
Journal of Convex Analysis

Volume 18 (2011), No. 4, 1075–1091

Generalized Monotone Operators,

Generalized Convex Functions

and Closed Countable Sets

László Szilárd
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1. Introduction

In the present paper we are going to analyze some conditions which ensure that a
local generalized monotonicity of an operator such as pseudo and quasimonotonicity,
provide the global generalized monotonicity for that operator.

Recall that an operator A defined on a subset D of a real Banach space X, taking
values in its dual X∗, is called Minty-Browder monotone, if 〈Ax−Ay, x− y〉 ≥ 0 for
all x, y ∈ D, (see for instance [3, 4, 5, 25, 26]).

The behavior of a locally Minty-Browder monotone operator on the complement of a
finite set C was studied first in [22]. The results obtained there were extended to the
case when the set C is closed and countable in [21]. Also in [21], the authors gave
an example of a continuous locally Minty-Browder monotone operator, defined on a
connected but not convex subset of R2, which is not even globally quasimonotone.
This shows that the convexity of the domain is essential when extending the local
monotonicity to the global monotonicity. Extending the results of [21], we will show
that if the domain of the operator is open and convex, most of the local generalized
monotonicity concepts can be extended to their global counterparts. However there
is an exception: we will give an example of a continuous, locally quasimonotone
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real valued function of one real variable, defined on the whole space R, which is not
globally quasimonotone on R.

Let X be a real Banach space, X∗ its dual, D ⊆ X a subset of X, and A :
D −→ X∗ an operator. We denote by intY the interior of the set Y ⊆ X, and
by (x, y) the open line segment in X with the endpoints x and y, i.e. (x, y) =
{z ∈ X : z = x+ t(y − x), t ∈ (0, 1)} . The closed segment [x, y] with the endpoints
x, y ∈ X is defined as usual, i.e. [x, y] = {z ∈ X : z = x+ t(y − x), t ∈ [0, 1]} .

The paper deals with four types of generalized monotonicity and generalized convexity
concepts, namely quasimonotonicity and quasiconvexity, strict quasimonotonicity and
strict quasiconvexity, pseudomonotonicity and pseudoconvexity, respectively strict
pseudomonotonicity and strict pseudoconvexity.

We recall that the operator A is called pseudomonotone (see [9, 11, 13, 17, 19]), if for
all x, y ∈ D, 〈Ax, y−x〉 ≥ 0 implies 〈Ay, y−x〉 ≥ 0, or equivalently, for all x, y ∈ D,

〈Ax, y − x〉 > 0 implies 〈Ay, y − x〉 > 0.

A is called strictly pseudomonotone (see [13, 18, 19]), if for all x, y ∈ D, x 6= y,

〈Ax, y − x〉 ≥ 0 implies 〈Ay, y − x〉 > 0.

The operator A is called quasimonotone (see [9, 11, 13, 15, 18, 19]), if for all x, y ∈ D,

〈Ax, y − x〉 > 0 implies 〈Ay, y − x〉 ≥ 0.

Let D be convex. A is called strictly quasimonotone (see [9, 13, 14]), if A is quasi-
monotone, and for all x, y ∈ D, x 6= y there exists z ∈ (x, y) such that〈Az, y−x〉 6= 0.

Remark 1.1. Obviously the definition of quasimonotonicity is equivalent to the con-
dition:

min {〈Ax, y − x〉, 〈Ay, x− y〉} ≤ 0, for all x, y ∈ D.

It can be easily observed that for a strictly quasimonotone operator A, we have
int {t : t ∈ (0, 1), 〈A(x+ t(y − x)), y − x〉 = 0} = ∅, for all x, y ∈ D, x 6= y, even
more, in the one-dimensional case, a quasimonotone function defined on the interval
I, is strictly quasimonotone if int f−1(0) = ∅.

If the operator A is strictly pseudomonotone then A is pseudomonotone, and the
pseudomonotonicity of A implies the quasimonotonicity of A. If D is convex, then
the following implication also holds: A is strictly pseudomonotone implies A is strictly
quasimonotone. Obviously the strict quasimonotonicity of A implies the quasimono-
tonicity of A, (see for instance [13, 18, 19]).

The next example provides a quasimonotone operator that is not pseudomonotone.

Example 1.2. Let us consider the function

f : R −→ R, f(x) =











−x− 1, if x < −1

0, if x ∈ [−1, 1]

x− 1, if x > 1.

Since f is nonnegative is obvious that it is quasimonotone. But f is not pseudomono-
tone, since for x = 0 and y = −2 we have f(x)(y−x) = 0 and f(y)(y−x) = −2 < 0.
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Obviously f is not strictly quasimonotone either, since int f−1(0) = (−1, 1).

In [19], the authors gave a geometrical characterization to one dimensional quasi-
monotone, pseudomonotone, and strictly pseudomonotone maps f : I −→ R, I ⊆ R.

(i) f is quasimonotone on I if and only if, for any x ∈ I, we have f(x) > 0 implies
f(y) ≥ 0, for all y ∈ I, y > x.

(ii) f is pseudomonotone on I if and only if , for any x ∈ I, we have f(x) > 0
implies f(y) > 0, for all y ∈ I, y > x, and f(x) < 0 implies f(y) < 0, for all
y ∈ I, y < x.

(iii) f is strictly pseudomonotone on I if and only if , for any x ∈ I, we have f(x) > 0
implies f(y) > 0, for all y ∈ I, y > x, and f(x) < 0 implies f(y) < 0, for all
y ∈ I, y < x, and f(x) = 0 has at most one real root.

We complete this characterization with strict quasimonotonicity, i.e.:

(iv) f is strictly quasimonotone on the real interval I, if and only if, for any x ∈ I,
we have f(x) > 0 implies f(y) ≥ 0, for all y ∈ I, y > x, and the interior of the
set f−1(0) is empty.

The paper is organized as follows. In Section 2 is proved that the local generalized
monotonicity of a real valued function of one real variable defined on the open interval
J ⊆ R is equivalent to its global counterpart, excepting the case of local quasimono-
tonicity. Also here an example of a locally quasimonotone continuous real valued map
defined on the whole space R is given, which is not globally quasimonotone. As a
main result of the section we prove, by means of Cantor-Bendixson theory on derived
sets and ordinals (see [7] and [24]), that a continuous real-valued function of one real
variable which has a local generalized monotonicity property on the complement of a
closed countable set, has that property globally. This fact is used in Section 3 to prove
similar results for an operator defined on a convex open subset of a Banach space.
In Section 4 our results are applied to some theorems involving generalized convex
functions. Also here an example of a locally quasiconvex continuously differentiable
function, defined on the whole space R is given, which is not globally quasiconvex.

2. Local generalized monotonicity of the real valued functions of one real

variable

In this section we prove that most of the local generalized monotonicity of real-valued
functions of one real variable, on the complement of a closed countable set, provide
their global counterpart. However the case of quasimonotonicity is an exception, for
which a counterexample is given.

Using the definitions from the previous section we are able to define the notion of
local generalized monotonicity of one dimensional maps. Let I ⊆ R be open and let
f : I −→ R be a function. One says that:

(i) f is locally quasimonotone, if for all t ∈ I there exists an open interval Jt ⊆ I,

with t ∈ Jt, such that the restriction f |Jt is quasimonotone.

(ii) f is locally strictly quasimonotone, if for all t ∈ I there exists an open interval
Jt ⊆ I, with t ∈ Jt, such that the restriction f |Jt is strictly quasimonotone.
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(iii) f is locally pseudmonotone, if for all t ∈ I there exists an open interval Jt ⊆ I,

with t ∈ Jt, such that the restriction f |Jt is pseudomonotone.

(iv) f is locally strictly pseudmonotone, if for all t ∈ I there exists an open interval
Jt ⊆ I, with t ∈ Jt, such that the restriction f |Jt is strictly pseudomonotone.

Remark 2.1. Obviously, if f : I −→ R is a locally strictly quasimonotone function
defined on the open interval I, we have int f−1(0) = ∅.

The next theorem shows, that for a real valued function of one real variable, de-
fined on an open interval, the local strict quasimonotonicity implies the global strict
quasimonotonicity.

Theorem 2.2. Let J ⊆ R be an open interval and let f : J −→ R be a function. If f
is locally strictly quasimonotone on J , then f is globally strictly quasimonotone on J .

Proof. For t ∈ J let us denote by Jt ⊆ J an open interval, with t ∈ Jt, such that f is
strictly quasimonotone on Jt, that is min {f(x)(y − x), f(y)(x− y)} ≤ 0, for allx, y ∈
Jt, and int{x ∈ Jt : f(x) = 0} = ∅. Without loss of generality one can assume
that the interval Jt is centered at 1, that is, Jt = (t − p, t + p) for some p > 0.
We show that min {f(a)(b− a), f(b)(a− b)} ≤ 0, for every a, b ∈ J, a < b. In
this respect we extract from the open covering {Jt}t∈[a,b] of the compact interval
[a, b] a finite subcover, say Jt1 , . . . , Jtk , t1, . . . , tk ∈ [a, b], minimal in the sense that
none of the intervals can be omitted, and assume that t1 < · · · < tk as well as
Jti ∩ Jti+1

6= ∅ for all i ∈ {1, . . . , k − 1}. We next consider a < s1 < · · · < sk−1 <

b such that si ∈ Jti ∩ Jti+1
and f(si) 6= 0 for all i ∈ {1, . . . , k − 1}. Obviously

min {f(a)(s1 − a), f(s1)(a− s1)} ≤ 0, min {f(s1)(s2 − s1), f(s2)(s1 − s2)} ≤ 0, . . .,
min {f(sk−1)(b− sk−1), f(b)(sk−1 − b)} ≤ 0. If f(a) ≤ 0, then f(a)(b− a) ≤ 0, which
leads to min {f(a)(b− a), f(b)(a− b)} ≤ 0. Otherwise, we have f(a)(s1 − a) > 0,
and combined with min {f(a)(s1 − a), f(s1)(a− s1)} ≤ 0 implies f(s1)(a − s1) ≤ 0.
Since f(s1) 6= 0 we obtain f(s1) > 0. Therefore f(s1)(s2−s1) > 0 and combined with
min {f(s1)(s2 − s1), f(s2)(s1 − s2)} ≤ 0 implies f(s2)(s1−s2) ≤ 0. Since f(s2) 6= 0 we
obtain f(s2) > 0. Continuing the procedure, we obtain finally that f(sk−1)(b−sk−1) >
0 implies f(b)(sk−1 − b) ≤ 0 which leads to f(b) ≥ 0. Therefore f(b)(a − b) ≤ 0,
consequently min {f(a)(b− a), f(b)(a− b)} ≤ 0. Combining with Remark 2.1 we
obtain the conclusion.

We conclude similar results for pseudomonotonicity. The next theorem shows, that
for a real valued function of one real variable, defined on an open interval, the local
pseudomonotonicity implies the global pseudomonotonicity.

Theorem 2.3. Let J ⊆ R be an open interval and let f : J −→ R be a function. If
f is locally pseudomonotone on J , then f is globally pseudomonotone on J .

Proof. For t ∈ J let us denote by Jt ⊆ J an open interval, with t ∈ Jt, such that f is
pseudomonotone on Jt. Let a, b ∈ J. Without loss of generality one may suppose that
a < b and that the interval J is centered at t. We have to show, that f(a)(b− a) > 0
implies f(b)(b−a) > 0, which is equivalent to the fact that f(a) > 0 implies f(b) > 0.
In this respect we extract from the open covering {Jt}t∈[a,b] of the compact interval

[a, b] a finite subcover, say Jt1 , . . . , Jtk , t1, . . . , tk ∈ [a, b], minimal in the sense that
none of the intervals can be omitted, and assume that t1 < · · · < tk as well as
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Jti ∩ Jti+1
6= ∅ for all i ∈ {1, . . . , k − 1}. We next consider a < s1 < · · · < sk−1 < b

such that si ∈ Jti ∩ Jti+1
, i ∈ {1, . . . , k − 1}. Assume that f(a) > 0. Obviously

f(a) > 0 implies f(s1) > 0, since a, s1 ∈ Jt1 , and a < s1, f(s1) > 0 implies f(s2) > 0
since s1, s2 ∈ Jt2 , and s1 < s2, and continuing the procedure, we obtain finally that
f(sk−1) > 0 implies f(b) > 0. It follows that f(a) > 0 implies f(b) > 0 and the proof
is completely done.

One may easily deduce that the same conclusion holds for strict pseudomonotonicity.
The next theorem shows, that for a real valued function of one real variable, defined
on an open interval, the local strict pseudomonotonicity implies the global strict
pseudomonotonicity.

Theorem 2.4. Let J ⊆ R be an open interval and let f : J −→ R be a function. If
f is locally strictly pseudomonotone on J , then f is globally strictly pseudomonotone
on J .

Proof. Since f is locally strictly pseudomonotone, f is locally pseudomonotone and
the equation f(x) = 0 has at most one root in the open interval Jt ⊆ J, where
the local strict pseudomonotonicity holds. According to Theorem 2.3 f is globally
pseudomonotone. We must prove that the equation f(x) = 0 has at most one root in
J. Suppose that there are two roots x1 and x2, x1 < x2 and there are no other roots
of f in the interval (x1, x2). This can be assumed, sice supposing the contrary, i.e.
for every x, y ∈ J, x 6= y satisfying f(x) = f(y) = 0 there exists z ∈ (x, y) such that
f(z) = 0, we obtain that, there exists z1 ∈ (x, z) such that f(z1) = 0, there exists
z2 ∈ (x, z1) such that f(z2) = 0, and continuing the procedure we obtain a sequence
zn, n > 1 converging to x, satisfying f(zn) = 0, n > 1. Therefore every neighborhood
of x contains an element x′ 6= x such that f(x′) = 0, which leads to contradiction with
the local strict pseudomonotonicity of f. For t ∈ (x1, x2) we have f(t)(x1 − t) > 0 or
f(t)(x2 − t) > 0, and by the pseudomonotonicity of f we obtain f(x1)(x1 − t) > 0 or
f(x2)(x2 − t) > 0, which contradicts the fact that f(x1) = f(x2) = 0.

Remark 2.5. Obviously if the function f : J ⊆ R −→ R is locally quasimono-
tone, (respectively locally strictly quasimonotone, locally pseudomonotone, locally
strictly pseudomonotone) on every Ji ⊆ J, i ∈ I, where Ji is open, for all i ∈ I,

then f is locally quasimonotone, (respectively locally strictly quasimonotone, locally
pseudomonotone, locally strictly pseudomonotone) on

⋃

i∈I Ji.

However local quasimonotonicity does not imply global quasimonotonicity even if
the function f is continuous, as the next example shows. Let us mention that the
local h−monotonicity, defined and studied in the work On preimages of a class of
generalized monotone operators by Kassay and Pintea (see [20]), does not imply its
global counterpart either.

Example 2.6. Let us consider the function

f : R −→ R, f(x) =











−x− 1, if x < −1

0, if x ∈ [−1, 1]

−x+ 1, if x > 1.
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It is easy to check that f is locally quasimonotone on R. On the other hand for
x = −2 and y = 2 we have min {f(x)(y − x), f(y)(x− y)} = 4 which shows that f is
not globally quasimonotone, (see Fig. 2.1).

-

6

O x

y

Figure 2.1

In order to continue our analysis we need the following definition of the Cantor-
Bendixson derivative: let Y be a subset of a topological space X and denote by Y ′

the set of accumulation points of Y. For the ordinal number α, the α-th Cantor-
Bendixson derivative of Y is defined as follows: Y (0) = Y , if α is a successor ordinal
then Y (α) =

(

Y (α−1)
)′
, if α is a limit ordinal then Y (α) =

⋂

β<α Y
(β).

A separable, completely metrizable topological space X, is said to be a polish space.
The Cantor-Bendixson theorem affirms that for a polish space X, there exists a
countable ordinal α0 such that X(α) = X(α0) for all α ≥ α0. (X

(α0) is the perfect
kernel).

The smallest ordinal α such that X(α+1) = X(α) is called the Cantor-Bendixson rank
of X. Consequently a polish space has countable α0 Cantor-Bendixson rank. For
details see [2], [7] or [23]. A set Y having zero Cantor-Bendixson rank is said to be
perfect, that is Y ′ = Y. If Y is a closed countable set and α is its Cantor-Bendixson
rank, then obviously Y (α) = ∅ since perfect sets are uncountable and Y (α) is a subset
of Y.

Next we present the principle of transfinite induction. Suppose that P (α) is a prop-
erty defined for every ordinal α. The principle of transfinite induction states that
whenever P (β) holds for all β < α implies P (α) holds, then P (α) holds for every
ordinal α.

The next result shows that the local generalized monotonicity of a function can be
extended in some circumstances.

Lemma 2.7. Let J ⊆ R be an open interval and f : J −→ R be a continuous func-
tion. If Y ⊆ J is a closed set such that f is locally quasimonotone, (respectively locally
strictly quasimonotone, locally pseudomonotone, locally strictly pseudomonotone) on
J \Y and f(x) 6= 0 for all x ∈ Y, then f is locally quasimonotone, (respectively locally
strictly quasimonotone, locally pseudomonotone, locally strictly pseudomonotone) on
J \ Y (α) for every ordinal α.

Proof. We prove the statement for local quasimonotonicity, the other cases can be
proved in a similar way. We use the principle of transfinite induction. In this respect
we denote by P (α) the statement "f is locally quasimonotone on J \ Y (α)" and
observe that P (0) is precisely the hypothesis of the theorem. We first treat the case



L. Szilárd / Generalized Monotone Operators, Generalized Convex Functions ... 1081

of a successor ordinal α + 1, that is Y (α+1) =
(

Y (α)
)′

and observe that Y (α+1) =

Y (α) \ I(Y (α)), where I(Y (α)) is the set of isolated points of Y (α). Consequently
J \ Y (α+1) = (J \ Y (α)) ∪ I(Y (α)). Since f is locally quasimonotone on J \ Y (α),
we only need to show that f is locally quasimonotone at the points of I(Y (α)). For
t ∈ I(Y (α)) there exists an open interval, say Jt ⊆ J , such that Jt∩Y (α) = {t}. Since
Y is closed it is obvious that t ∈ Y, therefore f(t) 6= 0, and by the continuity of f
we conclude that there exists an open neighborhood U of t, such that f(x) 6= 0 for
all x ∈ U. Therefore, if f(x) > 0 for some x ∈ U ∩ Jt, we obtain that f(y) > 0 for all
y ∈ U ∩Jt, y > x, which shows that f is quasimonotone on U ∩Jt. Hence f is locally
quasimonotone at t.

Assume next that α is a limit ordinal and that P (β) holds for all β < α. Since
Y (α) =

⋂

β<α Y
(β), it follows that J \ Y (α) = J \

⋂

β<α Y
(β) =

⋃

β<α(J \ Y (β)). Since

P (β) holds for all β < α, it follows that f is locally quasimonotone on J \ Y (β) for
all β < α. Consequently, according to Remark 2.5, f is locally quasimonotone on
⋃

β<α(J \ Y (β)) = J \ Y (α).

Remark 2.8. The assumption f(x) 6= 0 for all x ∈ Y, within Lemma 2.7 is essential.
Indeed, let us consider the function f : R −→ R, f(x) = −x + 1, and let Y =
{

1
n
: n ∈ N

}

∪ {0} .

It can be easily checked that f is locally strictly pseudomonotone on R\Y, as well that
Y is closed countable and Y ′ = {0}. But f is not locally quasimonotone on R \ {0}.
Indeed, let J be an open interval containing 1, and x, y ∈ J, such that x 6= 0 and x <

1 < y. Then f(x) > 0 and f(y) < 0, therefore min {f(x)(y − x), f(y)(x− y)} > 0.

The next result provides a sufficient condition for global strict quasimonotonicity,
(respectively global pseudomonotonicity, global strict pseudomonotonicity).

Theorem 2.9. Let J ⊆ R be an open interval and f : J −→ R be a continuous
function. If Y ⊆ J is a closed countable set such that f is locally strictly quasi-
monotone, (respectively locally pseudomonotone, locally strictly pseudomonotone) on
J \ Y , and f(x) 6= 0 for all x ∈ Y , then f is strictly quasimonotone, (respectively
pseudomonotone, strictly pseudomonotone) on J .

Proof. Denote by α the Cantor-Bendixson rank of Y . Since Y ⊆ J is closed and
countable, it follows that Y (α) = ∅. According to Lemma 2.7 the function f is locally
strictly quasimonotone, (respectively locally pseudomonotone, locally strictly pseu-
domonotone) on J \Y (α) = J . The statement follows from Theorem 2.2, (respectively
from Theorem 2.3 and from Theorem 2.4).

3. Generalized monotone operators on the complementary of a closed

countable set

In this section we extend the results from Section 2 for generalized monotone op-
erators defined on an open and convex subset of a real Banach space. In [21] the
authors proved, that for an operator defined on the open and convex subset D of the
real Banach space X, the local Minty-Browder monotonicity of the operator on the
complement of a closed countable set implies its global Minty-Browder monotonic-
ity. However, for generalized monotone maps this implication is no more true in the
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absence of further conditions.

Next we give several definitions for local generalized monotonicity of operators on a
Banach space.

Definition 3.1. Let X be a real Banach space, X∗ its dual, D ⊆ X an open subset
of X, and A : D −→ X∗ an operator. One says that:

(i) A is locally quasimonotone, if for all z ∈ D there exists an open neighborhood
Uz ⊆ D of z, such that the restriction A|Uz

is quasimonotone, i.e. for all x, y ∈
Uz,

〈Ax, y − x〉 > 0 =⇒ 〈Ay, y − x〉 ≥ 0,

(ii) A is locally strictly quasimonotone, if for all z ∈ D there exists an open and
convex neighborhood Uz ⊆ D of z, such that the restriction A|Uz

is strictly
quasimonotone, i.e. for all x, y ∈ Uz,

〈Ax, y − x〉 > 0 =⇒ 〈Ay, y − x〉 ≥ 0,

and for all x, y ∈ Uz, x 6= y there exists z ∈ (x, y), such that 〈Az, y − x〉 6= 0,

(iii) A is locally pseudomonotone, if for all z ∈ D there exists an open neighborhood
Uz ⊆ D of z, such that the restriction A|Uz

is pseudomonotone, i.e. for all
x, y ∈ Uz,

〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 ≥ 0,

(iv) A is locally strictly pseudomonotone, if for all z ∈ D there exists an open neigh-
borhood Uz ⊆ D of z, such that the restriction A|Uz

is strictly pseudomonotone,
i.e. for all x, y ∈ Uz, x 6= y,

〈Ax, y − x〉 ≥ 0 =⇒ 〈Ay, y − x〉 > 0.

In what follows, X denotes a real Banach space, and let C ⊆ D ⊆ X with D open and
convex, and C closed relative to D, with empty interior, such that the intersection
[x, y] ∩ C is countable, possibly empty, for all x, y ∈ D \ C.

Remark 3.2. Examples of subsets C ⊂ D ⊆ R
n which satisfy the above mentioned

requirements, consist in finite families of spheres S(p, r) := {x ∈ R
n : ||x − p|| = r}

in D, since spheres do not contain segments (see [21]). However there are sets C

containing segments still satisfying these requirements as the figure below shows.

D

Figure 3.1

Here D is an open disk from R
2 (see Figure 3.1), and C is the union of a finite number

of open line segments having their endpoints on the boundary of D.
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Definition 3.3. Let A : X −→ X∗ be an operator. We say that A is hemicontinuous
at x ∈ X, if for all (tn)n∈N ⊂ R, tn−→0, n −→ ∞ and y ∈ X, we have A(x+ tny) ⇀

∗

Ax, n −→ ∞, where " ⇀∗ " denotes the convergence with respect to the weak∗

topology of X∗.

In order to continue our analysis we need the following lemmas.

Lemma 3.4. For all u ∈ D there exist x, y ∈ D \ C such that u ∈ (x, y).

Proof. Let u ∈ D. Since C ⊆ D has empty interior, we have V ∩ (D \ C) 6= ∅,
for every neighborhood V of u, in particular for all r > 0, B(u, r) ∩ (D \ C) 6= ∅.
Let r > 0 such that B(u, r) ⊆ D, and x0 ∈ B(u, r) ∩ (D \ C). Since D \ C is open,
we obtain, that there exists r′ > 0, such that B(x0, r

′) ⊆ B(u, r) ∩ (D \ C). For
y0 = 2u − x0 we have B(y0, r

′) ⊆ B(u, r), and let y ∈ B(y0, r
′) ∩ (D \ C). Then, for

x = 2u− y ∈ B(x0, r
′) we have u ∈ (x, y).

The next lemma plays an essential role in the proof of Theorem 3.6 bellow.

Lemma 3.5. For all u ∈ D there exist (tn) ⊆ R, tn −→ 0, n −→ ∞, and z ∈ X,

such that u+ tnz ∈ D \ C for all n ≥ 1.

Proof. Let u ∈ D. According to Lemma 3.4 there exist x, y ∈ D \ C such that
u ∈ (x, y), that is there exist t0 ∈ (0, 1), such that u = x + t0(y − x). It can be
easily verified that all x′ ∈ (x, y) may be written in the form x′ = u + t(x − u),
where t ∈

(

1 − 1
t0
, 1
)

. Since [x, y] ∩ C is countable, possibly empty, is obvious that

the set Y =
{

t ∈
(

1 − 1
t0
, 1
)

: u + t(x − u) ∈ C
}

is countable, possibly empty. Let

tn ∈
(

1− 1
t0
, 1
)

\ Y for all n ≥ 1, such that tn −→ 0, n −→ ∞, and z = x− u. Then

u+ tnz ∈ D \ C for all n ≥ 1.

The next result provides, in a Banach space context, a sufficient condition for global
strict quasimonotonicity.

Theorem 3.6. If A : D −→ X∗ is a hemicontinuous operator with the property that
〈Az, y − x〉 6= 0 for all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y and whose restriction A|D\C is
locally strictly quasimonotone, then A is strictly quasimonotone on D.

Proof. For u, v ∈ D \ C, u 6= v consider an open interval J containing [0, 1], such
that u+ t(v − u) ∈ D for all t ∈ J and u+ t(v − u) ∈ D \ C, for all t ∈ J, t < 0 and
for all t ∈ J, t > 1, and the map

φ : J −→ R, φ(t) := 〈A(u+ t(v − u)), v − u〉.

For s, t ∈ J we have

min {φ(s)(t− s), φ(t) (s− t)}

= min {〈A(u+ s(v − u)), (t− s)(v − u)〉, 〈A(u+ t(v − u)), (s− t)(v − u)〉}

= min {〈Aus, (t− s)(v − u)〉, 〈Aut, (s− t)(v − u)〉}

= min {〈Aus, ut − us〉, 〈Aut, us − ut〉} ,
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where we denoted us = u+ s(v − u), ut = u+ t(v − u).

Obviously the set Y = {t ∈ J : u+ t(v − u) ∈ C} is a closed countable subset of J,
and by using the hypothesis, i.e. for all z ∈ D \ C there exists an open and convex
neighborhood Uz of z, such that min {〈Ax, y − x〉, 〈Ay, x− y〉} ≤ 0 and there exists
w ∈ (x, y) such that 〈Aw, y − x〉 6= 0, for all x, y ∈ Uz, x 6= y we obtain, that for all
z′ ∈ (u, v)\C, z′ = u+t′(v−u) there exists an open and convex neighborhood of z′, say
Uz′ , such that min {〈Aus, ut − us〉, 〈Aut, us − ut〉} ≤ 0 and there exists w ∈ (us, ut)
such that 〈Aw, us − ut〉 6= 0 for all us, ut ∈ Uz′ , us 6= ut. Let us denote Jt′ = {t ∈
(0, 1) : u + t(v − u) ∈ Uz′}. Then min {φ(s)(t− s), φ(t) (s− t)} ≤ 0 for all t, s ∈ Jt′

and int{t ∈ Jt′ : φ(t) = 0} = ∅. In other words, for each t′ ∈ J \ Y , there exists an
open interval Jt′ , containing t′, such that min {φ(s)(t− s), φ(t) (s− t)} ≤ 0, for all
t, s ∈ Jt′ and int{t ∈ Jt′ : φ(t) = 0} = ∅. These latter relations show that φ is locally
strictly quasimonotone on J\Y, and by using Theorem 2.9 we obtain that the function
φ is strictly quasimonotone on J , that is min {〈Aus, ut − us〉, 〈Aut, us − ut〉} ≤ 0, for
all s, t ∈ J , which particularly shows that

min {〈Au, v − u〉, 〈Av, u− v〉} ≤ 0.

In the general case of arbitrary u, v ∈ D, according to Lemma 3.5 consider the
sequences un = u+ tnz, n ≥ 1 and vn = v+ snw, n ≥ 1 such that (un), (vn) ⊂ D \C,
where z, w ∈ X, tn, sn ∈ R, n ≥ 1, with tn, sn −→ 0, n −→ ∞. According to the first
part of the proof, min{〈Aun, vn − un〉, 〈Avn, un − vn〉} ≤ 0 for all n ≥ 1, which shows
by using the hemicontinuity of the operator A, that

min{〈Au, v − u〉, 〈Av, u− v〉} ≤ 0.

For completing the proof, we have to prove that there exists w ∈ (u, v) such that
〈Aw, v − u〉 6= 0.

If (u, v)∩ (D \C) 6= ∅, let z ∈ (u, v)∩ (D \C). Then z has an open neighborhood U ,
where A is strictly quasimonotone, consequently for every z1, z2 ∈ U ∩ (u, v), z1 6= z2
there exists w ∈ (z1, z2) such that 〈Aw, z2 − z1〉 6= 0. But, since z1 = u + t1(v −
u), z2 = u + t2(v − u) for some t1, t2 ∈ (0, 1), t1 6= t2, it follows that 〈Aw, v − u〉 =

1
(t2−t1)

〈Aw, z2 − z1〉 6= 0.

If (u, v) ∩ (D \ C) = ∅, then (u, v) ⊆ C, therefore according to assumption of the
theorem i.e. 〈Az, y − x〉 6= 0 for all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y we obtain the
conclusion.

In what follows we conclude similar results for locally pseudomonotone operators.
However, in the proof of Theorem 3.7 bellow, we cannot use directly the hemiconti-
nuity of the operator A, as we did in the proof of Theorem 3.6.

Theorem 3.7. If A : D −→ X∗ is a hemicontinuous operator with the property that
〈Az, y − x〉 6= 0 for all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y and whose restriction A|D\C is
locally pseudomonotone, then A is pseudomonotone on D.

Proof. We divide the proof into two cases.
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Case I. For u, v ∈ D \ C, u 6= v consider the open interval J and the map φ as in
the proof of Theorem 3.6.

Denote us = u + s(v − u), ut = u + t(v − u). We have, for all z′ ∈ (u, v) \
C, z′ = u + t′(v − u) that there exists an open neighborhood of z′, say Uz′ such
that 〈Aut, us − ut〉 > 0 implies 〈Aus, us − ut〉 > 0 for us, ut ∈ Uz′ . Obviously, the
set Y = {t ∈ J : u+ t(v − u) ∈ C} is a closed countable subset of J . Let us denote
Jt′ = {t ∈ (0, 1) : u + t(v − u) ∈ Uz′}, then φ(t)(s − t) > 0 implies φ(s)(s − t) > 0,
for s, t ∈ Jt′ . In other words, for each t′ ∈ J \ Y , there exists an open interval, Jt′ ,
containing t′ such that φ(t)(s − t) > 0 implies φ(s)(s − t) > 0, for s, t ∈ Jt′ , and by
using Theorem 2.9 we obtain that the function φ is pseudomonotone on J, that is
〈Aut, us − ut〉 > 0 implies 〈Aus, us − ut〉 > 0 for all s, t ∈ J, which particulary shows
that

〈Au, v − u〉 > 0 =⇒ 〈Av, v − u〉 > 0.

Case II. For u ∈ C and v ∈ D, suppose that 〈Au, v − u〉 ≥ 0 and 〈Av, v − u〉 < 0.
Then, since 〈Au, v − u〉 6= 0, it is enough to assume that 〈Au, v − u〉 > 0 and
〈Av, v − u〉 < 0.

According to Lemma 3.4, there exist x, y, z, w ∈ D \ C such that u ∈ (x, y) and
v ∈ (z, w), that is, there exist t0, t1 ∈ (0, 1) such that u = x + t0(y − x) and v =
z+ t1(w− z). It can be easily verified, that all x′ ∈ (x, y) may be written in the form
x′ = u+ t(x− u), where t ∈

(

1− 1
t0
, 1
)

, as well that all z′ ∈ (z, w) may be written in

the form z′ = v + t(z − v), where t ∈
(

1− 1
t1
, 1
)

.

Let us define the functions,

f :

(

1−
1

t0
, 1

)

−→ R, f(t) = 〈A(u+ t(x− u)), (v + t(z − v))− (u+ t(x− u))〉

and

g :

(

1−
1

t1
, 1

)

−→ R, g(t) = 〈A(v + t(z − v)), (v + t(z − v))− (u+ t(x− u))〉.

Using the hemicontinuity of A we obtain that for all (tn)n∈N ⊂ R, tn −→ 0, n −→ ∞
we have f(tn) −→ f(0), n −→ ∞ and g(tn) −→ g(0), n −→ ∞, which show that the
functions f and g are continuous at t = 0.

On the other hand, we have f(0) = 〈Au, v − u〉 > 0 and g(0) = 〈Av, v − u〉 < 0, and
by the continuity of these functions at 0 we conclude that there exists ǫ > 0, such
that f(t) > 0, g(t) < 0 for all t ∈ (−ǫ, ǫ) ⊆

(

1− 1
t0
, 1
)

∩
(

1− 1
t1
, 1
)

.

Since [x, y]∩C respectively [z, w]∩C are countable, possibly empty, and {u+t(x−u) :
t ∈ (−ǫ, ǫ)} ⊆ [x, y], respectively {v + t(z − v) : t ∈ (−ǫ, ǫ)} ⊆ [z, w], we obtain that
the sets {u + t(x− u) : t ∈ (−ǫ, ǫ)} ∩ C respectively {v + t(z − v) : t ∈ (−ǫ, ǫ)} ∩ C

are countable, possibly empty.

Next we will show that there exists some l ∈ (−ǫ, ǫ) such that u+l(x−u), v+l(z−v) ∈
D \ C.
Indeed, supposing the contrary, that is u+ l(x− u) ∈ D \C implies v+ l(z− v) ∈ C,

since the set {u + l(x − u) ∈ D \ C : l ∈ (−ǫ, ǫ)} is uncountable we obtain that the
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set {v + l(z − v) ∈ C : l ∈ (−ǫ, ǫ)} is uncountable, which contradicts the fact that
{v + t(z − v) : t ∈ (−ǫ, ǫ)} ∩ C is countable, possibly empty.

Let l ∈ (−ǫ, ǫ) such that u+ l(x− u), v + l(z − v) ∈ D \ C. Then

〈A(u+ l(x− u)), (v + l(z − v))− (u+ l(x− u))〉 = f(l) > 0,

and according to Case I. we obtain that

〈A(v + l(z − v)), (v + l(z − v))− (u+ l(x− u))〉 = g(l) > 0,

which contradicts the fact that g(t) < 0 for all t ∈ (−ǫ, ǫ).

The next result provides, in a Banach space context, a sufficient condition for global
strict pseudomonotonicity.

Theorem 3.8. If A : D −→ X∗ is a hemicontinuous operator with the property that
〈Az, y − x〉 6= 0 for all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y and whose restriction A|D\C is
locally strictly pseudomonotone, then A is strictly pseudomonotone on D.

Proof. Let u, v ∈ D \C, u 6= v. In this case the proof is similar to the proof of Case
I. in Theorem 3.7 and therefore we omit it.

If u ∈ C then by the assumption of the theorem 〈Au, v − u〉 6= 0 and according to
Theorem 3.7 A is globally pseudomonotone, i.e. 〈Au, v−u〉 > 0 implies 〈Av, v−u〉 > 0,
which combined gives

〈Au, v − u〉 ≥ 0 =⇒ 〈Av, v − u〉 > 0.

If u ∈ D \ C, v ∈ C then by the assumption of the theorem 〈Av, v − u〉 6= 0 and
according to Theorem 3.7 A is globally pseudomonotone, i.e. 〈Au, v− u〉 ≥ 0 implies
〈Av, v − u〉 ≥ 0, which combined gives

〈Au, v − u〉 ≥ 0 =⇒ 〈Av, v − u〉 > 0,

and this completes the proof.

Remark 3.9. The assumption of convexity on D in the above theorems is essential.
In [21] an example of locally Minty-Browder monotone operator is given, (conse-
quently is locally quasimonotone, and locally pseudomonotone as well) defined on a
connected but non convex subset of R2, which is not even quasimonotone globally.

We wonder if the assumption 〈Az, y − x〉 6= 0 for all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y

in the above theorems is essential or can be replaced by 〈Az, y − x〉 6= 0 for all
z ∈ [x, y] ∩ C, x, y ∈ D \ C, x 6= y?

4. Applications to generalized convex functions

In this section we apply the results from Section 3 to prove the generalized convexity
of some locally generalized convex functions under certain classical hypothesis, which
are imposed on the complement of the same type of sets as before.
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In what follows H denotes a real Hilbert space, and let C and D the same sets as in
Section 3. We shall need the following definitions and results related to generalized
convex functions.

A real valued function f defined on the open convex subset D of H, is called qua-
siconvex (see [9, 11, 16, 27]), respectively strictly quasiconvex (see [9, 27]), if for all
x, y ∈ D and t ∈ [0, 1], we have

f(y) ≤ f(x) =⇒ f(tx+ (1− t)y) ≤ f(x),

respectively for all x, y ∈ D, x 6= y and t ∈ (0, 1), we have

f(y) ≤ f(x) =⇒ f(tx+ (1− t)y) < f(x),

or equivalently for all x, y ∈ D and t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ max {f(x), f(y)} ,

respectively for all x, y ∈ D, x 6= y and t ∈ (0, 1), we have

f(tx+ (1− t)y) < max {f(x), f(y)} .

Remark 4.1. A differentiable quasiconvex function f can be characterized by its
differential (see [13]), i.e. f is quasiconvex on the open convex subset D of H, if and
only if, for every pair of points x, y ∈ D we have

f(y) ≤ f(x) =⇒ 〈∇f(x), y − x〉 ≤ 0,

where ∇f denotes the gradient operator.

However, in general, strictly quasiconvex functions cannot be characterized by their
differential in a similar way, but if a differentiable function f, defined on the open
convex subsetD ofH has the property that∇f(x) 6= 0 for all x ∈ D, then f is strictly
quasiconvex on D (see [6]), if and only if, for every pair of points x, y ∈ D, x 6= y we
have

f(y) ≤ f(x) =⇒ 〈∇f(x), y − x〉 < 0.

The following statement holds (see [8, 10, 13, 18]):

Proposition 4.2. A differentiable function f defined on the open convex subset D
of H is quasiconvex, (respectively strictly quasiconvex) on D, if and only if, ∇f is
quasimonotone, (respectively strictly quasimonotone) on D.

A real valued function f defined on the open convex subset D of H, is called pseudo-
convex (see [16]), if for all x, y ∈ D and t ∈ (0, 1), whenever f(tx+ (1− t)y) ≥ f(x)
it holds that f(tx+ (1− t)y) ≤ f(y).

In the differentiable case we have another characterization of pseudoconvexity, re-
spectively strict pseudoconvexity.
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A real valued differentiable function f defined on the open convex subset D of H,

is called pseudoconvex (see [1, 8, 9, 10, 12]), respectively strictly pseudoconvex (see
[8, 11, 9, 10, 12]) on D, if for every pair of distinct points x, y ∈ D we have

〈∇f(x), y − x〉 ≥ 0 =⇒ f(y) ≥ f(x),

respectively

〈∇f(x), y − x〉 ≥ 0, x 6= y =⇒ f(y) > f(x).

The next result is well-known, see for instance [6, 13, 18].

Proposition 4.3. Let f be differentiable on the open convex subset D of H. Then
f is pseudoconvex, (respectively strictly pseudoconvex) on D, if and only if, ∇f is
pseudomonotone, (respectively strictly pseudomonotone) on D.

Next we give the definitions of some locally generalized convex functions.

Definition 4.4. We say that a function f : D −→ R is locally quasiconvex, (respec-
tively locally strictly quasiconvex, locally pseudoconvex, locally strictly pseudocon-
vex) on D, if for all z ∈ D there is an open and convex neighborhood Uz ⊆ D of
z, where f is quasiconvex, (respectively strictly quasiconvex, pseudoconvex, strictly
pseudoconvex).

In what follows we provide, in a Hilbert space context, a sufficient condition for strict
quasiconvexity of a locally strictly quasiconvex function.

Theorem 4.5. Let f : D −→ R be a continuously differentiable, locally strictly
quasiconvex function on D \ C. If ∇f has the property, that 〈∇f(z), x − y〉 6= 0 for
all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y then f is globally strictly quasiconvex on D.

Proof. Since f locally strictly quasiconvex on D \ C, according to Proposition 4.2,
∇f is locally strictly quasimonotone on D \C. Using the fact that 〈∇f(z), x−y〉 6= 0
for all z ∈ [x, y]∩C, x, y ∈ D, x 6= y according to Theorem 3.6, we obtain that ∇f is
strictly quasimonotone on D, which shows that f is strictly quasiconvex on D.

In what follows we conclude a similar result for locally pseudoconvex functions.

Theorem 4.6. Let f : D −→ R be a continuously differentiable, locally pseudoconvex
function on D \ C. If ∇f has the property, that 〈∇f(z), x − y〉 6= 0 for all z ∈
[x, y] ∩ C, x, y ∈ D, x 6= y then f is globally pseudoconvex on D.

Proof. Since f is locally pseudoconvex on D \ C, according to Proposition 4.3, ∇f

is locally pseudomonotone on D \ C. Using the fact that 〈∇f(z), x − y〉 6= 0 for all
z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y according to Theorem 3.7, we obtain that ∇f is
pseudomonotone on D, which shows that f is pseudoconvex on D.

The next result provides, in a Hilbert space context, a sufficient condition for global
strict pseudoconvexity.
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Theorem 4.7. Let f : D −→ R be a continuously differentiable, locally strictly
pseudoconvex function on D \C. If ∇f has the property, that 〈∇f(z), x− y〉 6= 0 for
all z ∈ [x, y] ∩ C, x, y ∈ D, x 6= y then f is globally strictly pseudoconvex on D.

Proof. Since f is locally strictly pseudoconvex onD\C, according to Proposition 4.3,
∇f is locally strictly pseudomonotone onD\C. Using the fact that 〈∇f(z), x−y〉 6= 0
for all z ∈ [x, y]∩C, x, y ∈ D, x 6= y according to Theorem 3.8 we conclude, that∇f is
strictly pseudomonotone onD, which shows that f is strictly pseudoconvex onD.

Remark 4.8. Actually it is enough to assume that ∇f is hemicontinuous. However,
as we have seen in Example 2.6, the local quasimonotonicity does not imply the global
quasimonotonicity. Next we will give an example of a continuously differentiable
locally quasiconvex function, which is not globally quasiconvex.

Example 4.9. Let us consider the function

F : R −→ R, F (x) =











−x2

2
− x, if x < −1

1
2
, if x ∈ [−1, 1]

−x2

2
+ x, if x > 1.

It can be easily checked that F is an antiderivative of f given in Example 2.6, con-
sequently F is continuously differentiable.

We know that any monotone (increasing/decreasing) function from R to R is quasi-
convex. Since F is locally monotone we obtain that F is locally quasiconvex.

On the other hand, for x = −2 and y = 2 we have: F
(

1
2
· (−2) +

(

1− 1
2

)

· (2)
)

=

F (0) = 1
2
> max{F (−2), F (2)} = 0, which shows that F is not globally quasiconvex,

(see Fig. 4.1).

-
O x

6y

Figure 4.1
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