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We solve the problem of evolution for some classes of pentahedra (pyramids) in the three dimensional
Euclidean space by applying the inverse weighted Fermat-Torricelli problem of 5 rays that meet at the
weighted Fermat-Torricelli point A0 and the invariance property of the weighted Fermat-Torricelli
point. The main result is the three dimensional property of plasticity which states that: If we
decrease the weights that correspond to the first, third and fourth ray which passes from the apex
of the pyramid, then the weights that correspond to the second and fifth ray increase. Finally, we
introduce the notion of the generalized plasticity for weighted pyramids via a specific discretization
of the five weights along the five given prescribed rays.
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1. Introduction

An evolutionary structure of convex quadrilaterals in R
2 has been studied in [4] and

an evolutionary structure of tetrahedra in R
3 has been studied in [5].

In this paper, we derive an evolutionary structure of some classes of pentahedra
(pyramids) A1A2A3A4A5 in R

3. We apply the following ideas:

(1) Obtain a method of cyclical differentiation with respect to some specific angles
by calculating the weighted Fermat-Torricelli point for pyramids.

(2) Apply the invariance property of the weighted Fermat-Torricelli point and the
inverse weighted Fermat-Torricelli problem of five rays that meet at the weighted
Fermat-Torricelli point at A0.

(3) Derive some evolutionary equations that point out the plasticity of the weighted
pyramids by viewing them as a dynamical system of the weights in R

3 by using
specific symbolic computations that deal with the decomposition of weights of
pyramid to some specific weighted tetrahedra.

The main result of this paper is the derivation of a plasticity property of pyramids.
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Furthermore, we introduce the notion of generalized plasticity for pyramids via an
evolution due to the discretization of the weights that correspond to the weighted
Fermat-Torricelli point along the five given prescribed rays where the floating case
occurs.

At the appendix, we mention an elementary proof of the invariance property of the
weighted Fermat-Torricelli point in R

3 and all the necessary results (floating case,
absorbed case, existence uniqueness) that we need to complete our study.

2. The weighted “Fermat-Torricelli� problem for pyramids

We start by stating the problem for a pyramid A1A2A3A4A5 in R
3.

Problem 2.1. Let A1A2A3A4A5 be a pyramid and A1A2A3A5 be the base of the
pyramid. Suppose that a non-negative number (weight) Bi, corresponds to each vertex
Ai for i = 1, 2, 3, 4, 5, respectively. Find the weighted Fermat-Torricelli point A0 of
A1A2A3A4A5 which minimizes the sum of the lengths of the line segments ai that
connect every vertex with A0 multiplied by the positive weight Bi:

B1a1 +B2a2 +B3a3 +B4a4 +B5a5 = minimum. (1)

Solution of Problem 2.1. The independent variables a1, a2, α will be used, in
order to find A0, where α is the dihedral angle between the planes A0A1A2 and
A3A1A2 (see Figure 2.1). The variables a3, a4, a5 can be expressed as functions of
a1, a2 and α:

a3 = a3(a1, a2, α), a4 = a4(a1, a2, α), a5 = a5(a1, a2, α). (2)

From (1) and (2) the following equation is obtained:

B1a1 +B2a2 +B3a3(a1, a2, α) +B4a4(a1, a2, α) +B5a5(a1, a2, α) = minimum. (3)

By differentiation of (3) with respect to the variables a1, a2 and α we get

B1 +B3
∂a3
∂a1

+B4
∂a4
∂a1

+B5
∂a5
∂a1

= 0, (4)

B2 +B3
∂a3
∂a2

+B4
∂a4
∂a2

+B5
∂a5
∂a2

= 0, (5)

B3
∂a3
∂α

+B4
∂a4
∂α

+B5
∂a5
∂α

= 0. (6)

We proceed by calculating equation (6).

We express a3 as a function of a1, a2 and α by using the following equations:

cos(α102) =
a21 + a22 − a212

2a1a2
, (7)

h0,12 =
a1a2 sin(α102)

a12
, (8)
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Figure 2.1.

h0,123 = h0,12 sin(α), (9)

x2
2 = a22 − h2

0,123, (10)

sin(α′
2) =

h0,12 cos(α)

x2

, (11)

x2
3 = x2

2 + a223 − 2x2a23, cos(α123 − α′
2), (12)

a23 = x2
3 + h2

0,123, (13)

or

a23 = a22 + a223 − 2a23

[
√

a22 − h2
0,12 cos(α123) + h0,12 sin(α123) cos(α)

]

, (14)

where h0,12 is the height of the triangle ∇A0A1A2 from A0 to A1A2 and h0,123 is the
distance from A0 to the plane A1A2A3 (see Figure 2.1). We express a4 as a function
of a1, a2 and α by using the following equations:

h0,124 = h0,12 sin(αg − α), (15)

x′2
2 = a22 − h2

0,124, (16)

sin(α′′
2) =

h0,12 cos(αg − α)

x′
2

, (17)

x2
4 = x′2

2 + a224 − 2x′
2a24 cos(α124 − α′′

2), (18)

a24 = x2
4 + h2

0,124, (19)

or

a24 = a22 + a224 − 2a24

[
√

a22 − h2
0,12 cos(α124) + h0,12 sin(α124) cos(αg − α)

]

, (20)
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where αg is the given dihedral angle between the planes A3A1A2A5 and A4A1A2 and
h0,124 is the distance from A0 to the plane A1A2A4 (see Figure 2.2).
We express a5 as a function of a1, a2 and α by using the following equations:

a25 = x2
5 + h2

0,123 (21)

x2
5 = x2

2 + a225 − 2x2a25 cos(α125 − α′
2), (22)

a25 = a22 + a225 − 2x2a25 cos(α125 − α′
2) (23)

or

a25 = a22 + a225 − 2a25

[
√

a22 − h2
0,12 cos(α125) + h0,12 sin(α125) cos(α)

]

, (24)

We differentiate (14), (20), (24) with respect to α and we obtain (25), (26) and (27),
respectively.

a3
∂a3
∂α

= +a23h0,12 sin(α123) sin(α), (25)

a4
∂a4
∂α

= −a24h0,12 sin(α124) sin(αg − α), (26)

a5
∂a5
∂α

= a25h0,12 sin(α125) sin(α). (27)

By replacing (25), (26), (27) in (6) and by multiplying both members of (6) by 1
3
a12,

we get:

B3

a3
V OL(A0A1A2A3)−

B4

a4
V OL(A0A1A2A4) +

B5

a5
V OL(A0A1A2A5) = 0 (28)

or
B3

B4

a4V OL(A0A1A2A3)

a3V OL(A0A1A2A4)
+

B5

B4

a4V OL(A0A1A2A5)

a5V OL(A0A1A2A4)
= 1. (29)
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The volume formula for A0A1A2A4, A0A1A2A3, A0A1A2A5 are used by applying the
orthogonal projection of a3, a4 and a5 on the plane A0A1A2 (see Figure 2.3):

V OL(A0A1A2A4) =
1

6
a1a2a4 sin(α102) sin(α4,102),

V OL(A0A1A2A3) =
1

6
a1a2a3 sin(α102) sin(α3,102),

V OL(A0A1A2A5) =
1

6
a1a2a5 sin(α102) sin(α5,102).

and we place them into (29), which gives

B3

B4

sin(α3,102)

sin(α4,102)
+

B5

B4

sin(α5,102)

sin(α4,102)
= 1. (30)

We denote by αi,j0k the angle that is formulated by the line segment that connects
A0 with the trace of the orthogonal projection of Ai to the plane AjA0Ak with ai, for
i, j, k, l = 1, 2, 3, 4, 5, i 6= j 6= k 6= i.

Similarly, by differentiating cyclically with respect to a2, a3, α′, where α′ is the
dihedral angle between the base of the pyramid which is A1A2A3A5 and the plane
A0A2A3, we obtain the following equation:

B1

a1
V OL(A0A1A2A3)−

B4

a4
V OL(A0A2A3A4) +

B5

a5
V OL(A0A2A3A5) = 0 (31)

or
B1

B4

a4V OL(A0A1A2A3)

a1V OL(A0A2A3A4)
+

B5

B4

a4V OL(A0A2A3A5)

a5V OL(A0A2A3A4)
= 1
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or
B1

B4

sin(α1,203)

sin(α4,203)
+

B5

B4

sin(α5,203)

sin(α4,203)
= 1. (32)

Similarly, by differentiating cyclically with respect to a3, a5, α′′, where α′′ is the
dihedral angle between the base of the pyramid which is A1A2A3A5 and the plane
A0A3A5, we derive the following equation:

B1

a1
V OL(A0A1A3A5) +

B2

a2
V OL(A0A2A3A5)−

B4

a4
V OL(A0A3A4A5) = 0 (33)

or
B1

B4

a4V OL(A0A1A3A5)

a1V OL(A0A3A4A5)
+

B2

B4

a4V OL(A0A2A3A5)

a2V OL(A0A3A4A5)
= 1

or
B1

B4

sin(α1,305)

sin(α4,305)
+

B2

B4

sin(α2,305)

sin(α4,305)
= 1. (34)

Similarly, by differentiating cyclically with respect to a1, a5, α
′′′, where α′′′ is the

dihedral angle between the base of the pyramid which is A1A2A3A5 and the plane
A0A1A5, we get the following equation:

B2

a2
V OL(A0A1A2A5) +

B3

a3
V OL(A0A1A3A5)−

B4

a4
V OL(A0A1A4A5) = 0 (35)

or
B2

B4

a4V OL(A0A1A2A5)

a2V OL(A0A1A4A5)
+

B3

B4

a4V OL(A0A1A3A5)

a3V OL(A0A1A4A5)
= 1

or
B2

B4

sin(α2,105)

sin(α4,105)
+

B3

B4

sin(α3,105)

sin(α4,105)
= 1. (36)

By adding (28), (31), (33), (35), we obtain:

B4

a4
V OL(A1A2A3A4A5) =

(

B1

a1
+

B2

a2
+

B3

a3
+

B4

a4
+

B5

a5
)V OL(A0A1A2A3A5

)

(37)

or
B4

a4

(

H4,1235

h0,1235

− 1

)

=
B1

a1
+

B2

a2
+

B3

a3
+

B5

a5
, (38)

where H4,1235 is the distance from the vertex A4 to the plane A1A2A3A5 and h0,1235 =
h0,123. We continue with the calculation of A0 which is clarified by a1, a2, α. We
replace a3 = a3(a1, a2, α), a4 = a4(a1, a2, α), a5 = a5(a1, a2, α) by (14), (20), (24) in
(38) and square both parts, in order to obtain:

(

B4

a4(a1, a2, α)

(

H4,1235

h0,12 sin(α)
− 1

))2

=

(

B1

a1
+

B2

a2
+

B3

a3(a1, a2, α)
+

B5

a5(a1, a2, α)

)2

.

(39)



A. Zachos, G. Zouzoulas / An Evolutionary Structure of Pyramids 839

By replacing (14), (20), (24) in (28), we get:

B3

a3(a1, a2, α)
h3,12 +

B5

a5(a1, a2, α)
h5,12 =

B4

a4(a1, a2, α)
h4,12

sin(ag − α)

sin(α)
, (40)

or

(

B3

a3(a1, a2, α)
h3,12 +

B5

a5(a1, a2, α)
h5,12

)2

=

(

B4

a4(a1, a2, α)
h4,12

)2(
sin(ag − α)

sin(α)

)2

,

(41)
where hi,12 is the distance from the vertex Ai to the line defined by the vertices A1,
A2, for i = 3, 4, 5.

Two equations (39), (41) are derived with the independent variables a1, a2, α and
the third equation will be found from (4) . We continue by replacing ∂a3

∂a1
, ∂a4

∂a1
, ∂a5

∂a1
in

(4):

(

B1

a1

)

+

(

B3

a3

)[

a23
a12

cos(α123)− sin(α123) cos(α)
a23

2a212h0,12

(−a21 + a22 + a212)

]

+
B4

a4

[

a24
a12

cos(α124)− sin(α124) cos(αg − α)
a24

2a212h0,12

(−a21 + a22 + a212)

]

(42)

+

(

B5

a5

)[

a25
a12

cos(α125)− sin(α125) cos(α)
a25

2a212h0,12

(−a21 + a22 + a212)

]

= 0.

By replacing a3 = a3(a1, a2, α), a4 = a4(a1, a2, α), a5 = a5(a1, a2, α) by (14), (20),
(24) in (42) and by taking into account that h0,12 is a function with respect to a1, a2
(replace (7) in (8)), we derive the third equation that depends on a1, a2, α.

The three equations (39), (41), (42) depend on a1, a2 and α and can be solved
numerically.

Remark 2.2. We assumed that the weighted Fermat-Torricelli pointA0 is an interior
point of A1A2A3A4A5 (Floating Case of (I) at Appendix A) and the corresponding
weights satisfy some weighted inequalities. For extreme cases, we refer at Appendix
A (Absorbed Case of (I) of Appendix A).

Example 2.3. Given a pyramid A1A2A3A4A5 with vertices A1 = (−2, 0, 0), A2 =
(0,−2, 0), A3 = (3, 0, 0), A4 = (0, 0, 5), A5 = (0, 3, 0) which gives a12 = 2

√
2, a23 =

√
13, a24 =

√
29, a25 = 5, cos(α123) = − 1√

26
, cos(α124) =

√

2
29
, cos(α125) = 1√

2
,

ag = 1.29515 rad, h3,12 = 3.53553, h5,12 = 3.53553, h4,12 = 5.19653, H4,1235 = 5
and weights that correspond to the vertices B1 = 1, B2 = 0.7, B3 = 0.5, B4 = 1.5,
B5 = 0.3, respectively, which gives

∑5
i=1 Bi = 4. By taking into consideration the

three equations (39), (41), (42) which depend on a1, a2, α and by choosing three
starting values for instance a◦1 = 0.9, a◦2 = 2.9 and α = 0.6 rad, the Newton method
gives a1 = 2.30471, a2 = 2.38021 and α = 1.00316 rad which gives the coordinates
of A0(−0.33452,−0.24607, 1.57396). This result coincides with the result derived by
the Weiszfeld algorithm ([3]) that approximates A0 = (−0.33452,−0.24607, 1.57396)
with 5-digit precision.
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3. The plasticity property for pyramids in the three-dimensional Eu-
clidean Space.

Problem 3.1. Given the Fermat-Torricelli point A0 for some classes of hexahedra
with their vertices lie on five prescribed rays that meet at A0, find the ratios between
the non negative weights Bi

Bj
, i, j = 1, 2, 3, 4, 5, such that:

5
∑

i=1

Bi = constant. (43)

Solution of the inverse weighted Fermat-Torricelli problem: The invariance
property of the weighted Fermat-Torricelli point A0 (see Appendix A) gives us the
possibility to consider a pyramid A1A2A3A4A5 as a subset of a closed hexahedron
with the vertices lying on five prescribed rays that meet at A0. From the calculation
of A0 (see solution of Problem 2.1) the equations (30), (32), (34), (36) and (43) give
a solution to the inverse weighted Fermat-Torricelli problem.

We show that the solution of the inverse weighted Fermat-Torricelli problem for
hexahedra is obtained by (30), (32), (34), (36) which have been derived from the
calculation of the weighted Fermat-Torricelli point of pyramids because these equa-
tions depend only on the angles αi0j (see Figure 3.1), for i, j = 1, 2, 3, 4, 5, i 6= j
and not on the shape of the pyramids and by considering the invariance property
of the weighted Fermat-Torricelli point (see Appendix A) we derive an evolutionary
structure for some classes of closed hexahedra in R

3.

Proposition 3.2. The following equations point out the plasticity of weighted pyra-
mids with respect to the non-negative variable weights (Bi)12345 in R

3:

(

B3

B4

)

12345

=

(

B3

B4

)

1234

(

1−
(

B5

B4

)

12345

(

B4

B5

)

1245

)

, (44)

(

B1

B4

)

12345

=

(

B1

B4

)

1234

(

1−
(

B5

B4

)

12345

(

B4

B5

)

2345

)

, (45)

(

B2

B4

)

12345

=

(

B2

B4

)

1234

(

1 +

(

B5

B4

)

12345

(

B4

B5

)

1345

)

, (46)

where the weight (Bi)12345 corresponds to the vertex that lies in the ray A0Ai, for
i = 1, 2, 3, 4, 5, and the weight (Bj)jklm corresponds to the vertex Aj that lies in
the ray A0Aj regarding the tetrahedron AjAkAlAm, for j, k, l,m = 1, 2, 3, 4, 5 and
j 6= k 6= l 6= m.

Proof of Proposition 3.2. By taking into consideration (30), we obtain:

(

B3

B4

)

12345

=
sin(α4,102)

sin(α3,102)

(

1−
(

B5

B4

)

12345

sin(α5,102)

sin(α4,102)

)

. (47)
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We make use of the solution of the inverse weighted Fermat-Torricelli problem for
the tetrahedra A1A2A3A4 and A1A2A4A5 (see [5]):

(

B3

B4

)

1234

=
sin(α4,102)

sin(α3,102)
(48)

and
(

B4

B5

)

1245

=
sin(α5,102)

sin(α4,102)
. (49)

By replacing (48), (49) in (47), we obtain (44).
Similarly, by taking into consideration (32), we obtain:

(

B1

B4

)

12345

=
sin(α4,203)

sin(α1,203)

(

1−
(

B5

B4

)

12345

sin(α5,203)

sin(α4,203)

)

. (50)

We make use of the solution of the inverse weighted Fermat-Torricelli problem for
the tetrahedra A1A2A3A4 and A2A3A4A5 (see [5]):

(

B1

B4

)

1234

=
sin(α4,203)

sin(α1,203)
(51)

and
(

B4

B5

)

2345

=
sin(α5,203)

sin(α4,203)
. (52)

By replacing (51), (52) in (50), we obtain (45).
We proceed by differentiating (1) with respect to a1, a3, α

′′′′ where α′′′′ is the dihedral
angle between the base of the pyramid which is A1A2A3A5 and the plane A0A1A3

and one of the derived equations we obtain with respect to α′′′′ is:

B2

a2
V OL(A0A1A2A3)−

B4

a4
V OL(A0A1A3A4)−

B5

a5
V OL(A0A1A3A5) = 0 (53)

or
(

B2

B4

)

12345

a4V OL(A0A1A3A2)

a2V OL(A0A1A3A4)
−

(

B5

B4

)

12345

a4V OL(A0A1A3A5)

a5V OL(A0A1A3A4)
= 1

or
(

B2

B4

)

12345

sin(α2,103)

sin(α4,103)
−
(

B5

B4

)

12345

sin(α5,103)

sin(α4,103)
= 1

or
(

B2

B4

)

12345

=
sin(α4,103)

sin(α2,103)

(

1 +

(

B5

B4

)

12345

sin(α5,103)

sin(α4,103)

)

. (54)

We make use of the solution of the inverse weighted Fermat-Torricelli problem for
the tetrahedra A1A2A3A4, A1A3A4A5, we get, respectively (see [5]):

(

B2

B4

)

1234

=
sin(α4,103)

sin(α2,103)
, (55)
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(

B4

B5

)

1345

=
sin(α5,103)

sin(α4,103)
. (56)

By replacing (55) and (56) in (54), we derive (46).

Given the angles αi0j that are formulated between the rays A0Ai and A0Aj (see Figure
3.1) of the weighted Fermat-Torricelli point A0, we will calculate the angles ai,j0k, for
i, j, k = 1, 2, 3, 4, 5, i 6= j 6= k 6= i. We express the unit vectors ~ai for i = 1, 2, 3, 4, 5 in
a parametric form:

~a1 = (1, 0, 0), (57)

~a2 = (cos(α102), sin(α102), 0), (58)

~a3 = (cos(α3,102) cos(ω3,102), cos(α3,102) sin(ω3,102), sin(α3,102)), (59)

~a4 = (cos(α4,102) cos(ω4,102), cos(α4,102) sin(ω4,102), sin(α4,102)), (60)

~a5 = (cos(α5,102) cos(ω5,102), cos(α5,102) sin(ω5,102), sin(α5,102)), (61)

such that: |~ai| = 1. The inner product of ~ai, ~aj is:

~ai · ~aj = cos(αi0j). (62)

We take into consideration (62), for i, j = 1, 2, 3, 4, 5, in order to find the angles
α3,102, α4,102, α5,102. The angles αi,j0k can be derived by working cyclically with ~ai
and choosing similar parametrization with respect to (57)–(61), regarding the plane
AjA0Ak for i, j, k = 1, 2, 3, 4, 5, i 6= j 6= k 6= i.

We consider the following inner products:

~a1 · ~a3 = cos(α103) = cos(α3,102) cos(ω3,102), (63)

~a2 · ~a3 = cos(α203) (64)

= cos(α102) cos(α3,102) cos(ω3,102) + sin(α102) cos(α3,102) sin(ω3,102).

From (63), we replace cos(ω3,102) and sin(ω3,102) in (64) and obtain the equation:

cos2(α3,102) =
cos2(α203) + cos2(α103)− 2 cos(α203) cos(α103) cos(α102)

sin2(α102)
. (65)

Similarly, we obtain the equation for α4,102:

cos2(α4,102) =
cos2(α204) + cos2(α104)− 2 cos(α204) cos(α104) cos(α102)

sin2(α102)
. (66)

Similarly, we obtain the equation for α5,102:

cos2(α5,102) =
cos2(α205) + cos2(α105)− 2 cos(α205) cos(α105) cos(α102)

sin2(α102)
. (67)
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The ratio
(Bj

Bi

)

ijkm
, referring to the tetrahedron AiAjAkAm is given by the relation

(see also in [5]):

(

Bj

Bi

)2

ijkm

=
sin2(αk0m)− cos2(αm0i)− cos2(αk0i) + 2 cos(αm0i) cos(αk0i) cos(αk0m)

sin2(αk0m)− cos2(αm0j)− cos2(αk0j) + 2 cos(αm0j) cos(αk0j) cos(αk0m)

(68)

The ratio
(Bj

Bi

)

ijkm
depends on five given angles al0n for l, n ∈ {i, j, k,m},

l 6= n, {i, j, k,m} ∈ {1, 2, 3, 4, 5} and from this result it can be derived that the

ratios
(Bj

B4

)

12345
of the pyramid A1A2A3A4A5 depend on seven given angles an0p for

n, p ∈ {1, 2, 3, 4, 5} and n 6= p.

By replacing (44), (45), (46) in (43) we obtain a linear dynamical system with respect
to (Bi)12345 that depends on (B5)12345 for i = 1, 2, 3, 4.

The equation (43) is used to decrease the independent variables of the initial dynami-
cal system with respect to (Bi)12345 for i = 1, 2, 3, 4, 5 from two independent variables
to one independent variable, for instance (B5)12345.

The following corollary shows the decomposition of the weights (Bi)12345 to the
weights Bijk4 that correspond to evolutionary tetrahedra AiAjAkA4, for i, j, k =
1, 2, 3, 4, 5, i 6= j 6= k and deduces the qualitative behavior of the dynamical system
in R

3 with respect to the variable weights (Bi)12345.

Corollary 3.3. Set
∑

12345 B := (B4)12345
(

B1

B4

+ B2

B4

+ B3

B4

+1+ B5

B4

)

12345
. If

∑

12345 B =
∑

1234 B =
∑

1245 B =
∑

2345 B, then

(Bi)12345 = xi(B5)12345 + (Bi)1234, i = 1, 2, 3, 4 :

x1 = x4

(

B1

B4

)

1234

−
(

B4

B5

)

2345

(

B1

B4

)

1234

,

x2 = x4

(

B2

B4

)

1234

+

(

B4

B5

)

1345

(

B2

B4

)

1234

,

x3 = x4

(

B3

B4

)

1234

−
(

B4

B5

)

1245

(

B3

B4

)

1234

,

x4 =

(

B4

B5

)

2345

(

B1

B4

)

1234
+
(

B4

B5

)

1245

(

B3

B4

)

1234
−

(

B4

B5

)

1345

(

B2

B4

)

1234
− 1

1 +
(

B1

B4

)

1234
+
(

B2

B4

)

1234
+
(

B3

B4

)

1234

.

Proof of Corollary 3.3. From the assumption of the corollary we get:

∑

12345

B := (B4)12345

(

B1

B4

+
B2

B4

+
B3

B4

+ 1 +
B5

B4

)

12345

= (B4)1234

(

B1

B4

+
B2

B4

+
B3

B4

+ 1

)

1235
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By replacing to the above relation (44), (45) and (46), we derive:

(B4)12345 (69)

=

(

B4

B5

)

2345

(

B1

B4

)

1234
+
(

B4

B5

)

1245

(

B3

B4

)

1234
−

(

B4

B5

)

1345

(

B2

B4

)

1234
− 1

1 +
(

B1

B4

)

1234
+
(

B2

B4

)

1234
+
(

B3

B4

)

1234

(B5)12345 + (B4)1234

or
(B4)12345 = x4(B5)12345 + (B4)1234.

By replacing (69) in (44), (45) and (46), respectively, we get three relations:

(B1)12345 =

(

x4

(

B1

B4

)

1234

−
(

B4

B5

)

2345

(

B1

B4

)

1234

)

(B5)12345 + (B1)1234, (70)

(B2)12345 =

(

x4

(

B2

B4

)

1234

+

(

B4

B5

)

1345

(

B2

B4

)

1234

)

(B5)12345 + (B2)1234, (71)

(B3)12345 =

(

x4

(

B3

B4

)

1234

−
(

B4

B5

)

1245

(

B3

B4

)

1234

)

(B5)12345 + (B3)1234. (72)

Example 3.4. Given the weighted Fermat-Torricelli point A0 at time t = 0 with the
vertices lie on five prescribed rays and suppose that we can select one vertex at each
ray such that four vertices form the base of a pyramid with given exactly seven angles,
α102 = 74.2549◦, α203 = 68.9375◦, α105 = 70.9964◦, α204 = 134.057◦, α103 = 110.736◦,
α104 = 137.766◦, α205 = 111.097◦ (α304, α405, α305 are calculated by (62)) of the
weighted Fermat-Torricelli problem for a given pyramid and the assumption that
∑

12345 B =
∑

1234 B =
∑

1345 B =
∑

2345 B = 4, we calculate the weights for the
tetrahedra A1A2A3A4, A2A3A4A5, A1A3A4A5 and A1A2A4A5 according to (68):

Tetrahedron : (A1A2A3A4) : (B1)1234 = 1.28735, (B2)1234 = 0.40473,

(B3)1234 = 0.806684, (B4)1234 = 1.50127,

∑

1234

B = 4,

Tetrahedron : (A2A3A4A5) : (B2)2345 = 1.3459, (B3)2345 = 0.441947,

(B4)2345 = 1.16511, (B5)2345 = 1.04704,

∑

2345

B = 4,

Tetrahedron : (A1A3A4A5) : (B1)1345 = 1.39673, (B3)1345 = 1.01689,

(B4)1345 = 1.24564, (B5)1345 = 0.340745,

∑

1345

B = 4,
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Tetrahedron : (A1A2A4A5) : (B1)1245 = 0.531531, (B2)1245 = 1.18143,

(B4)1245 = 1.49794, (B5)1245 = 0.7891,

∑

1245

B = 4.

The equations of the initial system with respect to the weights (Bi)12345 are:

(B1)12345 = 0.857506(B4)12345 − 0.954195(B5)12345,

(B2)12345 = 0.269574(B4)12345 + 0.985461(B5)12345,

(B3)12345 = 0.537336(B4)12345 − 1.02001(B5)12345.

From Proposition 3.2 and Corollary 3.3 the following results are derived:

(B4)12345 − (B4)1234 = −0.00422457(B5)12345, (73)

(B1)12345 − (B1)1234 = −0.957818(B5)12345, (74)

(B2)12345 − (B2)1234 = 0.984322(B5)12345, (75)

(B3)12345 − (B3)1234 = −1.02228(B5)12345, (76)

or
(B1)12345 = 1.28735− 0.957818(B5)12345,

(B2)12345 = 0.404703 + 0.984322(B5)12345,

(B3)12345 = 0.806685− 1.02228(B5)12345,

(B4)12345 = 1.50127− 0.00422457(B5)12345,

and
∑

12345 B = 4. The range of (B5)12345, (B4)12345, (B1)12345, (B2)12345, (B3)12345 is:

0 6 (B5)12345 6 0.789104,

1.28735 > (B1)12345 > 0.78104,

0.404703 6 (B2)12345 6 1.18144,

0.806685 > (B3)12345 > 0,

1.50127 > (B4)12345 > 1.49794.

For instance, for (B5)12345 = 0.3, we get:

(B1)12345 = 1, (B2)12345 = 0.7, (B3)12345 = 0.5, (B4)12345 = 1.5,

for (B5)12345 = 0.4, we get:

(B1)12345 = 0.904218, (B2)12345 = 0.798431,

(B3)12345 = 0.397773, (B4)12345 = 1.49958,

and for (B5)12345 = 0.7, we obtain:

(B1)12345 = 0.616873, (B2)12345 = 1.09373,

(B3)12345 = 0.0910888, (B4)12345 = 1.49831.
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B1

B2

B3

B4

B5

A1

A2

A3

A4

A5
A0

α102
α103

α104

α105 α203

α204

α304

α305

α405

plane A1A2A3A5

Figure 3.1.

Remark 3.5. By taking into consideration Figure 3.1, the weights B1, B3, B4 de-
crease and the weights B2, B5 increase (see equations (73), (74), (75) and (76)). This
result indicates the plasticity property of the evolution of pyramids.

Remark 3.6. For values of B1, B2, B3, B4, which depend on B5 according to Corol-
lary 3.3 and for any value of the vertex Ai which lies in the line A0Ai such that the
inequalities of the weighted floating case are satisfied (see Appendix A), the weighted
Fermat-Torricelli point A0 remains invariant.

q

B1 = 1

B2 = 0.7

B3 = 0.5

B4 = 1.5

B5 = 0.3

A1

A2

A3

A4

A5

A0

a1 = 2.30471
a2 = 2.38023

a3 = 3.69554

a4 = 3.45112

a5 = 3.62302

Figure 3.2.

Example 3.7. Let A1A2A3A4A5 be the given pyramid as Example 3.4 with a1 =
2.30471, a2 = 2.38023, a3 = 3.69554, a4 = 3.45112, a5 = 3.62302, α102 = 74.2549◦,
α203 = 68.9375◦, α304 = 109.305◦, α405 = 111.004◦, α105 = 70.9964◦, α204 = 134.057◦,
α103 = 110.736◦, α104 = 137.766◦, α205 = 111.097◦ and weights taken from the
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B1 = 0.904218

B2 = 0.794831

B3 = 0.397773

B4 = 1.49958

B5 = 0.4

A1

A2

A3

A4

A5

A0

a1 = 2.30471
a2 = 2.38023

a3 = 3.69554

a4 = 3.45112

a5 = 3.62302

plane A1A2A3A5

Figure 3.3.

plasticity equations of Example 3.4 for (B5)12345 = 0.3:

(B1)12345 = 1, (B2)12345 = 0.7,

(B3)12345 = 0.5, (B4)12345 = 1.5.

B1 = 0.904218

B2 = 0.794831

B3 = 0.397773

B4 = 1.49958

B5 = 0.4

A1

A2

A′

3

A4

A′

5

A0

α102
α103

α105 α203

α204

α304

α305

α405

a1 = 2.30471

a2 = 2.38023

a′
3
= 3.69554

a4 = 3.45112

a′
5
= 3.62302

plane A1A2A3A5

plane A1A2A
′

3
A′

5

Figure 3.4.

The weighted Fermat-Torricelli point of the pyramid A1A2A3A4A5 is A0 (see Figure
3.2). The pyramid A1A2A3A4A5 of Figure 3.2 has the same angles αi0j and line
segments ai, i, j = 1, 2, 3, 4, 5, i 6= j like in Figure 3.3 with weights

(B1)12345 = 0.904218, (B2)12345 = 0.798431,

(B3)12345 = 0.397773, (B4)12345 = 1.49958, (B5)12345 = 0.4
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taken from the plasticity equations of Example 3.4. By comparing the Figure 3.2 with
Figure 3.3, the weighted Fermat-Torricelli point remains the same. Let A1A2A

′
3A4A

′
5

be a pyramid such that A1A2A
′
3A

′
5 be the base of the pyramid and A′

i is the vertex
that exist at the line that connects the point A0 of A1A2A

′
3A4A

′
5 with Ai for i = 3, 5,

such that a′3 = 4.43464, a′5 = 4.34763 with the angles αi0j with the other line segments
and weights Bi, for i = 1, 2, 3, 4, 5, to be the same as in Figure 3.4. The weighted
Fermat-Torricelli point A0 of Figure 3.3 and Figure 3.4 remains also the same. We
call the plane A1A2A

′
3A4A

′
5 defined by the base of the pyramid A1A2A

′
3A4A

′
5 evolu-

tionary plane. Let A1A2A
′
3A4A

′
5 be a pyramid with weights taken from the plasticity

equations of Example 3.4 (see Figure 3.5)

(B1)12345 = 0.616873, (B2)12345 = 1.09373,

(B3)12345 = 0.0910888, (B4)12345 = 1.49831, (B5)12345 = 0.7.

B1 = 0.616873

B2 = 1.09373

B3 = 0.0910888

B4 = 1.49831

B5 = 0.7

A1

A2

A′

3

A4

A′

5

A0

α102
α103

α105 α203

α204

α304

α305

α405

a1 = 2.30471

a2 = 2.38023

a′
3
= 4.43464

a4 = 3.45112

a′
5
= 4.34763

plane A1A2A3A5

plane A1A2A
′

3
A′

5

Figure 3.5.

The weighted Fermat-Torricelli point A0 of Figure 3.4 and Figure 3.5 remains also
invariant.

4. The generalized plasticity of pyramids in the three dimensional Eu-
clidean Space

Proposition 4.1. Let A1A2A3A4A5 be a pyramid with the base A1A2A3A5 in R
3 and

with non-negative weights Bi that correspond to each vertex Ai, respectively, which
satisfy the weighted inequalities of the floating case (Appendix A.I) and A0 is the
corresponding generalized Fermat-Torricelli point. Assume that every non-negative
weight Bi is split into ni non-negative weights Bik:

ni
∑

k=1

Bik = Bi,
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for i = 1, 2, 3, 4, 5. The weight Bi,k corresponds to every vertex Ai,k which belongs to
the line segment A0Ai, for every k 6= ni and the weight Bi,ni

corresponds to the vertex
Ai = Ai,ni

. Then the generalized Fermat-Torricelli point of {Ai,k} coincides with the
generalized Fermat-Torricelli point of {A1A2...An}.

Proof of Proposition 4.1. We will prove that the minimum of g(X) is attained at
X = A0.

g(X) =
5

∑

i=1

ni
∑

k=1

Bi,k ‖Ai,k −X‖ , (77)

where ‖‖ is the Euclidean norm in R
3. The gradient of g(X) gives:

grad(g(X)) =
5

∑

i=1

ni
∑

k=1

Bi,k~u(X,Ai,k), (78)

X ∈ R
3/{Ai,k}, for i = 1, 2, ..., n, k = 1, 2, ..., ni. We make use of the following result

(see [1], page 238):

(1) If X ∈ R
3/{Ai,k}, then X is the minimum point of g(X) if and only if the sum

of the
∑5

i=1 ni from X to {Ai,k} is zero. By replacing X = A0 in (78) we have:

grad(g(A0)) =
5

∑

i=1

ni
∑

k=1

Bi,k~u(A0, Ai,k) =
5

∑

i=1

Bi~u(A0, Ai) = ~0.

This result follows from the parallel translation of the unit vectors ~u(A0, Ai,k) along
the ray A0Ai to Ai, the uniqueness property of the generalized Fermat-Torricelli point
A0 of {A1A2A3A4A5}.
The uniqueness property of the generalized Fermat-Torricelli point A0 of {Ai,k}, is
deduced by the strict convexity of the Euclidean norm in R

3.

Example 4.2. Evolution of the weighted Fermat-Torricelli point due to the dis-
cretization of the weights along the five prescribed rays in the three-dimensional
Euclidean Space.
Let A1A2A

′
3A4A

′
5 be the same pyramid with the base A1A2A

′
3A

′
5 and A0 is the

weighted Fermat-Torricelli point with the weights (Bi)12345 for i = 1, 2, 3, 4, 5 given
from the plasticity equations from Example 3.4 for (B5)12345 = 0.7 (see Figure
3.5). Let Ai,j be points that lie on the prescribed ray A0Ai for i = 1, 2, 3, 4, 5,
j = 1, 2, 3, i 6= j and for i = j Ai,i = Ai, with corresponding weights Bi,j (see Figure
4.1):

B1,1 = 0.1, B1,2 = 0.1, B1,3 = 0.416873,
3

∑

j=1

B1,j = 0.6168673,

B2,1 = 0.1, B2,2 = 0.1, B2,3 = 0.89373,
3

∑

j=1

B2,j = 1.09373,
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A1

A2

A′

3

A4

A′

5

A0

B1,1 = 0.1
B1,2 = 0.1

B1,3 = 0.416873

B2,1 = 0.1

B2,2 = 0.1
B2,3 = 0.89373

B3,1 = 0.01
B3,2 = 0.02

B3,3 = 0.0610888

B4,1 = 0.01

B4,2 = 0.01

B4,3 = 1.47831

B5,1 = 0.1
B5,2 = 0.1

B5,3 = 0.5

plane A1A2A
′

3
A′

5

Figure 4.1.

B3,1 = 0.01, B3,2 = 0.02, B3,3 = 0.0610888,
3

∑

j=1

B3,j = 0.0910888,

B4,1 = 0.01, B4,2 = 0.01, B4,3 = 1.47831,
3

∑

j=1

B4,j = 1.49831,

B5,1 = 0.1, B5,2 = 0.1, B5,3 = 0.5,
3

∑

j=1

B5,j = 0.7,

5
∑

i=1

3
∑

j=1

Bi,j = 4,

and
3

∑

j=1

Bi,j = (Bi)12345,

for i = 1, 2, 3, 4, 5. By using the Weiszfeld algorithm we calculate the weighted Fermat-
Torricelli point A0 of the pyramid A1A2A

′
3A4A

′
5 with corresponding weights taken

from Example 3.12 (see Figure 3.5). By using the Weiszfeld algorithm we calculate
the weighted Fermat-Torricelli point A′

0 of Ai,j with corresponding weights Bi,j (see
Figure 4.1). We obtain that: A0 = A′

0.

We conclude with the following evolutionary scheme:

(1) Invariance of A0 with respect to the variable discretization of the "weights"
Bik located on the corresponding i-th ray in space (variable lengths A0Aik) and
quantum, under the condition:

ni
∑

k=1

Bik = Bi.
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(2) Invariance of A0 with respect to the variable Bi which fulfill the four equations
of Proposition 3.2 (plasticity) for i = 1, 2, 3, 4, 5 of 5 prescribed rays that meet
at A0 (at least seven angles must be given):

(∑n3

k=1 B3k
∑n4

k=1 B4k

)

12345

=

(

B3

B4

)

1234

(

1−
(∑n5

k=1 B5k
∑n4

k=1 B4k

)

12345

(

B4

B5

)

1245

)

, (79)

(∑n1

k=1 B1k
∑n4

k=1 B4k

)

12345

=

(

B1

B4

)

1234

(

1−
(∑n5

k=1 B5k
∑n4

k=1 B4k

)

12345

(

B4

B5

)

2345

)

, (80)

(∑n2

k=1 B2k
∑n4

k=1 B4k

)

12345

=

(

B2

B4

)

1234

(

1 +

(∑n5

k=1 B5k
∑n4

k=1 B4k

)

12345

(

B4

B5

)

1345

)

, (81)

and
5

∑

i=1

Bi = B0.

We call this variation of Bik and Bi in space and quantum "generalized plastici-
ty".
By using "Steiner" trees as a consequence of Fermat-Torricelli points this plas-
ticity will be reduced.

A. Appendix

We need the following results given in [1], Theorem 18.37, page 250, (see also [2]):

(I) The weighted Fermat-Torricelli point A0 of the pyramid A1A2A3A4A5 exists and
is unique.
(i) If

∥

∥

∥

∥

∥

n
∑

j=1

Bj~u(Ai, Aj)

∥

∥

∥

∥

∥

> Bi, i 6= j.

for i, j = 1, 2, 3, 4, 5, then the weighted Fermat-Torricelli point is an interior
point of the pyramid A1A2A3A4 (Floating Case).

(ii) If there is some i with

∥

∥

∥

∥

∥

n
∑

j=1

Bj~u(Ai, Aj)

∥

∥

∥

∥

∥

≤ Bi, i 6= j.

for i, j = 1, 2, 3, 4, 5, then the weighted Fermat-Torricelli point is the vertex
Ai (Absorbed Case).

(II) Suppose that there is a closed polyhedron A1A2 . . . An in R
3 and each vertex Ai

has a non-negative weight Bi for i = 1, 2, . . . , n. Assume that the floating case
of the generalized weighted Fermat-Torricelli point A0 point is valid:
for each Ai ∈ {A1, . . . , An}

∥

∥

∥

∥

∥

n
∑

j=1

Bj~u(Ai, Aj)

∥

∥

∥

∥

∥

> Bi, i 6= j.
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If A0 is connected with every vertex Ai for i = 1, 2, . . . , n and a point A′
i is

selected with a non-negative weight Bi of the line that is defined by the line
segment A0Ai and the n-convex polyhedron A′

1A
′
2...A

′
n is constructed such that:

∥

∥

∥

∥

∥

n
∑

j=1

Bj~u(A
′
i, A

′
j)

∥

∥

∥

∥

∥

> Bi, i 6= j.

Then the generalized weighted Fermat-Torricelli point A′
0 is identical with A0

(invariance property).

Proof of (II). The existence and uniqueness of the generalized weighted Fermat-
Torricelli point given n non-collinear points A1, ...An ∈ R

d has been established (see
[1], Theorem 18.37, page 250). Furthermore, if for each point Ai ∈ {A1, . . . , An}

∥

∥

∥

∥

∥

n
∑

j=1

Bj~u(Ai, Aj)

∥

∥

∥

∥

∥

> Bi, i 6= j

holds, then

(a) the weighted minimum point A0 does not belong to Ai ∈ {A1, . . . , An}
(b)

n
∑

i=1

Bi~u(A0, Ai) = ~0, i 6= j

(weighted floating case).

We consider the particular case for d = 3, regarding the n-convex polyhedron A1(x1,
y1, z1), . . .,An(xn, yn, zn). Let A0(x0, y0, z0) be the coordinates of the weighted Fermat
Torricelli point (critical).

The minimum conditions are:

∂f

∂x
=

n
∑

i=1

Bi

(x− xi)
√

(x − xi)2 + (y − yi)2 + (z − zi)2
= 0,

∂f

∂y
=

n
∑

i=1

Bi

(y − yi)
√

(x − xi)2 + (y − yi)2 + (z − zi)2
= 0,

∂f

∂z
=

n
∑

i=1

Bi

(z − zi)
√

(x − xi)2 + (y − yi)2 + (z − zi)2
= 0.

We use the following transformation in spherical coordinates:

x− xi = Ri cos(θi) cos(ϕi),

y − yi = Ri cos(θi) sin(ϕi),

z − zi = Ri sin(θi).
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The minimum conditions of the objective function f(x,y,z) takes the form:

∂f

∂x
=

n
∑

i=1

Bi cos(θi) cos(ϕi) = 0,

∂f

∂y
=

n
∑

i=1

Bi cos(θi) sin(ϕi) = 0,

∂f

∂z
=

n
∑

i=1

Bi sin(θi) = 0.
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