈ R.

By B(R,R) we denote the space of bounded functions with the supremum norm. In
our investigation we will need the following reformulation of the de Rham’s Theo-
rem [10].

Theorem R. Let h ∈ B(R,R), a ∈ [0, 1), b ∈ R. Let Rh : B(R,R) → B(R,R) be
an operator defined by

(Rhf)(x) := h(x) + af(bx) for f ∈ B(R,R), x ∈ R.

Then

(i) Rh is a contraction which has a unique fixed point fh;

(ii) if g ∈ B(R,R) is such that Rhg ≤ g, then fh ≤ g.

For p ≥ 0 we need the Takagi-type function Tp : R → R+ [15] defined by the formula

Tp(x) =
∞
∑

k=0

1

2kp
dk(x) for x ∈ R.

Proposition 1. Let p ∈ (0, 1]. Then

Tp(x) ≤ 2Apx(1− x) for x ∈ [0, 1]. (3)

Furthermore Ap is the minimal constant satisfying (3). Hence

sup
x∈(0,1)

Tp(x)

x(1− x)
= 2Ap. (4)

Proof. One can easily notice that

dk(1/2
n) =

{

0 if n ≤ k,

1/2n otherwise.

This implies that

Tp(1/2
n) =

∞
∑

k=0

1

2kp
dk(1/2

n) =
n−1
∑

k=0

1

2kp
(1/2n).

Thus 2nTp(1/2
n) →

∑

∞

k=0
1

2kp
= 2Ap as n → ∞. Consequently there is no constant

less than Ap satisfying (3).

Using Theorem R, we show that inequality (3) holds. Consider the operator Rd0 :
B(R,R) → B(R,R),

(Rd0f)(x) := d0(x) +
1

21+p
f(2x) for f ∈ B(R,R), x ∈ R.
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It is easy to check that the function Tp is a fixed point of Rd0 , that is

Tp(x) = d0(x) +
1

21+p
Tp(2x) for x ∈ R.

We define the function ψp : R → R in the following way: ψp is 1-periodic and

ψp(x) = 2Apx(1− x) for x ∈ [0, 1].

We are going to show that

Tp(x) ≤ ψp(x) for x ∈ R.

According to Theorem R (ii) it is sufficient to prove that

d0(x) +
1

21+p
ψp(2x) ≤ ψp(x) for x ∈ R. (5)

Since the functions d0 and ψp are 1-periodic and symmetric with respect to 1
2
, it is

enough to show the above inequality for x ∈ [0, 1
2
]. Then (5) takes the form

x+
1

21+p
2Ap(2x)(1− 2x) ≤ 2Apx(1− x) for x ∈ [0, 1/2].

The case x = 0 is trivial. If x > 0, then the above inequality reduces to

1 +
4Ap

21+p
(1− 2x) ≤ 2Ap(1− x) for x ∈ (0, 1/2].

One can easily verify that this inequality is valid for x = 0 and x = 1
2
. Since the

left and right hand sides are affine functions, it holds for all x ∈ [0, 1
2
]. We have

proved (3). Since Tp(0) = Tp(1) = 0, from just proved assertions we directly obtain
(4).

To prove our main result we will need the following theorem.

Theorem T1 ([14, Proposition 4.1]). Let u : S → R be a continuous Jensen
ω-semiconcave function. Then for every (x, y) ∈ [S] we have

Cu(x, y; t) ≤
1

2

(

∞
∑

k=0

ω(2−k‖x− y‖)dk(t)

)

‖x− y‖ for t ∈ [0, 1]. (6)

Now we are ready to prove the main result of the paper, which generalizes Corollary
CS.

Theorem 2. Let p ∈ (0, 1] and let u : S → R be continuous Jensen ωp-semiconcave
function. Then u is (Apwp)-semiconcave.
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Proof. Fix (x, y) ∈ [S] and t ∈ [0, 1]. From Theorem T1 and Proposition 1 we obtain

C(x, y; t) ≤
1

2

(

∞
∑

k=0

dk(t)

2kp
C‖x− y‖p

)

‖x− y‖

=
1

2
Tp(t)(C‖x− y‖p)‖x− y‖ ≤ Apt(1− t)ωp(‖x− y‖)‖x− y‖.

Now we discuss the question if the obtained result is optimal. We first present a
direct consequence of Theorem 2.

Corollary 3. Let p ∈ (0, 1] and S ⊂ R
N be given. We denote

rS := sup
(x,y)∈[S]

‖x− y‖.

Let

ω̃S
p (r) := Apωp(min(r, rS)) for r ∈ R+.

Then every continuous Jensen ωp-semiconcave function u : S → R is ω̃S
p -semiconcave.

To show that in general the estimation given in Corollary 3 cannot be improved, we
will use:

Theorem T2 ([13, Corollary 2.1]). For every p ∈ (0, 1] we have

C(−Tp)(x, y; 1/2) ≤
1

2
|x− y|p+1 for x, y ∈ R.

Theorem 4. Let p ∈ (0, 1] and S ⊂ R
N be fixed, and let ω̃ ∈ M be such that

for every continuous Jensen ωp-semiconcave function u : S → R, the function u is
ω̃-semiconcave. Then

ω̃ ≥ ω̃S
p .

Proof. It is sufficient to show that ω̃(r) ≥ ω̃S
p (r) for every r < rS. We choose an

arbitrary r ∈ (0, rS). By the definition of rS there exists a (x̄, ȳ) ∈ [S] such that
‖x̄ − ȳ‖ = r. By the Hahn-Banach Theorem we can find ξ∗ ∈ (RN)∗ such that
‖ξ∗‖ = 1 and

ξ∗(ȳ − x̄) = ‖ȳ − x̄‖.

We define the function u : S → R by the formula

u(x) := −
1

2
rp+1C(Tp)(ξ

∗(x− x̄)/r) for x ∈ S.

Clearly the above function is continuous. Making use of Theorem T2 one can easily
verify that u is Jensen ωp-semiconcave. Hence u is ω̃-semiconcave. Since u(x̄) =
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u(ȳ) = 0, by semiconcavity of u we obtain

ω̃(r) = ω̃(‖ȳ − x̄‖) ≥ sup
t∈(0,1)

Cu(ȳ, x̄; t)

‖ȳ − x̄‖t(1− t)
= sup

t∈(0,1)

−u(tȳ + (1− t)x̄)

rt(1− t)

= sup
t∈(0,1)

1
2
rp+1CTp(t)

rt(1− t)
.

By (4) we conclude that ω̃(r) ≥ ApCr
p = ω̃S

p (r).
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Variables, Birkhäuser, Boston (1998).

[7] D. H. Hyers, S. Ulam: Approximately convex functions, Proc. Amer. Math. Soc. 3
(1952) 821–828.
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