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1. Introduction

Let S ⊂ R
n be a nonempty closed set. For r > 0, we can find in the control theoretic

literature two definitions of the interior r-sphere condition. The first one (see [1, 2, 3]),
used here, is that for each x ∈ bdryS (the boundary of S) there exists yx ∈ S such
that

x ∈ B̄(yx; r) ⊂ S, (1)

where B̄(z; ρ) denotes the closed ball of radius ρ centered at z. The second definition
(see [5, 6, 12]) says that for all x ∈ S there exists yx ∈ S such that

x ∈ B̄(yx; r) ⊂ S.

This means that S is the union of closed r-balls. Equivalently, there exists S0 ⊂ S

such that S0+ B̄(0; r) = S. Clearly, if S is the union of closed r-balls then it satisfies
the interior r-sphere condition. The following example (see [7, Example 4.1]) shows
that the reverse implication is not necessarily true, and therefore the two definitions
are not equivalent.
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Figure 1.1: Example 1.1

Example 1.1. Let S be the closed region inside the three outer circles of Figure 1.1.
Clearly this set satisfies the interior 1-sphere condition (in the first sense) since the
three circles are of radius 1. But the origin cannot be covered by a 1-ball contained
in S; in fact, for this configuration, the maximal radius for a family of covering balls
is 1√

3
. Therefore the interior sphere condition does not hold for S in the second sense.

While S of the previous example is not the union of closed 1-balls, but it certainly is

the union of closed r-balls for r ≤ 1√
3
. This lead Nour, Stern and Takche [7] to frame

the following conjecture:

Conjecture 1.2. Suppose that S ⊂ R
n is a nonempty closed set satisfying the in-

terior r-sphere condition. Then there exists r′ such that S is the union of closed

r′-balls.

In [9], Nour, Stern and Takche generalized Example 1.1 to R
n, see [9, Example 11].

Specifically, they provided, for any r > 0, a set S in R
n which satisfies the interior

r-sphere condition but which S fails to be the union of closed balls with radius
r′ > nr

2
√
n2−1

. Therefore they introduced the following new version of Conjecture 1.2,
called the union of uniform closed balls conjecture:

Conjecture 1.3. Suppose that S ⊂ R
n is a nonempty closed set satisfying the in-

terior r-sphere condition. Then there exists r′ ≤ nr

2
√
n2−1

such that S is the union of

closed r′-balls.

We can find in [7] a proof of the union of uniform closed balls conjecture, but under
the assumption that S is wedged with compact boundary, see [7, Corollary 4.2]. Recall
that a set S is said to be wedged (or epi-Lipschitz) if near any boundary point, S
can be viewed, after application of an orthogonal transformation, as the epigraph
of a Lipschitz continuous function. The proof employed a result which asserts that
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under the wedgedness and compactness hypotheses, proximal smoothness of (intS)c

(the complement of the interior of S) and the interior sphere condition of S coincide;
see [7, Corollary 3.12].

The goal of the present article is to provide a proof (which we believe to be the first)
of Conjecture 1.3. Specifically, we will demonstrate that r′ can be taken to be r

2
,

which is less than nr

2
√
n2−1

for all n ≥ 2. Our proof is a direct one which only uses
some simple results from nonsmooth and proximal analysis. A generalization of this
conjecture to the case in which the radius of the balls can be taken to be a continuous
function is also given at the end of the article.

In the next section we present, after giving some definitions and establishing notation,
the details of the proof of the union of uniform closed balls conjecture. Section 3 is
devoted to the generalization of this conjecture to the continuous radius case.

2. Proof of the conjecture

First we will provide some definitions and notation from nonsmooth analysis. Our
general reference for these constructs is Clarke, Ledyaev, Stern and Wolenski [4]; see
also [11].

We denote by ‖ · ‖, 〈·, ·〉, B and B̄, the Euclidean norm, the usual inner product,
the open unit ball and the closed unit ball, respectively. For ρ > 0 and x ∈ R

n, we
set B(x; ρ) := x + ρB and B̄(x; ρ) := x + ρB̄. For a set A ⊂ R

n, Ac, intA, bdryA
and clA are the complement (with respect to R

n), the interior, the boundary and
the closure of A, respectively. We also denote by A′ the complement of the interior
of A, that is, A′ := (intA)c. The distance from a point x to a set A is denoted by
dA(x). We also denote by proj A(x) the set of closest points in A to x, that is, the set
of points a ∈ A which satisfy dA(x) = ‖a− x‖.
Let A be a nonempty closed subset of Rn. For x ∈ A, a vector ζ ∈ R

n is said to be
proximal normal to A at x provided that there exists σ = σ(x, ζ) ≥ 0 such that

〈ζ, a− x〉 ≤ σ‖a− x‖2 ∀a ∈ A. (2)

The relation (2) is commonly referred to as the proximal normal inequality. No
nonzero ζ satisfying (2) exists if x ∈ intA, but this may also occur for x ∈ bdryA (as
is the case when A is the epigraph of the function f(z) = −|z| and x = (0, 0)). For
such points, the only proximal normal is ζ = 0. In view of (2), the set of all proximal
normals to A at x is a convex cone, and we denote it by NP

A (x). Now let x ∈ bdryA,
and suppose that 0 6= ζ ∈ R

n and r > 0 are such that

B

(

x+ r
ζ

‖ζ‖ ; r
)

∩ A = ∅. (3)

Then ζ is a proximal normal to A at x and we say that ζ is realized by an r-sphere.
Note that ζ is then also realized by an r′-sphere for any 0 < r′ < r. One can show
that ζ being realized by an r-sphere is equivalent to the proximal normal inequality
holding for the normalization of ζ, with σ = 1

2r
; that is,

〈

ζ

‖ζ‖ , a− x

〉

≤ 1

2r
‖a− x‖2 ∀a ∈ A. (4)
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Therefore using the fact that (1) is equivalent to B(yx; r)∩ S ′ = ∅, we deduce that a
closed set A satisfies the interior r-sphere condition if and only if for all x ∈ bdryA
there exists 0 6= ζ ∈ NP

A′(x) such that ζ is realized by an r-sphere.

The following is the proof of the union of uniform closed balls conjecture.

Proof of Conjecture 1.3. Let S ⊂ R
n be a nonempty closed set satisfying the

interior r-sphere condition. We will prove that S is the union of r
2
-balls; that is, for

all x ∈ S there exists yx ∈ S such that x ∈ B̄(yx;
r
2
) ⊂ S.

Let x ∈ S. If x ∈ bdryS, then since S satisfies the interior sphere condition we
obtain the existence of zx ∈ S such x ∈ B̄(zx; r) ⊂ S. Taking yx := x + r

2
zx−x

‖zx−x‖ we,
have

x ∈ B̄
(

yx;
r

2

)

⊂ B̄(zx; r) ⊂ S.

Now we assume that x 6∈ bdryS, that is, x ∈ intS. We consider s ∈ projbdryS(x)
and we denote by r0 := ‖x− s‖ 6= 0. If r0 ≥ r

2
, then for yx := x we have

x ∈ B̄
(

yx;
r

2

)

⊂ B̄(x; r0) ⊂ S.

So we assume that 0 < r0 <
r
2
. For every ǫ ∈ ]0, r0

2
[ we denote by zǫ a point in

B̄(s; ǫ) ∩ Sc (which exists since s is a boundary point) and

xǫ := zǫ + projζ(x− zǫ) = zǫ + 〈x− zǫ, ζ〉ζ = zǫ + tǫζ,

where ζ := x−s
‖x−s‖ and tǫ := 〈x− zǫ, ζ〉; see Figure 2.1. We claim that xǫ− x and ζ are

orthogonal and that xǫ ∈ B̄(x; r0). Indeed,

〈xǫ − x, ζ〉 = 〈zǫ + tǫζ − x, ζ〉 = 〈tǫζ, ζ〉 − 〈x− zǫ, ζ〉 = tǫ − tǫ = 0.

On the other hand,

‖zǫ − s‖2 = ‖(xǫ − tǫζ)− (x− r0ζ)‖2

= ‖(xǫ − x) + (r0 − tǫ) ζ‖2

= ‖xǫ − x‖2 + (r0 − tǫ)
2 + 2 (r0 − tǫ) 〈xǫ − x, ζ〉

= ‖xǫ − x‖2 + (r0 − tǫ)
2
.

This gives, using the fact that ‖zǫ − s‖ ≤ ǫ, that

‖xǫ − x‖2 ≤ ǫ2 − (r0 − tǫ)
2. (5)

Therefore ‖xǫ− x‖ ≤ ǫ ≤ r0, and so xǫ ∈ B̄(x; r0). We can also deduce from (5) that
ǫ2 − (r0 − tǫ)

2 ≥ 0, and then
ǫ ≤ tǫ ≤ r0 + ǫ. (6)

Since zǫ 6∈ S and xǫ ∈ S, the segment joining these two points will intersect the
boundary of S at a point sǫ = zǫ + t′ǫζ = xǫ + (t′ǫ − tǫ)ζ, where 0 < t′ǫ ≤ tǫ.
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Figure 2.1: Proof figure

Lemma 2.1. ‖sǫ − zǫ‖ = t′ǫ ≤ ǫ.

To prove this, we first note that

‖sǫ − x‖2 = ‖(xǫ − x)− (tǫ − t′ǫ)ζ‖2 = ‖xǫ − x‖2 + (tǫ − t′ǫ)
2.

But sǫ 6∈ B(x; r0), and therefore

‖xǫ − x‖2 ≥ r20 − (tǫ − t′ǫ)
2. (7)

Now by (5) and (7) we obtain

2r0(r0 − tǫ) ≤ ǫ2 − t2ǫ + (tǫ − t′ǫ)
2. (8)

On the other hand, the inequality (6) gives that tǫ(r0 − ǫ) ≤ r20 − ǫ2, and then

ǫ(ǫ− tǫ) ≤ r0(r0 − tǫ).

If we combine this inequality with (8), then we obtain get

2ǫ(ǫ− tǫ) ≤ ǫ2 − t2ǫ + (tǫ − t′ǫ)
2 =⇒ (tǫ − ǫ)2 ≤ (tǫ − t′ǫ)

2

=⇒ 0 ≤ tǫ − ǫ ≤ tǫ − t′ǫ
=⇒ t′ǫ ≤ ǫ,

which completes the proof of Lemma 2.1.

We continue the proof of the conjecture and consider ζǫ, a unit proximal normal
vector to S ′ at sǫ realized by an r-sphere (which exists since S satisfies the interior
r-sphere condition). Clearly the center of this r-sphere is yǫ := sǫ+rζǫ. The proximal
normal inequality gives that

〈ζǫ, z − sǫ〉 ≤
1

2r
‖z − sǫ‖2
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for all z ∈ S ′. Since zǫ 6∈ S (and then zǫ ∈ intS ′) we obtain

〈ζǫ, ζ〉 = −〈ζǫ,−ζ〉 = −
〈

ζǫ,
zǫ − sǫ

‖zǫ − sǫ‖

〉

>
−1

2r
‖zǫ − sǫ‖. (9)

If ‖yǫ − x‖ ≤ r then for yx := x+ r
2
yǫ−x

‖yǫ−x‖ we obtain that

x ∈ B̄
(

yx;
r

2

)

⊂ B̄(yǫ; r) ⊂ S.

So we assume that ‖yǫ − x‖ > r.

Lemma 2.2. For rǫ :=
r2
0
‖yǫ−x‖

‖yǫ−x‖2+r20−r2
and cǫ = x+ rǫ

yǫ−x
‖yǫ−x‖ , we have

B̄(cǫ; rǫ) ⊂ B̄(x; r0) ∪ B̄(yǫ; r) ⊂ S.

First we note that one can prove that rǫ is the radius if the largest closed ball contain-
ing s and contained in B̄(x; r0)∪ B̄(yǫ; r), see Figure 2.1. For the proof of the lemma,
let w ∈ B̄(cǫ; rǫ) and assume that w 6∈ B̄(x; r0). We need to prove that w ∈ B̄(yǫ; r).
Since w ∈ B̄(cǫ; rǫ), we have that

‖w − x‖2 ≤ 2rǫ

〈

w − x,
yǫ − x

‖yǫ − x‖

〉

.

Then using the preceding inequality and the facts that ‖w−x‖ ≥ r0 and ‖yǫ−x‖2 > r2,
we get that

‖w − yǫ‖2 = ‖(w − x)− (yǫ − x)‖2
= ‖w − x‖2 + ‖yǫ − x‖2 − 2〈w − x, yǫ − x〉

≤ ‖w − x‖2 + ‖yǫ − x‖2 − ‖yǫ − x‖
rǫ

‖w − x‖2

≤ ‖yǫ − x‖2 −
(‖yǫ − x‖

rǫ
− 1

)

‖w − x‖2

≤ ‖yǫ − x‖2 −
(‖yǫ − x‖2 − r2

r20

)

‖w − x‖2

≤ ‖yǫ − x‖2 −
(‖yǫ − x‖2 − r2

r20

)

r20

= r2.

This completes the proof of Lemma 2.2.

Lemma 2.3. ‖yǫ − x‖ ≤
√

r2 + r20 + 4ǫ.

To prove this, first note

‖yǫ − x‖2 = ‖(yǫ − sǫ) + (sǫ − s) + (s− x)‖2
= ‖rζǫ + (sǫ − s)− r0ζ‖2
= r2 + ‖sǫ − s‖2 + r20 + 2r〈ζǫ, sǫ − s〉 − 2rr0〈ζǫ, ζ〉 − 2r0〈sǫ − s, ζ〉
≤ r2 + ‖sǫ − s‖2 + r20 + 2r0‖sǫ − s‖+ 2r‖sǫ − s‖ − 2rr0〈ζǫ, ζ〉.
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On the other hand, using (9) and Lemma 2.1 we have that

−2rr0〈ζǫ, ζ〉 < r0‖zǫ − sǫ‖ ≤ ǫr0,

and
‖sǫ − s‖ ≤ ‖sǫ − zǫ‖+ ‖zǫ − s‖ ≤ ǫ+ ǫ = 2ǫ.

Therefore

‖yǫ − x‖2 ≤ r2 + 4ǫ2 + r20 + 4r0ǫ+ 4rǫ+ r0ǫ

= r2 + r20 + 4ǫ2 + ǫ(5r0 + 4r)

≤ r2 + r20 + 4ǫ2 +
13

2
ǫr

(

since r0 <
r

2

)

≤ r2 + r20 + 16ǫ2 + 8ǫ
√

r2 + r20

=

(

√

r2 + r20 + 4ǫ

)2

.

This completes the proof of Lemma 2.3.

Lemma 2.4. There exists ǭ > 0 such that rǭ ≥ r
2
.

Note that rǫ ≥ r
2
is equivalent (by replacing rǫ by its definition) to

r‖yǫ − x‖2 − 2r20‖yǫ − x‖+ r(r20 − r2) ≤ 0.

Hence it is sufficient to prove the existence of an ǭ > 0 such that ‖yǭ− x‖ is between

the two roots
r2
0
±
√
∆′

r
where ∆′ = (r2 − r20)

2 + r2r20 > 0. But

r20 −
√
∆′

r
< 0 ≤ ‖yǫ − x‖,

so it is sufficient to prove the existence of an ǭ > 0 such that

‖yǭ − x‖ ≤ r20 +
√
∆′

r
.

We can readily show that
r2
0
+
√
∆′

r
−
√

r2 + r20 > 0. In fact, this inequality is equivalent
to

√

(r2 − r20)
2 + r2r20 > r2 − r20.

Now let ǭ := min{ r0
2
, 1
4
(
r2
0
+
√
∆′

r
−

√

r2 + r20 )} > 0. By Lemma 2.3 we have

‖yǭ − x‖ ≤
√

r2 + r20 + 4ǭ ≤ r20 +
√
∆′

r
,

and the proof of Lemma 2.4 is completed.

For yx := x+ r
2
yǭ−x

‖yǭ−x‖ we have by Lemma 2.2 that

x ∈ B̄
(

yx;
r

2

)

⊂ B̄(cǭ; rǭ) ⊂ B̄(x; r0) ∪ B̄(yǭ; r) ⊂ S.

This terminates the proof of Conjecture 1.3.
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We have not yet found a counterexample in which S fails to be the union of closed
balls of radius nr

2
√
n2−1

. Moreover, we believe that the above proof cannot be adopted
to prove that S is the union of nr

2
√
n2−1

-balls since the dimension n is not involved in
our arguments. So the following is a stronger version of the union of uniform closed
balls conjecture which will be a topic of future research.

Conjecture 2.5. Suppose that S ⊂ R
n is a nonempty closed set satisfying the inte-

rior r-sphere condition. Then S is the union of closed nr

2
√
n2−1

-balls.

3. Generalization

We begin this section by defining the θ-interior sphere condition, which is a general-
ization of the interior r-sphere condition used in the previous section. A closed set S
is said to satisfy the θ-interior sphere condition if there exists a continuous function
θ : bdryS −→ [0,+∞[ such that for all x ∈ bdryS one can find a point yx ∈ S

satisfying:

• x ∈ B̄(yx;
1

2θ(x)
) ⊂ S, if θ(x) > 0,

• x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0, if θ(x) = 0.

By the θ0-interior sphere condition we mean the θ-interior sphere condition with
θ ≡ θ0, a constant. Then the θ0-interior sphere condition (with θ0 > 0) is equivalent
to the existence, for each x ∈ bdryS, of yx ∈ S satisfying:

x ∈ B̄

(

yx;
1

2θ0

)

⊂ S.

Therefore, the θ0-interior sphere condition coincides with the interior 1
2θ0

-sphere con-
dition. Using the proximal normal inequality, as in the constant radius case, we can
easily see that the θ-interior sphere condition is equivalent to the existence of a con-
tinuous function θ : bdryS −→ [0,+∞[ such that for all x ∈ bdryS one can find a
vector 0 6= ζ ∈ NP

S′(x) such that

〈

ζ

‖ζ‖ , s− x

〉

≤ θ(x) ‖s− x‖2 ∀s ∈ S ′.

In other words, the θ-interior sphere condition is equivalent to the existence of a
continuous function θ : bdryS −→ [0,+∞[ such that for all x ∈ bdryS one can
find a vector 0 6= ζ ∈ NP

S′(x) which is realized by a 1
2θ(x)

-sphere if θ(x) 6= 0 and

by an r-sphere for all r > 0 if θ(x) = 0. For more information about the θ-interior
sphere condition, we invite the reader to see [10] where the θ-exterior sphere condition
(the θ-interior sphere condition satisfied by S ′) and its relation to ϕ-convexity were
studied.

We proceed to define the ψ-union of closed balls property, which will generalize the
union of uniform closed balls property. A closed set S is said to be the ψ-union of
closed balls if there exists a function ψ : S −→ [0,+∞[ such that:

(i) ψ is upper semicontinous on S and continuous on bdryS.

(ii) For all x ∈ S there exists yx ∈ S such that:



C. Nour, R. J. Stern, J. Takche / Validity of the Union of Uniform Closed ... 597

• x ∈ B̄(yx;
1

2ψ(x)
) ⊂ S, if ψ(x) > 0,

• x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0, if ψ(x) = 0.

Clearly the ψ0-union of closed balls property (with ψ0 > 0) is equivalent to the
union of closed 1

2ψ0

-balls property. The following is the generalization of the union of
uniform closed balls conjecture.

Theorem 3.1. Let S ⊂ R
n be a nonempty closed set which satisfies the θ-interior

sphere condition. Then S is the ψ-union of closed balls where ψ(·) is defined by

ψ(x) = 2max{θ(s) : s ∈ projbdryS(x)} ∀x ∈ S.

Proof. Let S ⊂ R
n be a nonempty closed set satisfying the θ-interior sphere condi-

tion. Then there exists a continuous function θ : bdryS −→ [0,+∞[ such that for
all x ∈ bdryS one can find a point yx ∈ S satisfying (ii) above. Note that since the
set projbdryS(x) is compact for each x ∈ S and by the continuity of θ(·) on bdryS,
we can define the function ψ(·) on S by

ψ(x) = 2max{θ(s) : s ∈ projbdryS(x)} ∀x ∈ S.

Since ψ(·) = 2θ(·) on bdryS, we have that ψ(·) is continuous on bdryS.

Claim. The function ψ(·) is upper semicontinuous on S.

To prove this, let xi be a sequence in S such that xi converges to x0 ∈ S. It is
sufficient to prove that there is a subsequence xik of xi, such that

lim
k−→∞

ψ(xik) ≤ ψ(x0).

Let si be a sequence in bdryS such that

si ∈ projS(xi) and ψ(xi) = 2 θ(si).

Clearly the sequence si is bounded. Then it admits a subsequence sik which converges
to s0 ∈ bdryS. Using the closedness of the projbdryS(·) map we get that s0 ∈
projS(x0). Therefore

ψ(x0) ≥ 2 θ(y0) = lim
k−→∞

2 , θ(sik) = lim
k−→∞

ψ(xik),

and this verifies the claim.

We continue with the proof of the theorem and we consider x ∈ S. If x ∈ bdryS,
then there exists yx ∈ S such that

• x ∈ B̄(yx;
1

2θ(x)
) ⊂ S, if θ(x) > 0,

• x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0, if θ(x) = 0.

Since ψ(x) = 2θ(x) we get that

• x ∈ B̄(yx;
1

2ψ(x)
) ⊂ B̄(yx;

1
2θ(x)

) ⊂ S, if ψ(x) > 0,

• x ∈ B̄(x+ t(yx − x); t) ⊂ S for all t > 0, if ψ(x) = 0.
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Now we assume that x ∈ intS.

Case 1: ψ(x) 6= 0. We consider s ∈ projbdryS(x) such that ψ(x) = 2θ(s) 6= 0. By the
continuity of θ(·) on bdryS we obtain, for i ∈ N

∗, the existence of 0 < δi <
1
i
such

that

0 < θ(s′) ≤ θ(s) +
1

i
=

1

2
ψ(x) +

1

i
∀s′ ∈ B(s; δi) ∩ bdryS.

Then using the fact that for all s′ ∈ B(s; δi)∩ bdryS, S ′ has a proximal normal at s′

realized by a 1
2θ(s′)

-sphere, we find that for all s′ ∈ B(s; δi)∩bdryS, S ′ has a proximal

normal at s′ realized by an i
iψ(x)+2

-sphere. Now using the same ideas as in the proof
of Conjecture 1.3, we can prove the existence of yi ∈ S such that

x ∈ B̄

(

yi ;
i

2iψ(x) + 4

)

⊂ S.

Since ‖yi− x‖ ≤ i
2iψ(x)+4

≤ 1
2ψ(x)

, we can assume that the sequence (yi)i converges to
a point yx ∈ S. We claim that

x ∈ B̄

(

yx ;
1

2ψ(x)

)

⊂ S.

Indeed, let z ∈ B(yx;
1

2ψ(x)
) and assume that z 6∈ B̄(yi;

i
2iψ(x)+4

) for all i ∈ N
∗. We

shall derive a contradiction. Since z 6∈ B̄(yi;
i

2iψ(x)+4
) for all i ∈ N

∗ we have that

‖z − yi‖ >
i

2iψ(x) + 4
∀i ∈ N

∗.

Taking i −→ +∞, we get that

‖z − yx‖ ≥ 1

2ψ(x)

which contradicts the fact that z ∈ B(yx;
1

2ψ(x)
). Then there exists i0 ∈ N

∗ such that

z ∈ B̄(yi0 ;
i0

2i0ψ(x)+4
) ⊂ S. Hence B(yx;

1
2ψ(x)

) ⊂ S and this gives (since S is closed)

that B̄(yx;
1

2ψ(x)
) ⊂ S. On the other hand, the fact that

‖x− yi‖ ≤ i

2iψ(x) + 4

for all i ∈ N
∗ yields (after taking i −→ +∞) that ‖x− yx‖ ≤ 1

2ψ(x)
. Therefore

x ∈ B̄

(

yx ;
1

2ψ(x)

)

⊂ S.

Case 2: ψ(x) = 0. We consider s ∈ projbdryS(x). Clearly we have that θ(s) = 0. By
the continuity of θ(·) on bdryS we get for i ∈ N

∗ the existence of 0 < δi <
1
i
such

that

0 ≤ θ(s′) ≤ 1

i
∀s′ ∈ B(s; δi) ∩ bdryS.
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Then using the fact that for all s′ ∈ B(s; δi) ∩ bdryS, S ′ has a proximal normal at
s′ realized by a 1

2θ(s′)
-sphere if θ(s′) 6= 0 and r-sphere for all r > 0 if θ(s′) = 0, we

get that for all s′ ∈ B(s; δi) ∩ bdryS, S ′ has a proximal normal at s′ realized by an
i
2
-sphere. Now using the same ideas as in the proof of Conjecture 1.3 and the fact

that r0 := ‖x− s‖ is less than i
4
(for i sufficiently large), we can prove the existence

of yi ∈ S such that

x ∈ B̄

(

yi;
i

4

)

⊂ S and ‖x− yi‖ =
i

4
.

We denote by ζi the unit vector yi−x
‖yi−x‖ . Since the sequence (ζi)i is bounded, we can

assume that it converges to a unit vector ζ0 ∈ R
n. For yx := x + ζ0, we claim that

x ∈ B̄(x + t(yx − x); t) ⊂ S for all t > 0. Indeed, let z ∈ B(x + t(yx − x); t) and
assume that for all i ∈ N

∗, z 6∈ B̄(yi;
i
4
). We shall derive a contradiction. There exists

ǫ > 0 such that

‖z − x− t(yx − x)‖ = ‖z − x− tζ0‖ = t− ǫ and ‖z − yi‖ >
i

4
∀i ∈ N

∗.

Hence

i

4
< ‖z − yi‖ =

∥

∥

∥

∥

z − x− i

4
ζi

∥

∥

∥

∥

=

∥

∥

∥

∥

z − x− tζ0 + tζ0 − tζi + tζi −
i

4
ζi

∥

∥

∥

∥

≤ t− ǫ+ t‖ζ0 − ζi‖+
∣

∣

∣

∣

t− i

4

∣

∣

∣

∣

= t− ǫ+ t‖ζ0 − ζi‖+
i

4
− t (for i sufficiently large)

=
i

4
− ǫ+ t‖ζ0 − ζi‖.

Then ǫ < t‖ζ0−ζi‖ which gives, since ζi −→ ζ0, the desired contradiction. Hence there
exists i0 ∈ N

∗ such that z ∈ B̄(yi0 ;
i0
4
) ⊂ S. This gives that B(x + t(yx − x); t) ⊂ S

and then B̄(x+ t(yx − x); t) ⊂ S. Therefore

x ∈ B̄(x+ t(yx − x); t) ⊂ S

for all t > 0, and this completes the proof of the theorem.
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