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We devote the integro-extremizationmethod to the study of the Dirichlet problem for homogeneous
Hamilton-Jacobi equations

{

F (Du) = 0 in Ω

u(x) = ϕ(x) for x ∈ ∂Ω,

with a particular interest for non coercive hamiltonians F , and to the Cauchy-Dirichlet problem for
the corresponding homogeneous time-dependent equations











∂u

∂t
+ F (∇u) = 0 in ]0, T [×Ω

u(0, x) = η(x) for x ∈ Ω

u(t, x) = ψ(x) for (t, x) ∈ [0, T ]× ∂Ω.

We prove existence and some qualitative results for viscosity and almost everywhere solutions, under
suitably convexity conditions on the hamiltonian F , on the domain Ω and on the boundary datum,
without any growth assumptions on F .

1991 Mathematics Subject Classification: 49L25

1. Introduction

This paper is devoted to the application of the integro-extremization method, in-
troduced in the papers [12], [13] [14], [15], [16], to the study of stationary non co-
ercive and evolution Hamilton-Jacobi equations. The integro-extremization method,
roughly speaking, can be described as follows: consider a set of Sobolev functions sat-
isfying almost everywhere a pointwise inequality involving the gradient which makes
it compact in the strong L1 topology; Weiertrass Theorem implies the existence of
an element in the set which maximizes (minimizes) the integral. Imposing suitable
conditions, such element satisfies the equality in place of the inequality, so that the
integro-extremization procedure "transforms inequalities into equalities" and turns
out to be a powerful tool to solve first order differential equations and related prob-
lems. Originally it was introduced to study non semicontinuous problems of the
Calculus of Variations, and in [16] it has been devoted to stationary Hamilton-Jacobi
equations.
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Our aim is to apply this procedure in order to find new tools in the analysis of first
order partial differential equations of Hamilton-Jacobi type both for existence and
for qualitative theories.

Hamilton-Jacobi equations are of particular interest in various aspects of Optimal
Control Theory like, for example, the following classical problem consisting in

Minimizing

∫ T

0

L(t, x(t), u(t)) dt+ g(x(T )),

on absolutely continuous maps x(·) and measurable maps u(·) defined on the interval
[0, T ], taking values in R

m and satisfying the conditions

x′ = f(t, x, u), u(t) ∈ V a.e. t ∈ ]0, T [, x(0) = x0,

for some given functions L (the lagrangian), f and g and for a given control set V .
Introducing the Hamiltonian

H(t, x, p)
.
= sup {−p · f(t, x, u)− L(t, x, u); u ∈ V } ,

we may associate to the original problem the following dynamic programming equation

of Hamilton-Jacobi type:

{

φt(t, x)−H(t, x,∇xφ(t, x)) = 0 (t, x) ∈ ]0, T [× R
m

φ(T, x) = g(x) x ∈ R
m.

It is well known (see for example [2]) that if φ is a classical solution of this last
equation, then the map

Φ(t, x)
.
= arg sup {−∇xφ(t, x) · f(t, x, u)− L(t, x, u) : u ∈ V }

provides an optimal feedback control for the Optimal Control Problem. The notion
of viscosity introduced by Crandall and Lions gave a strong impulse in the study of
this class of partial first order equations and we devote our attentions to this kind of
solutions considering special classes of Hamilton-Jacobi equations. We manage them
by the above mentioned integro-extremization method, claiming that it could provide
new insights in this research.

The literature concerning viscosity solutions of Hamilton-Jacobi equations is more
than wide. We mention first of all the outstanding monograph [11] and, for example,
[3], [4], [6], [7], [9] and [10].

Consider a continuous function F : Rn → R, an open bounded subset Ω ⊂ R
n and

the following homogeneous stationary Dirichlet problem:

Pϕ :

{

F (Du) = 0 in Ω

u = ϕ on ∂Ω,

where ϕ is a given boundary datum.
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In paper [16] we have considered a hamiltonian F = F (x, u, ξ), depending also on
the variables x and u satisfying a standard coercivity condition with respect to the
last variable ξ implying that the set of vectors ξ such that F (x, u, ξ) ≤ 0 is bounded
uniformly in (x, u). In the first part of the present paper we devote our interest to
the non coercive case, corresponding to a hamiltonian F = F (ξ) such that, setting

K
.
= {ξ ∈ R

n : F (ξ) ≤ 0} ,

the set K may be unbounded. By this way, in particular, the solutions may not be
globally Lipschitz continuous and, moreover, obviously, the problem can be reformu-
lated as a differential inclusion:

{

Du ∈ ∂K in Ω

u = ϕ on ∂Ω,

whereK is an open subset of Rn. We stress that this problem has been widely studied
(see for example [8] and references quoted there) but with the usual boundedness
assumption on K.

We look for a precise class of solutions, namely continuous Sobolev functions taking
the value ϕ on the boundary and solving the equation in Pϕ almost everywhere and
in viscosity sense. Hence we deal with generalized solutions (or almost everywhere
solutions) with the additional properties provided by viscosity, namely uniqueness,
stability and continuous dependence on boundary data.

We need convexity assumptions and, actually, we consider also the relaxed problem
P∗∗

ϕ associated to Pϕ:

P∗∗

ϕ :

{

F ∗∗(Du) = 0 in Ω

u = ϕ on ∂Ω,

where F ∗∗ is the lower convex envelope of F . In addition we require convexity of the
domain Ω and that ϕ is a concave function defined on the whole domain Ω. Under
these conditions, assuming that F is coercive in one direction and that

{ξ ∈ R
n : F (ξ) > 0} = {ξ ∈ R

n : F ∗∗(ξ) > 0} ,

we provide well posedness results for both non convex and relaxed problem, i.e.
theorems ensuring existence and uniqueness of a maximal viscosity solution and its
continuous dependence on the boundary datum ϕ.

With respect to classical results (see in addition, for example, [11], [3], [4], [1], [5] and
literature quoted there) we do not require coercivity in F and consider nonconvex
hamiltonians F . Moreover our method allows to develop a well-posedness theory,
that is to say existence, uniqueness and continuous dependence on boundary data.

In the second part of the paper we consider the associated Cauchy-Dirichlet problem
for the evolution case:

P :











∂u
∂t

+ F (∇u) = 0 in ]0, T [×Ω

u(0, x) = η(x) for x ∈ Ω

u(t, x) = ψ(x) for (t, x) ∈ [0, T ]× ∂Ω.
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Due to the linear term in the time derivative, the problem is intrinsically non coercive,
so that the ideas used in the first part can be invoked also in this case. For these
reasons the last sections of the paper consists in a natural extension of previous
arguments and we propose them as a applications of the theory developed in the first
part of the article.

We require that the hamiltonian F : Rn → R is convex and bounded from below,
without any other assumptions. Unfortunately our method forces us to consider only
the homogeneous case, corresponding to a function F depending only on the spatial
gradient ∇u of the competing maps, excluding more general classes of problems; in
addition we still require that the set Ω is convex and bounded and that the initial-
boundary data η and ψ are traces on {0} × Ω and on [0, T ] × ∂Ω, respectively, of a
concave function ϕ which we assume to to be a subsolution of the equation in P.

Under these conditions we are able to show that there exists a unique maximal concave
function u defined on [0, T ]×Ω satisfying the initial-boundary conditions and solving
the equation almost everywhere and in viscosity sense. In addition we show that the
theory remains valid if we drop the Ω-boundary condition u⌊∂Ω= ψ⌊∂Ω and consider
simply the Cauchy problem.

Also in this case, with respecto to classical literature, we remove any coercivity as-
sumption on F , providing by this way original results. The arguments used to treat
the evolution case are very close to the ones of the first part of the paper; however
we perform the proofs for the sake of completeness, so that two parts of the paper
may be read indipendently.

2. Notations and preliminaries

In this paper R
m is the euclidean m-dimensional space and we denote respectively

by 〈·, ·〉 and | · | the inner product and the euclidean norm, while {e1, . . . , em} is
the canonical basis. A vector ξ ∈ R

m is written as ξ = (ξ1, . . . , ξm). For x ∈ R
m

and r > 0, B(x, r) is the open ball in R
m of center x and radius r; given E ⊆ R

m,
meas(E) is the Lebesgue measure, ∂E is the boundary, Ec is the complement, χE is
the characteristic function and co(E) is the convex hull of E; by dist(x,E) we mean
the distance of the point x from the set E. Given an open bounded subset U of Rm;
we use the spaces Ck(U), D(U) = C∞

c (U), D′(U), Lp(U), W 1,p(U), W 1,p
0 (U), Hk(U),

for k ∈ N0 = {0} ∪N and 1 ≤ p ≤ ∞, with their usual (strong and weak) topologies.
Dealing with a Sobolev function we assume to use the precise representative and,
given two real valued functions u and v, we set u ∨ v

.
= sup(u, v).

Definition 2.1. For an open set U ⊆ R
m, we denote by Aff(U) the set of piecewise

affine elements of W 1,∞(U). Given u ∈ Aff(U) we have

Du =
k
∑

i=1

aiχUi
,

where k is a positive integer, ai ∈ R
m for i = 1, . . . , k and

U =

(

k
⋃

i=1

Ui

)

∪N,
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where {Ui, i = 1, . . . , k} is a family of pairwise disjoint open subsets of U and N is a
null set. We adopt the following notation:

R(Du)
.
= {ai, i = 1, . . . , k} . (1)

We need the following notions and refer to the monograph [4] (Chapter II) for proofs,
general setting and for the definition of viscosity solution of Hamilton-Jacobi equa-
tions.

Definition 2.2. Let U ⊆ R
n be open, v ∈ C0(U) and x0 ∈ U . We set

D−v(x0)
.
=

{

ξ ∈ R
n : lim inf

x→x0

v(x)− v(x0)− 〈ξ, x− x0〉

|x− x0|
≥ 0

}

,

D+v(x0)
.
=

{

ξ ∈ R
n : lim sup

x→x0

v(x)− v(x0)− 〈ξ, x− x0〉

|x− x0|
≤ 0

}

.

We call these sets, respectively, super and sub differentials (or semidifferentials) of v
at the point x0 and set also

A−(v)
.
=
{

x ∈ U : D−v(x) 6= ∅
}

.

A+(v)
.
=
{

x ∈ U : D+v(x) 6= ∅
}

,

We recall the following fundamental properties of semidifferentials.

Lemma 2.3. Let U ⊆ R
n be open, v ∈ C0(U) and x0 ∈ U .

(i) ξ ∈ D−v(x0) if and only if there exists a function φ ∈ C1(U) such that Dφ(x0) =
ξ and the function x 7→ v(x)− φ(x) has local minimum at the point x0.

(ii) ξ ∈ D+v(x0) if and only if there exists a function φ ∈ C1(U) such that Dφ(x0) =
ξ and the function x 7→ v(x)− φ(x) has local maximum at the point x0.

(iii) D+v(x0) and D
−v(x0) are closed convex possibly empty subsets of Rn.

(iv) If v is differentiable at the point x0 then D+v(x0) = D−v(x0) = {Dv(x0)}.

(v) If both D+v(x0) and D
−v(x0) are nonempty, then u is differentiable at x0 and

D+v(x0) = D−v(x0) = {Dv(x0)}.

(vi) The sets A−(v) and A+(v) are dense in U .

We shall need the following two results (see [16]).

Lemma 2.4. Let U be an open subset of Rn, p ∈ [1,∞], v ∈W 1,p(U,R) ∩C0(U,R),
x0 ∈ A−(v), ξ ∈ D−v(x0), r > 0 and ρ > 0 such that B(x0, ρ) ⊆ U . Then there exists

a map ṽ ∈W 1,p(U,R) ∩ C0(U,R) with the following properties:

(i) ṽ − v ∈W
1,p
0 (U);

(ii) v(x) ≤ ṽ(x) for x ∈ U ;

(iii) Λ̃
.
= {x ∈ U : ṽ(x) > v(x)} is nonempty and Λ̃ ⊆ B(x0, ρ);

(iv)

{

|Dṽ(x)− ξ| = r, for a.e. x ∈ Λ̃

Dṽ(x) = Dv(x), for a.e. x ∈ U \ Λ̃;

(v)

∫

U

ṽ dx >

∫

U

v dx.
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We stress that (v) is a straightforward consequence of (ii) and (iii).

Lemma 2.5. Let Ω be an open bounded subset of Rn with Lipschitz boundary ∂Ω.
Let t ∈ R

+ be small, M > 0 and u, v ∈W 1,1(Ω) ∩ C0(Ω) be such that

‖u‖C0(Ω), ‖v‖C0(Ω) ≤M

and

‖u− v‖C0(∂Ω) ≤ t.

Then there exist an open subset Ωt ⊆ Ω, a map wt ∈W 1,1(Ω)∩C0(Ω) and a continu-

ous increasing function σ : [0,+∞[ → [0,+∞[, depending only on M and on Ω, with
σ(0) = 0 such that

(i) Ωt ⊆ Ωs if t > s;

(ii) meas (Ω \ Ωt) → 0 as t→ 0+;

(iii) wt = u in Ωt;

(iv) wt = v in ∂Ω;

(v) |wt − u|, |wt − v| ≤ σ(t) in Ω \ Ωt;

(vi) dist (Dwt(x), co({Du(x), Dv(x)})) ≤ σ(t) for a.e. x ∈ Ω.

3. The non coercive case: hypotheses

In Section 4 and 5 we assume the following hypotheses.

Hypothesis 3.1. F : Rn → R is a continuous function such that

{ξ ∈ R
n : F (ξ) > 0} = {ξ ∈ R

n : F ∗∗(ξ) > 0} , (2)

where F ∗∗ is the lower convex envelope of F .

We assume that the subset of Rn on which the function F ∗∗ is non positive is contained
in a strip. More precisely, up to rotation and relabeling of the indices, we assume
that there exists a positive δ such that

F ∗∗(ξ) ≤ 0 =⇒ |ξ1| ≤ δ. (3)

Remark 3.2. A simple example of a function satisfying Hypothesis 3.1 is, as the
reader can easily verify by direct inspection, the following:

F (ξ)
.
=
(

|ξ1|
2 − 1

)2
− 2.

In Section 5 we shall use the following slightly stronger version of Hypothesis 3.1.

Hypothesis 3.3. The same as in Hypothesis 3.1 assuming F ∗∗ = F and that such
function is uniformly continuous. In place of (3) we impose the the following similar
condition: there exists a positive δ̃ such that

F ∗∗(ξ) ≤ 1 =⇒ |ξ1| ≤ δ̃. (4)
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Hypothesis 3.4. The domain Ω ⊂ R
n is open bounded and convex and we consider,

as boundary datum, a map ϕ defined on a neighbourhood Ω̃ of Ω, assuming that
ϕ ∈W 1,∞(Ω̃) is a concave function such that

F ∗∗(Dϕ(x)) ≤ 0 for a.e. x ∈ Ω̃.

Definition 3.5. We define the sets

S∞

ϕ

.
=
{

u ∈ ϕ+W
1,∞
0 (Ω) : F ∗∗(Du) ≤ 0 a.e. in Ω

}

, (5)

S1
ϕ

.
=
{

u ∈
(

ϕ+W
1,1
0 (Ω)

)

∩ C0(Ω) : F ∗∗(Du) ≤ 0 a.e. in Ω
}

. (6)

We remark that S∞
ϕ is a subset of S1

ϕ and that, if Hypothesis 3.4 is satisfied, S∞
ϕ is

nonempty.

4. The non coercive case: existence and uniqueness of the solution

Throughout this section we assume Hypotheses 3.1 and 3.4.

Lemma 4.1. We have:

s
.
= sup

{
∫

Ω

u(x) dx, u ∈ S1
ϕ

}

= sup

{
∫

Ω

u(x) dx, u ∈ S∞

ϕ

}

< +∞. (7)

Proof. Step 1. By (3) in Hypothesis 3.1 we have

‖D1u‖L∞(Ω) ≤ δ ∀u ∈ S1
ϕ. (8)

Poincaré inequality and (8) imply that

∫

Ω

|u(x)| dx ≤ C‖D1u‖L1(Ω) ≤ Cδmeas(Ω) ∀u ∈ S1
ϕ,

for a suitable positive constant C. Hence
∫

Ω
u(x) dx is bounded both in S∞

ϕ and in
S1
ϕ and we have to prove that the two suprema coincide.

Step 2. Set

s
.
= sup

{
∫

Ω

u(x) dx, u ∈ S∞

ϕ

}

.

For every ǫ > 0, consider the set

U ǫ
ϕ

.
=
{

v ∈W 1,∞(Ω) : F ∗∗(Dv) ≤ 0 a.e. in Ω and ‖v − ϕ‖C0(∂Ω) ≤ ǫ
}

. (9)

Proceeding as above, and by elementary computations, we have

sǫ
.
= sup

{
∫

Ω

u(x) dx, u ∈ U ǫ
ϕ

}

< +∞

and
lim
ǫ→0+

sǫ = s. (10)
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Take u ∈ S1
ϕ and write u = ϕ + z, with z ∈ W

1,1
0 (Ω). Recalling Hypothesis 3.4 and

extending by zero the map z outside Ω, we have that u is defined on a neighbourhood
Ω̃ of Ω and that the inequality F ∗∗(Du) ≤ 0 is satisfied a.e. in Ω̃. Consider a
regularizing sequence (ρk) and, for x ∈ Ω and k ∈ N sufficiently large, define

uk
.
= ρk ∗ u.

By Jensen inequality, by the convexity of F ∗∗, and recalling that the convolution is
a convex combination, we have, for x ∈ Ω:

F ∗∗(Duk(x)) = F ∗∗

(

∫

B(0, 1k)
ρk(x− y)Du(y) dy

)

(11)

≤

∫

B(0, 1k)
ρk(x− y)F ∗∗(Du(y)) dy ≤ 0,

for all k ∈ N large enough so that

B

(

x,
1

k

)

⊂ Ω̃ ∀x ∈ Ω.

By the uniform convergence of uk to u on Ω, we have that for every ǫ > 0 there exists
kǫ ∈ N such that

‖uk − ϕ‖C0(∂Ω) ≤ ǫ ∀k ≥ kǫ. (12)

Combining (11) and (12), recalling the Definition (9), we deduce that uk ∈ U ǫ
ϕ for

every k ≥ kǫ and, obviously, we have

uk → u in L1(Ω).

Step 3. Assume, by contradiction, that there exist u ∈ S1
ϕ and β > 0 such that

∫

Ω

u(x) dx = s+ β.

By previous step, taking into account (10), there exists a family (vǫ) in U ǫ
ϕ with the

following properties:
∫

Ω

vǫ(x) dx ≤ sǫ −→ s as ǫ→ 0+, (13)

∫

Ω

vǫ(x) dx −→ s+ β > s as ǫ→ 0 + . (14)

Formulas (13) and (14) provide the contradiction and the lemma is proved.

By classical arguments (see for example Proposition 2.2 in [4] and Theorem 3.8 in
[5]) we obtain the following result.

Lemma 4.2. Let u ∈ S∞
ϕ . Then

F ∗∗(ξ) ≤ 0 ∀ξ ∈ D+u(x), ∀x ∈ Ω;

F ∗∗(ξ) ≤ 0 ∀ξ ∈ D−u(x), ∀x ∈ Ω.
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Proof. Step 1. We start by proving the following

Claim. Given an open set Λ ⊂⊂ Ω, there exists a sequence (uk) in C
∞(Λ) such that

uk −→ u uniformly on Λ, (15)

F ∗∗(Duk(x)) ≤ 0 ∀x ∈ Λ ∀k ∈ N. (16)

Take a regularizing sequence (ρk) and set, for k sufficiently large,

uk(x)
.
= (ρk ∗ u)(x), x ∈ Λ.

Remarking that the convolution is a convex combination, by the convexity of F ∗∗, by
Jensen inequality and recalling that u ∈ S∞

ϕ , we have, for x ∈ Λ:

F ∗∗(Duk(x)) = F ∗∗(ρk ∗Du(x))

= F ∗∗

(

∫

B(x, 1
k
)

ρk(x− y)Du(y) dy

)

≤

∫

B(x, 1
k
)

ρk(x− y)F ∗∗(Du(y)) dy ≤ 0,

for k is sufficiently large so that

Λ +B

(

0,
1

k

)

⊂ Ω.

Hence the claim is proved.

Step 2. Take now x0 ∈ A+(u), ξ ∈ D+u(x0).

Consider an open set Λ ⊂⊂ Ω containing x0 and the sequence (uk) defined in previous
step. By a standard argument (see for example Proposition 2.2 in [4]), by (15),
recalling the smoothness of uk and point (iv) in Lemma 2.2, we deduce the existence
of a sequence (xk) in Λ such that

xk → x0 and Duk(xk) → ξ as k → ∞. (17)

By the continuity of F ∗∗, it follows that

F ∗∗(Duk(xk)) −→ F ∗∗(ξ) ≤ 0 as k → ∞. (18)

Hence, (16), (17) and (18), imply that

F ∗∗(ξ) ≤ 0.

By the same argument we obtain that

F ∗∗(ξ) ≤ 0 ∀x ∈ A−(u) and ∀ξ ∈ D−u(x).
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Definition 4.3. Let U ⊂ R
m open, bounded convex and let u ∈ W

1,∞
loc (U) ∩ C0(U).

Consider the set
Vu

.
= {v concave, v ≥ u} .

Then define
u(x)

.
= inf {v(x), v ∈ Vu} , x ∈ Ω.

We call u the upper concave envelope of u (uce(u)).

The following arguments are well known and can be found in [1]; we give a proof for
the sake of completeness and for convenience of the reader.

Remark 4.4. We show elementary properties of the upper concave envelope.

(i) The map u is concave and then it belongs to W 1,∞
loc (U).

(ii) Let Λ ⊆ ∂U be a subset of the boundary ∂U of U . If u⌊Λ coincides with ϕ⌊Λ,
where ϕ ∈ C0(U) is a concave function, then u⌊Λ= u⌊Λ.

Proof. Property (i) is well known. To prove (ii), for every ǫ > 0 one consider the set

Ṽ ǫ
u

.
= {v concave, v ≥ u, u⌊Λ≤ v⌊Λ≤ u⌊Λ+ǫ} .

Clearly Ṽ ǫ
u is nonempty. Indeed consider the gauge function ρ associated to the

(convex) set U and, for α ∈ R
+, define the map

w(x)
.
= ϕ(x) + α(1− ρ(x)) + ǫ.

It is immediate to see that w is concave and that, if α is sufficiently large, w ≥ u:
hence w belongs to Ṽ ǫ

u .

Now set
zǫ

.
= inf

{

v, v ∈ Ṽ ǫ
u

}

;

and then
z
.
= inf {zǫ, ǫ > 0} ;

It is immediate to see that the map z is concave and, since Ṽ ǫ
u ⊆ Vu, for every ǫ > 0,

we have z ≥ u. By definition we have u⌊Λ≤ z⌊Λ≤ u⌊Λ+ǫ for every ǫ > 0 and then z
coincides with u on Λ.

The proof will be achieved if we show that z ≤ u. Assume, by contradiction z > u on
some (open) subset E of Ω and set w

.
= inf(u, z), recalling that the infimum of two

concave function is concave. Since we have, necessarily, u⌊Λ≥ ϕ⌊Λ= u⌊Λ= z⌊Λ on Λ,
we would have w ∈ Ṽ ǫ

u for every ǫ > 0 and w < z on E ⊆ U ; a contradiction.

Lemma 4.5. Let U ⊂ R
m be open, bounded and convex. Let u ∈ Aff(U), Ξ ⊆ R

m

closed convex and assume R(Du) ⊆ Ξ. Then u = uce(u) ∈ Aff(U) and R(Du) ⊆ Ξ.

Proof. Recalling (1) in Definition 2.1, we write

R(Du) = {ai, i = 1, . . . ,M} ⊆ Ξ.

The map u, being concave, is differentiable almost everywhere; in addition it is well
known that the convex envelope of a polyhedron is a polyhedron, hence the gradient of



S. Zagatti / An Integro-Extremization Approach for Non Coercive and ... 1151

u is piecewise constant and then we conclude that u belongs to Aff(U). In particular,
recalling Definition 2.1, we may write

R(Du) = {bj, j = 1, . . . , k} ,

for some k ∈ N, bj ∈ R
m, j = 1, . . . , k, and

Du =
k
∑

j=1

bjχUj
.

Our claim is to prove that every vector bj lies in Ξ.

Take an index j0 and call V the corresponding (nonempty) open set Uj0 . By definition
of u, V is a polyhedron and there exist points x0, . . . , xm, vertices of V , such that
u(xi) = u(xi), i = 0, . . . , n. In addition the affine function which coincides with
u on V is greater or equal than u on U (in terms of convex analysis it defines a
supporting hyperplane for the graph of u). By rotation and translation we may
assume b

.
= bj0 = 0 and u(xi) = u(xi) = 0 for i = 0, . . . , n. Hence we reduce to have

u = 0 on V , u ≤ u ≤ 0 on U .

The lemma is so proved if we show that

0 ∈ co {ai, i = 1, . . . ,M} .

Hence the proof will be achieved by the following statement.

Lemma 4.6. Let U ⊂ R
m be a bounded open convex subset of Rm and let u ∈ Aff(U)

such that u(y) = 0, for some y ∈ Ω and u ≥ 0 on U . Write

R(Du) = {ai, i = 1, . . . , k} .

Then

0 ∈ co {ai, i = 1, . . . , k} .

Proof. Assume, by contradiction, that the thesis is false. The range of Du is finite;
hence co(R(Du)) is compact and consequently, by Hahn-Banach Theorem, there
exists a direction n in R

m such that ai ·n > 0 for all i = 1, . . . , k. By translation and
rotation we may assume n = e1 = (1, 0, . . . , 0), so that ∂u

∂x1

> 0 a.e. in U = int(U).
Hence the conditions u(y) = 0 and u ≥ 0 on U provide the contradiction.

Lemma 4.7. Let U ⊂ R
m be open, bounded and convex; let Ξ be a closed convex

subset of Rm and let u ∈ W
1,∞
loc

(U) be such that Du(x) ∈ Ξ for a.e. x ∈ U . Then

u ≡ uce(u) belongs to W 1,∞
loc

(U) and Du(x) ∈ Ξ for a.e. x ∈ U .

Proof. Let (uk) be a sequence in Aff(U) such that uk ≤ u for every k ∈ N, uk → u

uniformly in U , Duk → Du in L2
loc(U), Duk → Du a.e. in U and

Duk ∈ Ξ +B(0, σk) a.e. in Ω, (19)

where
σk

k→∞
−→ 0. (20)
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To see that (19)–(20) can be satisfied, notice that, by the use of mollifiers and con-
volution, u can be approximated uniformly and in H1

loc(U) by a smooth function v
such that Dv ∈ Ξ in U and Dv is pointwise close to Du in U . Then, in turn, v can
be approximated uniformly and in H1

loc(U) by a function w in Aff(U) such that Dw
(where it exists) is uniformly close to Dv in U .

For every index k ∈ N consider the upper concave envelope uk of uk. By Lemma 4.5
and by (19) we have uk ∈W

1,∞
loc (U),

Duk ∈ Ξ +B(0, σk) a.e. in U ∀k ∈ N (21)

and, for every open subset V ⊂⊂ U ,

∫

V

|Duk(x)|
2 dx ≤ (‖Du‖L∞(V ) + 1)2meas(V ) ∀k ∈ N. (22)

Formula (22) implies that there exists v ∈ W
1,∞
loc (U) such that, passing if necessary

to subsequences,
uk ⇀ v in H1

loc(U) as k → ∞. (23)

The convergence (23) imply also that

uk
k→∞
−→ v in D′(U);

hence we have
∂2uk
∂ξ2

k→∞
−→

∂2v

∂ξ2
in D′(U) ∀ξ ∈ R

m : |ξ| = 1.

The concavity of uk, for every k ∈ N, implies that

∂2uk
∂ξ2

≤ 0 in D′(U) ∀k ∈ N ∀ξ ∈ R
m : |ξ| = 1,

so that
∂2v

∂ξ2
≤ 0 in D′(U) ∀ξ ∈ R

m : |ξ| = 1. (24)

Inequality (24) means that v is concave.

Being uk ≤ u for every k, we deduce uk ≤ u for every k and, consequently, v ≤ u.
On the other hand convergence (23) and the concavity of uk for every k imply that
uk → v pointwise. Since uk → u pointwise and uk ≤ uk → v as k → ∞ we deduce
that u ≤ v. By the definition of u as the smallest concave function greater than u we
have u ≤ v. Hence we have u = v.

Finally from the convergence Duk ⇀ Du in L2
loc(U) (i.e. (23)), from (21), (20), and

from Mazur Lemma, we deduce that, for every open subset V ⊂⊂ U ,

Du ∈
⋂

k

(

Ξ + B(0, σk)
)

= Ξ a.e. in V.

The arbitrariness of V yields the statement.
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Lemma 4.8. Let I = [a, b] be a compact interval and let f ∈ W 1,1(Ω) ∩ C0(Ω) be a

concave function. Let M be a positive constant such that |f(a)|, |f(b)| ≤ M and let

m = maxI |f |. Then there exists a positive constant γ = γ(meas(I),M,m) such that

∫

I

|f ′(t)| dt ≤ γ.

Proof. Straightforward.

Lemma 4.9. Let Ω be an open bounded convex subset of Rn and let u ∈ W 1,1(Ω) ∩
C0(Ω) be a concave function. Assume that there exists a positive δ such that

‖D1u‖L∞(Ω) ≤ δ (25)

and let M be a positive constant such that

‖u⌊∂Ω‖C0(∂Ω) ≤M.

Then there exists a positive constant Γ = Γ(n,M, δ,Ω), depending only on n,M, δ,Ω
such that

‖u‖W 1,1(Ω) ≤ Γ. (26)

Proof. Take y ∈ ∂Ω and consider the map

g1,y(t)
.
= u(y + te1), t ∈ I1,y,

where I1,y is the compact interval

I1,y
.
=
{

t ∈ R : y + te1 ∈ Ω
}

.

Clearly g1,y is concave and we have, for almost every line y + te1,

g′1,y(t) = D1u(y + te1) for a.e. t ∈ I1,y.

By (25), we have
|g′1,y(t)| ≤ δ for a.e. t ∈ I1,y. (27)

As a consequence of (27), by elementary computations, we find a positive number
γ = γ(Ω,M, δ), depending only on Ω,M, δ, but independent on y, such that, for
every y ∈ ∂Ω,

|g1,y(t)| ≤ γ ∀t ∈ I1,y. (28)

Recalling the continuity of u, inequality (28) implies that

|u(x)| ≤ γ ∀x ∈ Ω. (29)

Consider now any index j ∈ {2, . . . , n}, any y ∈ ∂Ω and the functions

gj,y(t)
.
= u(y + tej), t ∈ Ij,y,

where Ij,y is the interval

Ij,y =
{

t ∈ R : y + tej ∈ Ω
}

.
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Clearly gj,y is concave and, by (29), we have, ∀y ∈ ∂Ω,

|gj,y(t)| ≤ γ ∀t ∈ I1,y. (30)

By Lemma 4.8 and (30) there exists positive constants δj = δj(γ,Ω,M, δ), j =
2, . . . , n such that

∫

I1,y

|g′j,y(t)| dt ≤ δj ∀j = 1, . . . , n. (31)

Applying Fubini-Tonelli Theorem we obtain from (31) that

∫

Ω

|Dju(x)| dx ≤ L, ∀j = 1, . . . , n;

where L is a suitable positive constant depending only on Ω,M, δ.

From these last inequalities we deduce

∫

Ω

|Du(x)| dx ≤ nL,

which gives (26).

Remark 4.10. Clearly the above lemma applies to any element of S1
ϕ satisfying.

Theorem 4.11. Assume Hypotheses 3.1 and 3.4. Let S1
ϕ as in Definition 3.5 and s

as in Lemma 4.1. Then there exists a unique u ∈ S1
ϕ with the following properties.

u is concave; (32)
∫

Ω

u(x) dx = s; (33)

u ≥ u on Ω for every u ∈ S1
ϕ; (34)

F ∗∗(ξ) ≤ 0 ∀ξ ∈ D±u(x) ∀x ∈ Ω. (35)

Proof. Step 1. First of all remark that, given two elements u and v in S∞
ϕ , we have

that u ∨ v ∈ S∞
ϕ . This fact follows trivially from Stampacchia’s Theorem and from

the definition of S∞
ϕ (see Step 2 below).

Take a sequence (uk) in S
∞
ϕ such that

∫

Ω

uk(x) dx→ s as k → ∞.

Replacing if necessary uk+1 by uk ∨ uk+1 we may assume

uk ≤ uk+1 on Ω ∀k ∈ N. (36)

For every index k consider the upper concave envelope uk of uk and observe that, by
Lemma 4.7 and by Remark 4.4, uk ∈ ϕ+W

1,∞
0 (Ω). Setting

Ξ = {ξ : F ∗∗(ξ) ≤ 0} ,
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we deduce, from Lemma 4.7 again, that

F ∗∗(Duk(x)) ≤ 0 for a.e. x ∈ Ω.

Hence, recalling (5), uk lies in S∞
ϕ . In addition, as a consequence of (36), we have

uk ≤ uk+1 on Ω ∀k ∈ N; (37)

then, necessarily, we have

∫

Ω

uk(x) dx→ s as k → ∞. (38)

Applying Lemma 4.9 we obtain a positive constant Γ such that

‖uk‖W 1,1(Ω) ≤ Γ ∀k ∈ N.

By Rellich Theorem we deduce that the sequence (uk) is precompact in L1(Ω) and
then, by monotonicity (37), there exists u ∈ L1(Ω) such that

uk −→ u in L1(Ω) and almost everywhere in Ω. (39)

Obviously, by (38) and (39), we have

∫

Ω

u(x) dx = s;

hence (33) is proved.

Step 2. We prove now pointwise maximality (34).

Let u be any element in S1
ϕ; we claim that

u(x) ≤ u(x) ∀x ∈ Ω. (40)

Assume, by contradiction, that there exists v ∈ S1
ϕ and a nonempty (open) set E

such that
v > u on E. (41)

Set
w
.
= sup(v, u).

By Stampacchia’s Theorem we have

Dw =

{

Dv on E,

Du on Ω \ E,
(42)

and, by direct inspection, (42) gives that

w ∈ S1
ϕ. (43)
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As a consequence of (41) we obtain, recalling (33) and (7),

∫

Ω

w(x) dx >

∫

Ω

u(x) dx = s = sup

{
∫

Ω

u(x) dx;u ∈ S1
ϕ

}

. (44)

Formulas (43) and (44) provide the contradiction and then (40) is proved.

Step 3. Since (uk) is a nondecreasing sequence of concave functions converging a.e.
to u, it follows that u is concave.

Step 4. As a consequence of concavity we have u ∈ W
1,∞
loc (Ω); then u is continuous

and differentiable almost everywhere in Ω.

By computations analogous to those of Lemma 4.9 we prove that, actually, u belongs
to W 1,1(Ω) and, in addition, being uk and u continuous on Ω, by Dini’s Lemma,
properties (37) and (39) imply that

uk −→ u uniformly on each compact subset of Ω. (45)

Step 5. We know that uk ∈ S∞
ϕ and then, recalling Lemma 4.2, we have

F ∗∗(ξ) ≤ 0 ∀ξ ∈ D±uk(x) ∀k ∈ N ∀x ∈ Ω. (46)

Hence, by a standard argument (see Proposition 2.2. in [4]), the uniform convergence
(45) and (46) imply that

F ∗∗(ξ) ≤ 0 ∀ξ ∈ D−u(x) ∀x ∈ Ω

and that
F ∗∗(ξ) ≤ 0 ∀ξ ∈ D+u(x) ∀x ∈ Ω.

Hence (35) is proved.

Finally, being u differentiable a.e. in Ω, recalling item (iv) in Lemma 2.2, we have

F ∗∗(Du(x)) ≤ 0 for a.e. x ∈ Ω.

Collecting all the properties of u proved up to now we deduce that u ∈ S1
ϕ.

The following result allows us to recover by the integro-extremization method the
arguments contained in [10] and [5]. Another result can be found in Theorem 5.12 in
[2].

Theorem 4.12. Assume Hypotheses 3.1 and 3.4. Let u be the function given by

Theorem 4.11. Then u is the maximal viscosity solution of P∗∗
ϕ and of Pϕ.

Remark 4.13. Clearly any other viscosity (sub)solution of the equation cannot ex-
ceed u, hence the theorem states implicity the uniqueness of the maximal solution
u.

Proof. Step 1. We observe that condition (35) of Theorem 4.11 implies, in particular,
that u is a subsolution of the relaxed problem P∗∗

ϕ . In addition property (34) implies
uniqueness in the sense specified in the theorem.
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Step 2. We prove now that u is a viscosity supersolution of the relaxed problem P∗∗
ϕ .

Take x0 ∈ A−(u), ξ ∈ D−u(x0) and assume, by contradiction, that

F ∗∗(ξ) < 0. (47)

By the continuity of F ∗∗ and u, we infer from (47) the existence of R > 0 and r > 0
such that B(x0, R) ⊆ Ω and

F ∗∗ (η) ≤ 0 ∀η ∈ B(ξ, r). (48)

By Lemma 2.4 there exist ρ ∈ ]0, R[, a map

w ∈ u+W
1,∞
0 (Ω) = ϕ+W

1,∞
0 (Ω) (49)

and a nonempty open set

Λ ⊆ B(x0, ρ) ⊆ B(x0, R) (50)

with the following properties:

w(x) = u(x) for every x ∈ Ω \ Λ, (51)

u(x) < w(x) for every x ∈ Λ, (52)

Dw(x) = Du(x) for a.e. x ∈ Ω \ Λ, (53)

|Dw(x)−Du(x)| = r for a.e. x ∈ Λ, (54)
∫

Ω

w(x) dx >

∫

Ω

u(x) dx. (55)

Conditions (50)–(54), together with (48), ensure that

F ∗∗ (Dw(x)) ≤ 0 for a.e. x ∈ Ω. (56)

Recalling (49) and Definition 3.5, inequality (56) implies that w is an element of
S1
ϕ. Hence inequality (55) contradicts the maximality of the integral of u (see (7) in

Lemma 4.1 and formula (33) in Theorem 4.11). Hence (47) is absurd and then we
have

F ∗∗(ξ) ≥ 0 ∀x ∈ A−(u) and ∀ξ ∈ D−u(x). (57)

This proves the claim of Step 2 and, in particular, collecting (35) and (57), we have,
actually, that

F ∗∗(ξ) = 0 ∀x ∈ A−(u) and ∀ξ ∈ D−u(x). (58)

Step 1 and Step 2 imply that u is a viscosity solution of P∗∗
ϕ (see also [5]).

Step 3. Let us consider now the non convex problem Pϕ.

Take x0 ∈ A+(u), ξ ∈ D+u(x0) and assume, by contradiction, that

F (ξ) > 0.

Recalling (2) in Hypothesis 3.1 we have also F ∗∗(ξ) > 0 and then, invoking (35), we
obtain a contradiction.
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Take x0 ∈ A−(u), ξ ∈ D−u(x0) and assume, by contradiction, that

F (ξ) < 0.

Since, by definition, F ∗∗ ≤ F , we have F ∗∗(ξ) < 0 and then, invoking (58), we obtain
a contradiction also in this case.

Hence u is a viscosity solution of Pϕ.

5. The non coercive case: continuous dependence on boundary data

The viscosity solution u of Pϕ and of P∗∗
ϕ provided by Theorems 4.11 and 4.12 is

unique, in the sense specified in previous section. Hence we may investigate if u
depends continuously on the boundary datum ϕ with respect to some topology; in
this section we face this problem. Since we have obtained the maximal solution of the
non convex problem as a solution of the relaxed one, keeping the notation of previous
section, we assume, without loss of generality, that F = F ∗∗.

Theorem 5.1. Assume Hypotheses 3.3. Let (ϕk), k ∈ N0, be a bounded sequence in

W 1,∞(Ω̃) of concave functions such that

F (Dϕk(x)) ≤ 0 for a.e. x ∈ Ω̃ ∀k ∈ N0,

where Ω̃ is a neighbourhood of Ω. Assume that

ϕk −→ ϕ0 uniformly on ∂Ω as k → ∞.

For every k ∈ N0 consider the problem

Pϕk
:

{

F (Du) = 0 in Ω

u = ϕk on ∂Ω,

and let uk be the viscosity solution of Pϕk
given by Theorems 4.11 and 4.12. Then

uk −→ u0 in L1(Ω).

Proof. Step 1. For every ǫ ∈ [0, 1] and for every k ∈ N0, introduce the set

S1
ϕk,ǫ

.
=
{

u ∈
(

ϕk +W
1,1
0 (Ω)

)

∩ C0(Ω) : F (Du(x)) ≤ ǫ for a.e. x ∈ Ω
}

,

remarking that S1
ϕk,0

= S1
ϕk

(see Definition 6). By the same argument used in Theo-
rems 4.11 and 4.12 and recalling (4) in Hypothesis 3.3, for every ǫ > 0, we may infer
the existence of a map uǫk, unique viscosity solution of the problem

{

F (Du)− ǫ = 0 in Ω

u = ϕk on ∂Ω,

such that
uǫk ≥ u in Ω ∀u ∈ S1

ϕk,ǫ
. (59)
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By Lemma 4.9 and by the assumptions on the sequence (ϕk), there exists a positive
constant Γ such that

‖uǫk‖W 1,1(Ω) ≤ Γ ∀ǫ ∈ [0, 1] ∀k ∈ N.

Fix k ∈ N and take any sequence (ǫj) with ǫj → 0+ such that, by Rellich Theorem,

u
ǫj
k −→ v in L1(Ω) and almost everywhere.

Being the limit in D′(Ω) of a sequence of concave functions, reasoning as in Step 2

in the proof of Theorem 4.11, we obtain that v is concave, so that, in particular, it
belongs to W 1,∞

loc (Ω).

Take a test function θ ∈ D(Ω) (with
∫

Ω
θ dx = 1) and observe that, by the convexity

of F and by classical semicontinuity results, we have

∫

Ω

F (Dv(x))θ(x) dx ≤ lim inf
j→∞

∫

Ω

F (Du
ǫj
k (x))θ(x) dx ≤ ǫj → 0.

By the arbitrariness of θ we deduce from this last formula that

F (Dv(x)) ≤ 0 for a.e. x ∈ Ω. (60)

By computations analogous to those of Lemma 4.9 we deduce that, actually, v belongs
to W 1,1(Ω), and, being the pointwise limit of a sequence of elements which take the
value ϕk on ∂Ω, it follows that v belongs to ϕk+W

1,1
0 (Ω). In addition it is continuous

on Ω and then, recalling (60), we have that

v ∈ S1
ϕk
. (61)

On the other hand we have S1
ϕk

⊆ S1
ϕk,ǫ

for every ǫ ∈ [0, 1] and, consequently, recalling
the maximality (59) of uǫk, we have

∫

Ω

uk dx ≤

∫

Ω

uǫk dx ∀ǫ ∈ [0, 1]. (62)

Inequality (62) and the L1(Ω)-convergence u
ǫj
k −→ v as j → ∞ imply that

∫

Ω

uk dx ≤

∫

Ω

v dx. (63)

Recalling (61) and that, by definition, uk is the maximal element of S1
ϕk
, (63) implies

that v = uk. By the arbitrariness of the subsequence (u
ǫj
k ) we conclude that

uǫk −→ uk in L1(Ω) as ǫ→ 0 + ∀k ∈ N. (64)

Step 2. Claim. For every ǫ ∈ [0, 1] there exists a sequence (uk) in S
1
ϕk,ǫ

such that

uk −→ u0 strongly in W 1,1(Ω). (65)
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Since u0⌊∂Ω= ϕ0⌊∂Ω and ϕk −→ ϕ0 uniformly on ∂Ω, remarking that all functions
are uniformly bounded in W 1,1(Ω), we may fix k ∈ N and apply Lemma 2.5 with u, v
replaced by the functions u0 and ϕk, obtaining sets Ωk ⊆ Ω, a sequence σk → 0+ and
maps uk ∈W 1,1(Ω) ∩ C0(Ω) such that:

Ωk ⊆ Ωk+1 ∀k ∈ N; (66)

meas (Ω \ Ωk) −→ 0 as k → ∞; (67)

uk = u0 in Ωk; (68)

uk = ϕk on ∂Ω; (69)

|uk − u0|, |uk − ϕk| ≤ σk in Ω \ Ωk; (70)

dist (Duk(x), co({Du0(x), Dϕk(x)})) ≤ σk for a.e. x ∈ Ω. (71)

Formula (71) implies that the sequence (uk) is bounded in W 1,1(Ω); hence (66), (67)
and (68) imply (65). Since (69) implies that uk belongs to ϕk +W 1,1(Ω), we have
only to prove that there exists kǫ ∈ N such that

uk ∈ S1
ϕk,ǫ

∀k ≥ kǫ. (72)

By construction we have uk = u0 and Duk = Du0 a.e. in Ωk; hence

F (Duk(x)) ≤ 0 for a.e. x ∈ Ωk. (73)

In order to perform the computation on Ω \ Ωk we observe that by (71) there exist
measurable functions

λk : Ω −→ [0, 1] k ∈ N (74)

and
θk : Ω → R

n with |θk(x)| ≤ σk for a.e. x ∈ Ω \ Ωk, k ∈ N, (75)

such that

Duk(x) = λk(x)Du0(x) + (1− λk(x))Dϕk(x) + θk(x) for a.e. x ∈ Ω \ Ωk. (76)

Formulas (74), (75) and (76) imply that

F (Duk) = F (λkDu0 + (1− λk)Dϕk + θk) (77)

= [F (λkDu0 + (1− λk)Dϕk + θk)− F (λkDu0 + (1− λk)Dϕk)]

+ F (λkDu0 + (1− λk)Dϕk) a.e. in Ω \ Ωk.

Recalling (75), by the uniform continuity of F , there exists kǫ ∈ N such that

|F (λkDu0 + (1− λk)Dϕk + θk)− F (λkDu0 + (1− λk)Dϕk)| ≤ ǫ (78)

a.e. in Ω \ Ωk, ∀k ≥ kǫ.

Then, recalling that

F (Du) ≤ 0, F (Dϕk) ≤ 0 a.e. in Ω,

we have

F (λkDu0 + (1− λk)Dϕk) ≤ λkF (Du0) + (1− λk)F (Dϕk) ≤ 0 a.e. in Ω. (79)
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Collecting (77), (78) and (79) and recalling (73), we obtain that

F (Duk) ≤ ǫ a.e. in Ω ∀k ≥ kǫ.

This inequality and the other properties of uk imply (72) and then the proof of the
claim is finished.

Step 3. Consider the sequence (uk) which, by Lemma 4.9, is bounded in W 1,1(Ω).
Invoking Rellich Theorem take a subsequence, still denoted by (uk), such that

uk −→ v in L1(Ω) and a.e. in Ω. (80)

Claim. The map v belongs to S1
ϕ.

Being the limit in D′(Ω) of a sequence of concave functions, v, reasoning as in Step 2

of Theorem 4.11, turns out to be concave and then it belongs toW 1,∞
loc (Ω). Reasoning

again as in Lemma 4.9, v turns out to be an element of W 1,1(Ω). Clearly we have
v ∈ ϕ+W 1,1

0 (Ω), since it is the pointwise limit of a sequence whose elements coincide
at the boundary with the elements of the sequence (ϕk), which converges uniformly
to ϕ on ∂Ω. As in Step 1 take a test function θ ∈ D(Ω) (with

∫

Ω
θ(x) dx = 1) and

observe that, by the convexity of F and by classical semicontinuity results, we have:

∫

Ω

F (Dv(x))θ(x) dx ≤ lim inf
k→∞

∫

Ω

F (Duk(x))θ(x) dx ≤ 0,

since uk ∈ S1
ϕk

for every k. By the arbitrariness of θ we deduce form the above
formula that

F (Dv(x)) ≤ 0 for a.e. x ∈ Ω.

Hence the claim is proved and, in particular, by item (iii) in Theorem 4.12, we have:

v ≤ u0 in Ω. (81)

Claim. We have to show that
v = u0. (82)

Fix an index k and recall (64). Since uk −→ v in L1(Ω) as k → ∞, by a diagonal
argument we may find a sequence ǫk → 0+ such that

uǫkk −→ v in L1(Ω) as k → ∞. (83)

By Step 2 we may construct a sequence (uk) such that uk ∈ S1
ϕk,ǫ

∀k ∈ N and
uk −→ u0 strongly in W 1,1(Ω). Hence we have

∫

Ω

uk dx −→

∫

Ω

u0 dx as k → ∞. (84)

In addition, by the Definition (59) of uǫk, we have

∫

Ω

uk dx ≤

∫

Ω

uǫkk dx ∀k ∈ N. (85)
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Then, collecting (83), (84) and (85), we conclude that

∫

Ω

u0 dx = lim
k→∞

∫

Ω

uk dx ≤ lim
k→∞

∫

Ω

uǫkk dx =

∫

Ω

v dx. (86)

Putting together (81) and (86) we obtain that v = u0 and the claim is proved.

By the arbitrariness of the chosen subsequence, by (80) and (82), we obtain that the
whole sequence (uk) converges to u0 in L1(Ω).

Remark 5.2. Clearly, if the hamiltonian F is coercive, so that F (ξ) ≤ 0 implies
|ξ| ≤ C for some positive constant C, the solution u provided by Theorems 4.11 and
4.12 coincides with the one given by Theorems 1 and 2 in [16].

6. The evolution case: notations and main hypotheses

In this section we maintain the notations used above for the euclidean m-dimensional
space R

m in the cases the cases m = n or m = n + 1; a point x′ ∈ R
n is written as

x′ = (x1, . . . , xn), while a point x ∈ R
n+1 is written as x = (x0, x

′) = (x0, x1, . . . , xn).
For a function u = u(x) = u(x0, x1, . . . , xn) defined on R

n+1, we use the following
symbols for its derivatives:

Du =

(

∂u

∂x0
,
∂u

∂x1
, . . . ,

∂u

∂xn

)

=

(

∂u

∂x0
,∇u

)

,

where

∇u =

(

∂u

∂x1
, . . . ,

∂u

∂xn

)

.

We study the equation

∂u

∂x0
(x0, x

′) + F (∇′

xu(x0, x
′)) = 0 (x0, x

′) ∈ ]0, T [× Ω

subject to the initial condition

u(0, x′) = η(x′) x′ ∈ Ω

and to the Ω-boundary condition

u(x0, x
′) = ψ(x′) (x0, x

′) ∈ [0, T ]× ∂Ω.

Actually we formulate the boundary conditions assuming that there exists a function
ϕ : [0, T ]× Ω −→ R such that

ϕ(0, x′) = η(x′) ∀x′ ∈ Ω, ϕ(x0, x
′) = ψ(x′) ∀(x0, x

′) ∈ [0, T ]× ∂Ω;

hence we can write problem P in the introduction as

{

∂u
∂x0

+ F (∇x′u) = 0 in ]0, T [×Ω

u = ϕ on ({0} × Ω) ∪ ([0, T ]× ∂Ω).
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Introduce the function G : Rn+1 −→ R given by

G(ξ) = G(ξ0, ξ1, . . . , ξn)
.
= ξ0 + F (ξ1, . . . , ξn) (87)

and the set
Γ
.
= ({0} × Ω) ∪ ([0, T ]× ∂Ω). (88)

By virtue of (87) and (88) our problem can be formulated as follows:

P :

{

G(Du) = 0 in ]0, T [×Ω

u = ϕ on Γ,

where the variable x0 plays the role of time t and we also remark that actually, by
this choice, the Ω-boundary datum ψ can depend also on the variable x0.

We assume the following hypotheses.

Hypothesis 6.1. F : Rn → R is a convex function bounded from below and we set

−γ
.
= inf

ξ′∈Rn
F (ξ′). (89)

Hypothesis 6.2. Let T > 0 and let Ω ⊂ R
n be open, bounded and convex. We

consider a concave map ϕ ∈W
1,∞
loc (]0, T [×Ω) ∩ C0([0, T ]× Ω) assuming that

G(Dϕ(x)) ≤ 0 for a.e. x ∈ ]0, T [× Ω. (90)

Definition 6.3. We define the set

Sϕ
.
= {u ∈W

1,∞
loc (]0, T [× Ω) ∩ C0([0, T ]× Ω): (91)

u = ϕ on Γ, G(Du) ≤ 0 a.e. in ]0, T [× Ω},

remarking that, by virtue of Hypothesis 6.2, Sϕ is nonempty.

7. The evolution case: existence and uniqueness of the solution

Throughout this section we assume Hypotheses 6.1 and 6.2 and we stress that the
arguments are similar to the ones used in previous section; however we perform the
proofs for the sake of completeness.

Lemma 7.1. There exists a positive constant K such that

u(x) ≤ K ∀x ∈ [0, T ]× Ω, ∀u ∈ Sϕ. (92)

Proof. By definition, for every u ∈ Sϕ, we have

∂

∂x0
u(x0, x

′) + F (∇u(x0, x
′) ≤ 0 for a.e. (x0, x

′) ∈ ]0, T [× Ω;

hence, recalling (89) in Hypothesis 6.1, we have

∂

∂x0
u(x0, x

′) ≤ −F (∇u(x0, x
′)) ≤ γ for a.e. (x0, x

′) ∈ ]0, T [× Ω.
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By Fubini-Tonelli Theorem we have that, for almost every x′ ∈ Ω and x0 ∈ [0, T ],

u(x0, x
′) = u(0, x′) +

∫ x0

0

∂

∂x0
u(t, x′) dt ≤ ϕ(0, x′) + γT.

The continuity of u on [0, T ]× Ω implies the result.

Definition 7.2. As a consequence of Lemma 7.1 we may set

s
.
= sup

{
∫

[0,T ]×Ω

u(x) dx; u ∈ Sϕ

}

. (93)

Lemma 7.3. Let u ∈ Sϕ. Then

G(ξ) ≤ 0 ∀ξ ∈ D−u(x) ∀x ∈ A−(u);

G(ξ) ≤ 0 ∀ξ ∈ D+u(x) ∀x ∈ A+(u).

Proof. Step 1. We start by proving the following

Claim. Given an open set Λ ⊂⊂ ]0, T [ × Ω, there exists a sequence (uk) in C
∞(Λ)

such that

uk −→ u uniformly on Λ, (94)

G(Duk(x)) ≤ 0 ∀x ∈ Λ ∀k ∈ N. (95)

Take a regularizing sequence (ρk) in R
n+1 and set, for k sufficiently large,

uk(x)
.
= (ρk ∗ u)(x), x ∈ Λ.

Remarking that the convolution is a convex combination, by the convexity of G, by
Jensen inequality and recalling that u ∈ Sϕ, we have, for x ∈ Λ:

G(Duk(x)) = G(ρk ∗Du(x))

= G

(

∫

B(x, 1
k
)

ρk(x− y)Du(y) dy

)

≤

∫

B(x, 1
k
)

ρk(x− y)G(Du(y)) dy ≤ 0,

for k is sufficiently large so that

Λ +B

(

0,
1

k

)

⊂ ]0, T [× Ω.

Hence the claim is proved.

Step 2. Take now an arbitrary y ∈ A+(u), and any ξ ∈ D+u(y).

Consider an open set Λ ⊂⊂ ]0, T [ × Ω containing y and the sequence (uk) defined
in previous step. By a standard argument (see for example Proposition 2.2 in [4]),
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by (94), recalling the smoothness of uk and point (iv) in Lemma 2.2, we deduce the
existence of a sequence (xk) in Λ such that

xk → y and Duk(xk) → ξ as k → ∞. (96)

By the continuity of G, it follows that

G(Duk(xk)) −→ G(ξ) ≤ 0 as k → ∞. (97)

Hence, (95), (96) and (97), imply that

G(ξ) ≤ 0.

By the same argument we obtain that

G(ξ) ≤ 0 ∀ξ ∈ D−u(y) ∀y ∈ A−(u).

Theorem 7.4. Assume Hypotheses 6.1 and 6.2. Let Sϕ as in Definition 6.3 and s

as in Definition 7.2. Then there exists a unique u ∈ Sϕ with the following properties.

u is concave; (98)
∫

[0,T ]×Ω

u(x) dx = s; (99)

u ≥ u on [0, T ]× Ω for every u ∈ Sϕ; (100)

G(ξ) ≤ 0 ∀ξ ∈ D±u(x) ∀x ∈ A±(u). (101)

Proof. Step 1. First of all remark that, given two elements u and v in Sϕ, we have
that u ∨ v ∈ Sϕ. This fact follows trivially from Stampacchia’s Theorem and from
the definition of Sϕ (see Step 2 below).

Take a sequence (uk) in Sϕ such that

∫

[0,T ]×Ω

uk(x) dx −→ s as k → ∞.

Replacing if necessary u1 with u1 ∨ ϕ and uk+1 by uk ∨ uk+1 we may assume

ϕ ≤ uk ≤ uk+1 on [0, T ]× Ω ∀k ∈ N. (102)

For every index k consider the upper concave envelope uk of uk and observe that given
any open set U ⊂⊂ ]0, T [ × Ω, by Lemma 4.7, uk ∈ W 1,∞(U) ∩ C0(U); in addition,
recalling Remark 4.4, we have uk⌊Γ= ϕ⌊Γ. Setting

Ξ = {ξ : G(ξ) ≤ 0} ,

we deduce, from Lemma 4.7 again, that

G(Duk(x)) ≤ 0 for a.e. x ∈ U. (103)
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By the arbitrariness of U ⊂⊂ ]0, T [ × Ω, the inequality in (103) holds on the whole
]0, T [×Ω. Hence, recalling (91), uk lies in Sϕ. In addition, as a consequence of (102),
we have

ϕ ≤ uk ≤ uk+1 on [0, T ]× Ω ∀k ∈ N; (104)

then, necessarily, we have

∫

Ω

uk(x) dx −→ s as k → ∞. (105)

Being uk ∈ Sϕ for every k ∈ N, by Lemma 7.1, we have that

uk ≤ K on [0, T ]× Ω ∀k ∈ N. (106)

Since for every x ∈ ]0, T [×Ω the sequence (uk(x))k is monotone non decreasing (recall
(104), we have

uk(x)
k→∞
−→ u(x) ∀x ∈ ]0, T [× Ω, (107)

where u is clearly a measurable function. Recall the bounds (106) and (102); observe
that we have

ϕ ≤ uk ≤ uk+1 ≤ K ∀k ∈ N on [0, T ]× Ω.

Since ϕ ∈ C0([0, T ]×Ω), by dominated convergence, we have that u ∈ L1(]0, T [×Ω)
and that, recalling (107)

uk
k→∞
−→ u in L1(]0, T [× Ω). (108)

Obviously, by (105) and (108), we have

∫

[0,T ]×Ω

u(x) dx = s;

hence (99) is proved.

Step 2. We prove now pointwise maximality (100).

Let u be any element in Sϕ; we claim that

u(x) ≤ u(x) ∀x ∈ [0, T ]× Ω. (109)

Assume, by contradiction, that there exists v ∈ Sϕ and a nonempty (open) set E ⊆
]0, T [× Ω such that

v > u on E. (110)

Set
w
.
= sup(v, u).

By Stampacchia’s Theorem we have

Dw =

{

Dv on E,

Du on ]0, T [× Ω \ E,
(111)
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and, by direct inspection, (111) gives that

w ∈ Sϕ. (112)

As a consequence of (110) we obtain, recalling (99) and (7.2),

∫

[0,T ]×Ω

w(x) dx >

∫

[0,T ]×Ω

u(x) dx = s = sup

{
∫

[0,T ]×Ω

u(x) dx;u ∈ Sϕ

}

. (113)

Formulas (112) and (113) provide the contradiction and then (109) is proved.

Step 3. As in Step 3 of the proof of Theorem 4.11 we obtain easily that u is concave.

Step 4. As a consequence of concavity we have u ∈ W
1,∞
loc (]0, T [ × Ω); then u is

continuous and differentiable almost everywhere in ]0, T [ × Ω; in addition, being uk
and u continuous on [0, T ]× Ω, by Dini’s Lemma properties (104) and (108) imply
that

uk
k→∞
−→ u uniformly on [0, T ]× Ω. (114)

Step 5. We know that uk ∈ Sϕ and then, recalling Lemma 7.3, we have

G(ξ) ≤ 0 ∀ξ ∈ D±uk(x) ∀k ∈ N ∀x ∈ A±(uk). (115)

Hence, by a standard argument (see Proposition 2.2 in [4]), the uniform convergence
(114) and (115) imply that

G(ξ) ≤ 0 ∀ξ ∈ D−u(x) ∀x ∈ A−(u)

and that
G(ξ) ≤ 0 ∀ξ ∈ D+u(x) ∀x ∈ A+(u).

Hence (101) is proved.

Finally, being u differentiable a.e. in ]0, T [×Ω, recalling item (iv) in Lemma 2.2, we
have

G(Du(x)) ≤ 0 for a.e. x ∈ ]0, T [× Ω.

Collecting all the properties of u proved up to now we deduce that u ∈ Sϕ.

Theorem 7.5. Assume Hypotheses 6.1 and 6.2. Let u be the function given by Theo-

rem 7.4. Then u is the unique maximal viscosity solution of P.

Proof. Step 1. We observe that condition (101) of Theorem 7.4 implies, in particular,
that u is a subsolution of P. In addition property (100) implies uniqueness in the
sense specified in the theorem.

Step 2. We prove now that u is a viscosity supersolution of P. Take y ∈ A−(u),
ξ ∈ D−u(y) and assume, by contradiction, that

G(ξ) < 0. (116)

By the continuity of G and u, we infer from (116) the existence of R > 0 and r > 0
such that B(y,R) ⊆ ]0, T [× Ω and

G (η) ≤ 0 ∀η ∈ B(ξ, r). (117)
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By Lemma 2.4 there exist ρ ∈ ]0, R[, a map w ∈ W
1,∞
loc (]0, T [ × Ω) and a nonempty

open set
Λ ⊆ B(y, ρ) ⊆ B(y,R) (118)

with the following properties:

w(x) = u(x) for every x ∈ ]0, T [× Ω \ Λ, (119)

u(x) < w(x) for every x ∈ Λ, (120)

Dw(x) = Du(x) for a.e. x ∈ ]0, T [× Ω \ Λ, (121)

|Dw(x)−Du(x)| = r for a.e. x ∈ Λ, (122)
∫

[0,T ]×Ω

w(x) dx >

∫

[0,T ]×Ω

u(x) dx. (123)

Conditions (118)–(122), together with (117), ensure that w coincides with u on
∂(]0, T [× Ω) and, consequently, with ϕ on Γ; in addition they imply that

G (Dw(x)) ≤ 0 for a.e. x ∈ ]0, T [× Ω. (124)

Recalling Definition 6.3, inequality (124) implies that w is an element of Sϕ. Hence
inequality (123) contradicts the maximality of the integral of u (see Definition 7.2,
Lemma 7.1 and formula (99) in Theorem 7.4). Hence (116) is absurd and then we
have

G(ξ) ≥ 0 ∀ξ ∈ D−u(x) ∀x ∈ A−(u). (125)

This proves the claim of Step 2 and, in particular, collecting (101) and (125), we
have, actually, that

G(ξ) = 0 ∀ξ ∈ D−u(x) ∀x ∈ A−(u). (126)

Step 1 and Step 2 imply that u is a viscosity solution of P.

8. The Cauchy problem

In this last section we consider briefly the problem treated up to now without the
boundary condition on ∂Ω, that is to say

{

∂u
∂t

+ F (∇u) = 0 in ]0, T [×Ω

u(0, x) = η(x) for x ∈ Ω.

Adopting the notations of previous section we have simply to replace the set Γ by
the set

Γ0
.
= {0} × Ω

and to formulate the problem

P0 :

{

∂u
∂x0

+ F (∇u) = 0 in ]0, T [×Ω

u = ϕ on Γ0.

where the datum ϕ satisfies the same requirements of previous section and ϕ(0, x) =
η(x) for every x ∈ Ω .
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Definition 8.1. Define the set

S0
ϕ

.
=
{

u ∈W
1,∞
loc (]0, T [× Ω) ∩ C0([0, T ]× Ω):

u = ϕ on Γ0, G(Du) ≤ 0 a.e. in ]0, T [× Ω
}

and the supremun

s0
.
= sup

{
∫

[0,T ]×Ω

u(x) dx; u ∈ S0
ϕ

}

< +∞.

The reader can easily recognize that the arguments of Section 3 can be reproduced
obtaining the following

Theorem 8.2. Assume Hypotheses 6.1 and 6.2. Let S0
ϕ and s0 as in Definition 8.1.

Then there exists a unique u ∈ S0
ϕ with the following properties.

(i) u is concave;

(ii)

∫

[0,T ]×Ω

u(x) dx = s0;

(iii) u ≥ u on [0, T ]× Ω for every u ∈ S0
ϕ;

(iv) G(ξ) ≤ 0 ∀ξ ∈ D±u(x) ∀x ∈ ]0, T [× Ω;

(v) u is the unique maximal viscosity solution of P0.

Proof. The proof can be obtained reproducing step by step the arguments of Section
3. The unique change consists in replacing the set Γ by the set Γ0; the reader sees
immediately that this does not affect any point of the procedure.
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