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L. Montejano
Instituto de Matemáticas, UNAM, México
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Let K ⊂ R
3 be a convex body. A point p0 is a point of revolution for K if every section of K through

p0 has an axis of symmetry that passes through p0. In particular, every point that lies in an axis of
revolution is a point of revolution. A line L ⊂ R

3 is a false axis of revolution, if every point of L
is a point of revolution for K but L is not an axis of revolution. The purpose of this paper is to
prove that only solid spheres admit a false axis of revolution.

1. Introduction

Let K be a convex body in the Euclidean space R
3. A point p ∈ R

3 is called a false

centre of K if p is not a centre of symmetry of K but for any plane H through p,
we have that the section H ∩ K is either empty or centrally symmetric. The False
Centre Theorem claims that a convex set K ⊂ R

n with a false centre is an ellipsoid
[1], [4], [6] (we also recommend to see [2] and [7]). Following the same spirit we have
the following.

Let L be an axis of revolution for a convex body K ⊂ R
3. Then every point p0 ∈ L

has the following property: "every section of K through p0 has an axis of symmetry
that passes through p0". This motivates the following definition:

Definition. Let K be a convex body in the Euclidean 3-space R
3. A point p0 ∈ R

3

is a point of revolution for K if for every plane H through p0 that intersects K, the
section K ∩H has an orthogonal axis of symmetry that passes through p0.

So, every point that lies in an axis of symmetry of K is a point of revolution for K
and therefore, for a solid sphere, every point of R3 is a point of revolution.

Definition. Let K be a convex body in the Euclidean 3-space R3. A line L ⊂ R
3 is

a false axis of revolution, if every point of L is a point of revolution for K and L is
not an axis of revolution.
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We shall prove in this paper that a convex body with a false axis of revolution must
be a solid sphere.

Still there are convex bodies with an isolated point of revolution p0 in its interior. In
fact it was conjectured that a convex body with a point all whose sections through
it have axis of symmetry must be a body of revolution or an ellipsoid. This is not
true, for the following two examples in which the origin is a point of revolution and
every section has exactly two orthogonal axes of symmetry through the origin. In [5]
Montejano proved that if this is so, then there is always a circular section through
the origin. Nevertheless there is still open the conjecture stated by K. Bezdek [3]
that claims that a convex body all whose sections have an axis of symmetry must be
either an ellipsoid or a body of revolution.

Example 1.1. Let K be the convex hull of two orthogonal and concentric circles of
the same radius.

Example 1.2. Consider an ellipsoid E. Then, through its centre, there are two
different concentric circular sections. If this two concentric circular sections are or-
thogonal, let K be the intersection of two orthogonal copies of E, which coincide on
its circular sections.

As we said before, the main purpose of this paper is to prove the following:

Theorem 1.3. Let K ⊂ R
3 be a strictly convex body and L ⊂ R

3 be a line. Suppose

that L is a false axis of revolution for K, then K is a solid sphere.

2. Proof when the false axis of symmetry and K are disjoint.

Lemma 2.1. For every plane Π passing through L, the section Π∩K is an Euclidean

disc.

Proof. The proof of this lemma is straightforward, since through every point of L
passes a line of symmetry for Π ∩K.

In what follows, we will say that a line is a diametral line of a convex body K if this
line contains an affine diameter (diametral chord) of K. Also, we will denote by [a, b]
and ab the segment and the line through the points a and b, respectively.

Lemma 2.2. Let p /∈ K be a point of revolution for K. If L1 is a diametral line

of K passing through p, then the sections which are orthogonal to L1 are centrally

symmetric with centers in L1.

Proof. Let p /∈ K be a point of revolution for K and let L1 be a diametral line of
K passing through p. Let Π be a plane, L1 ⊂ Π. Since p is a point of revolution
for K, there exists a line of symmetry, L2, of Π ∩ K passing through p. We affirm
that L2 = L1. Otherwise, we would have that L1 would be contained in an open
half-plane determined by L2, which contradicts the fact that L1 is a diametral line of
K. Since the aforesaid is true for every Π passing through L1, the sections which are
orthogonal to L1 are centrally symmetric with centers in L1.
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Now, let H be a plane containing L which intersects K in a disc of maximum radius.

Lemma 2.3. If [a, b] is a diametral chord of K, with ab∩L 6= ∅, then ab is contained
in H.

Proof. Suppose to the contrary that [c, d] is a diametral chord of K, with cd ∩L 6= ∅,
which is not contained in the planeH. Furthermore, suppose that cd is not orthogonal
to L. Notice that, the existence of this chord is clear since there is only one diametral
chord of K which intersects L and is orthogonal to it. Now, let y = cd ∩ L, and
consider the diameter [a, b], of H ∩K passing through y. Let H ′ be the plane aff (cd∪
L), and let L′ be the symmetric image of L with respect to cd in the plane H ′. Since
every section of K by a plane orthogonal to cd is centrally symmetric (by Lemma
2.2), we have that L′ have the same properties as L. Let H ′′ = aff (L′ ∪ ab). Since
H,H ′, and H ′′ are all different, then (by Lemma 2.1) we have that H ′′ ∩K is a disc
different of H∩K. Let La, Lb and L′′

a, L
′′

b be the supporting lines of H∩K and H ′′∩K,
through a and b, respectively. Clearly, La, Lb, L

′′

a, L
′′

b , are all of them orthogonal to ab,
then we easily deduce that [a, b] is a diametral chord of K. This is impossible, since
a convex body K cannot have two outward normal vectors intersecting each other in
an exterior point of K. This contradiction shows that [c, d] ⊂ H.

Lemma 2.4. K is centrally symmetric.

Proof. In order to prove the lemma, we are going to prove that the sections of K
with planes containing W are centrally symmetric, where W is the diametral line of
K which is orthogonal to H. Let D be a diametral line of K contained in H. In
virtue that L ∩D is a point of revolution for K, from Lemma 2.2, the sections of K
orthogonal to D are centrally symmetric. In particular, if Π is a plane orthogonal to
D and W ⊂ Π, then Π ∩K is centrally symmetric. Since W is a diametral line of K,
W is a diametral line of Π∩K. Thus the midpoint of W ∩K is the center of Π ∩K.
Now, by Lemma 2.3 we have that every diameter of H ∩K is a diametral chord of K,
then we apply the above arguments and conclude that K is centrally symmetric.

W.L.G. we may consider that the centre ofK is at the origin O. Now, we will proceed
to give the proof of the theorem for the case when L ∩K = ∅.

Proof of Theorem 1.3 when L ∩K = ∅. First at all, we will prove that the sec-
tions of K with planes that contain W are shadow boundaries of K. Let Π be a plane
containing W . Let Π1 be a plane parallel to Π and let D be the diametral chord of
K orthogonal to Π. Since D ∩ L is a point of revolution for K, from Lemma 2.2, we
have Π1∩K is centrally symmetric with center in D. Since K is centrally symmetric
and the center of −(Π1 ∩K) is in D as well, we have:

−(Π1 ∩K) = αυ + (Π1 ∩K), (1)

where υ is a unit vector parallel to D and α > 0 is a real number. Thus the shadow
boundary of K in the direction of υ is contained between the planes Π1 and −Π1.
Finally, considering the sequence of planes Π1, such that Π1 → Π, in virtue of (1),
we conclude that Π ∩K is the shadow boundary of K in direction υ.
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From here we have that there are two supporting planes of K at the extreme points
of W ∩K, H1, H2 which are parallel to H. Now, we will prove that K is a body of
revolution with axis W. Let Γ be a plane parallel to H which intersects the interior of
K. Now, let C = bdK ∩H and C ′ be the orthogonal projection of bd(Γ∩K) on the
plane H. Consider a line Λ ⊂ H through O, and let a, b be the points of intersection
of Λ with C. Also, let a′, b′ be the corresponding points of intersection of Λ with C ′.
Since we know that the tangent lines to C and C ′ through the points a, b, a′, b′ are all
parallel we obtain that C ′ is homothetic to C, that is, C ′ is a circle. Hence, Γ∩K is
a disc with center in W. Consequently K is a body of revolution with axis W .

Finally, consider an arbitrary plane Π containing L and intersecting K, and let Φ be
the circular section Π∩K. SinceK hasW as a line of revolution, then there is only one
sphere Σ with center at W and such that bdΦ ⊂ Σ. While rotating through W the
circle bdΦ, the resulting circles remain always at Σ and also at bdK, because both
have W as a line of revolution. Since the above is true for every plane Π containing
L, we conclude that K is a solid sphere.

Remark 2.5. Notice that this proof works for the case when L is tangent to K, that
is, L intersects K only in its boundary.

3. Proof when the false axis of symmetry intersects intK.

In this case we were able to remove the hypothesis of strict convexity, that is, we
prove:

Theorem 3.1. Let K ⊂ R
3 be a convex body and L ⊂ R

3 be a line such that L ∩
intK 6= ∅. Suppose that L is a false axis of revolution for K, then K is a solid sphere.

Proof of Theorem 3.1. Let Π be a plane passing trough L. Since each point p in
L is a revolution point of K, there exists a line of symmetry of Π∩K passing trough
p, say Lp. If Lp 6= L for all p ∈ L, then Π ∩K is a circle. If Lp = L for some p ∈ L,
then Π∩K is symmetric with respect to L. Consequently, we have three possibilities:

(1) For each plane Π, L ⊂ Π, the section Π ∩K is symmetric with respect to L.

(2) For each plane Π, L ⊂ Π, the section Π ∩K is a circle.

(3) There exists two different planes Π1, Π2, passing through L, such that the
section Π1 ∩K is a circle and L is not a line of symmetry of it and the section
Π2 ∩K has L as a line of symmetry but is not a circle.

A given point x ∈ bdK is said to be regular if there is exactly one supporting plane
of K passing through x. The following lemma will be often used in what follows.

Lemma 3.2. Let K be a convex body in the Euclidean 3-space R
3 and let p0 ∈ bdK

be a regular point which is also a point of revolution for K. Then K is a body

of revolution and the axis of revolution passes through p0 and is orthogonal to the

supporting plane of K at p0.

Proof. Let Γ be a supporting plane of K through p0 and let A be a line through p0
orthogonal to Γ. We shall prove that A is an axis of revolution by proving that every
plane H through A is a plane of symmetry for K. Let H be a plane through A and let
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l ⊂ Γ be a line through p0 and orthogonal to H. If ∆ is a plane through l, then K∩∆
has H ∩ ∆ as an axis of symmetry. This is so because, by hypothesis, the section
K ∩ ∆ has an axis of symmetry that passes through p0 and hence is orthogonal to
its supporting line l. Since this holds for every plane ∆ through l, then H is a plane
of symmetry for K. Since this holds for every plane H through A, then A is an axis
of revolution.

Case (1). We will assume now that the condition (1) holds.

Lemma 3.3. Theres is no disc D in bdK such that the the plane of D is orthogonal

to L and D is passing through some of the points {q1, q2} = L ∩K.

Proof. Contrary to the assertion of the lemma, let us assume that there exits a disc
D in bdK such that the plane of D, say Γ, is orthogonal to L and the point q1 is in
D (the argument is similar if we assume that q2 is in D). If q1 ∈ intD, then q1 is a
regular point of K and, in virtue of Lemma 3.2, K is a body of revolution with axis L
but this is in contradiction with the assumption that L is a false axis of revolution of
K. Now if q1 ∈ bdD, since we are assuming the condition (1), each plane ∆ passing
through L intersects D in a chord whose image after reflection in L is a chord which
is situated also in Γ. Varying the plane ∆ trough L, we see that the collection of
such chords is a circle D′ ⊂ Γ contained in bdK. In virtue of the convexity of K,
conv(D∪D′) ⊂ K and, consequently, we have q1 is in the interior of a circle contained
in Γ. This is in contradiction with the first part of proof of Lemma 3.3. The claim
of Lemma 3.3 follows.

Lemma 3.4. Let M ⊂ R
2 be a convex figure, symmetric with respect to L, and let

T be a supporting line of K, orthogonal to L and passing through q ∈ L ∩ bdM .

Suppose that there is no segment E ⊂ bdM such that E ⊂ T . Then there exists a

segment I ⊂ L ∩M , q ∈ I, such that for every p ∈ I the unique chord of M which

has p as its midpoint is the chord orthogonal to L.

Proof. We consider a coordinate system (x, y) for R2 such that L is the x-axis, q is
the origin and M ⊂ {(x, y) | x ≤ 0}. For each point p ∈ L ∩ M , with coordinates
(t, 0), we denote by I(t) the chord of M orthogonal to L and by | I(x) | the length of
I(x). Let R be the supremum of the lengths of chords of M orthogonal to L, that is,

R = sup
x∈L∩M

| I(x) | .

We denote by ΩR the set {x ∈ R : R =| I(x) |} and let α be the supremum of ΩR.
Since there is no segment E ⊂ bdM such that E ⊂ T , we conclude that α < 0,
furthermore, as q ∈ bdK, | I(x) | is a strictly decreasing function for x > α.

Consider a point p0 in L ∩M , with coordinates (t0, 0), such that α/2 < t0. We will
see that in the set of the chords of M passing trough p0, the only chord which has
its midpoint in p0 is I(t0). We will see this by the absurd. Thus we assume that
there exists a chord with end point a = (a1, a2) and b = (b1, b2) in bdM , a1 < b1
(consequently, ab 6= I(t0)) and with p0 as its midpoint. Since M is symmetric with
respect to L, a′ = (a1,−a2) and b′ = (b1,−b2) belongs to bdM and pa = pa′ and
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pb = pb′. From pa = pb, we have pa′ = pb′, that is, the chord a′b′ has p as its
midpoint. From here we get

I(a1) = I(b1). (2)

On the other hand, since inequalities b1 < 0 and α/2 < t0 and equality t0 = (a1+b1)/2
holds, we have

α < 2t0 < 2t0 − b1 = a1. (3)

In virtue of the fact that | I(x) | is a strictly decreasing function for x > α and the
condition a1 < b1, from (3) we conclude I(a1) > I(b1). But this is in contradiction
with (2). From such contradiction the claim of Lemma 3.4 follows.

Now we consider an orthogonal coordinate system (x, y, z) for R3 such that L is the
axis z, q1 is the origin. Let l(θ) be the line passing through the origin, in the plane
xy and making an angle θ with the axis x and let Π(θ) be the plane determined by
l(θ) and axis z. We denote by K(θ) the section Π(θ) ∩ K. In virtue than we are
assuming that the condition (1) holds, K(θ) is symmetric with respect to axis z for
all θ in [0, π]. Consequently, varying θ in [0, π], we see that plane xy is a supporting
plane of K at q1. We choose the notation for q1 such that

K ⊂ {(x, y, z) | z ≤ 0}. (4)

Lemma 3.5. There exists a point p ∈ L, close enough to q1, such that the chords of

K which has its midpoint in p are those orthogonal to L.

Proof. In virtue of Lemma 3.3, for all θ in [0, π], except for, perhaps, at most one
θ0 ∈ [0, π], there are no line segments contained in bdK(θ), orthogonal to L and
passing through q1. Since the conditions (1) and (4) holds, the conditions of Lemma
3.4 are satisfied for K(θ), for all θ in [0, π], θ 6= θ0. Now Lemma 3.5 follows easily
from continuity and compactness arguments.

Lemma 3.6. For all θ ∈ [0, π], Π(θ) is a plane of symmetry of K.

Proof. Let θ ∈ [0, π]. We take a point p ∈ L given by Lemma 3.5. Let W be the
plane passing through p and orthogonal to axis z. En virtue that we are assuming
the condition (1), W ∩ K is centrally symmetric with center at p. We consider a
plane Σ passing through the origin and containing the line l(θ + π/2). Since p is a
revolution point, there exists a line of symmetry of (p + Σ) ∩K passing through p.
We are going to show that such line is (p + Σ) ∩ Π(θ). We will see this assuming
the contrary and we will rich a contradiction. Suppose that there exists a line of
symmetry (p+Σ)∩K, say ∆, such that is passing through p and ∆ 6= (p+Σ)∩Π(θ).
Then there exists a chord I of (p+Σ)∩K, l ⊥ ∆ and it has its midpoint in p. Since
∆ 6= (p+Σ)∩Π(θ) we have l 6= (p+ l(θ+π/2))∩K and I is not contained in W . But
this is in contradiction with Lemma 3.5. Such contradiction shows that (p+Σ)∩Π(θ)
is line of symmetry of (p+ Σ) ∩K.

Finally, varying the plane Σ, always having l(θ+ π/2) ⊂ Σ, we conclude that Π(θ) is
plane of symmetry of K.
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From Lemma 3.6 follows that all the sections of K, orthogonal to L, are circles with
center at L and, consequently, K is a body of revolution with axis L. This is in
contradiction with the assumption that L is a false axis of revolution. Hence such
contradiction shows that case (1) is impossible.

Cases (2), and (3). Since L ∩ intK 6= ∅, we have that L intersects bdK in exactly
two points, say {a, b} = bdK ∩ L. It is easy to see that a and b are regular, for
that purpose only note that there are at least two different sections which are circles
passing through a and b, simultaneously. By Lemma 3.2, there is an axis of revolution
through the boundary point a which is normal to K. Analogously, there is an axis of
revolution through the boundary point b 6= a which is normal to K. If L is normal
to K at a and b, hence L is the axis of revolution for K, but this is a contradiction.
This implies that K has two different axis of revolution, one through a and the other
through b. It is an easy exercise to prove that a convex body with two different axes
of revolution is a solid sphere. We let the simple details to the interested reader.
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[3] P. M. Gruber, T. Ódor: Ellipsoids are the most symmetric convex bodies, Arch. Math.
73 (1999) 394–395.

[4] D. G. Larman: A note on the false centre problem, Mathematika, Lond. 21 (1974)
216–227.

[5] L. Montejano: Two applications of topology to convex geometry, in: Geometric Topol-
ogy and Set Theory, Proceedings of the Steklov Institute of Mathematics 247, Nauka,
Moscow (2004) 182–185.

[6] L. Montejano, E. Morales: Variations of classic characterizations of ellipsoids and a
short proof of the false centre theorem, Mathematika 54 (2007) 37–42.

[7] C. A. Rogers: Sections and projections of convex bodies, Port. Math. 24 (1965) 99–103.


