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There is a rich literature describing integrability of multifunctions that take weakly compact convex
subsets of a separable Banach space as their values. Most of the papers concern the Bochner type
integration, but there is also quite a number of papers dealing with the Pettis integral. On the other
hand almost nothing is known in case of non-separable Banach spaces. Only recently the papers
[5] and [6] have been published, where the authors proved the existence of scalarly measurable
selections of scalarly measurable multifunctions with weakly compact values. The aim of this paper
is to fill in partially that gap by presenting a number of theorems that characterize Pettis integrable
multifunctions with (weakly) compact non-separable sets as their values. Having applied the above
results, I obtained a few convergence theorems, that generalize results known in case of Pettis
integrable functions and in case of separably valued multifunctions.
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Introduction.

Looking through the existing abandon literature concerning integrability of multi-
functions which values are weakly compact subsets of a separable Banach space, one
can immediately notice that the most exploited property of the integrals is the fact
that they are of the Aumann type, that is their definitions or further properties de-
pend on the existence of measurable selections. Predominantly the integrals of the
Bochner type have been investigated and I dare to say that this topic is almost ex-
hausted, at least when values are weakly compact convex sets. The situation is a
little bit more complicated in case of the Pettis integral. I recommend the paper of
El Amri and Hess [10] for more details and corresponding literature.

As there were no appropriate selection theorems for scalarly measurable multifunc-
tions with values in non-separable Banach spaces, there was also no Pettis integration
theory for such multifunctions. However, a few papers published in the last decade
suggest a definition of the Pettis integrability independent of selections. One can find
it, for instance, in papers of Ziat [27] and El Amri - Hess [10]. I follow that way. Most
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of the main results are proved without invoking the existence of any selections. As
a consequence, the methods of proofs applied here are, in several points, completely
different from those used in case of separable Banach spaces. The technique applied
is closer to the theory of Pettis integration of functions with values in non-separable
Banach spaces. But even if one would like to adapt the methods from the separable
case, it cannot be done immediately. First of all, the selections are in general not
strongly measurable and this excludes general approximation approach via simple
functions. The second reason is that the weak topology restricted to weakly compact
sets may be now not metrizable and this immediately eliminates some methods of
proofs that used to be applied in case of separable Banach spaces. From time to
time I will use the beautiful result of Cascales, Kadetz and Rodriguez ([5] and [6])
who proved that each scalarly measurable multifunction with weakly compact (not
necessarily convex) values has a scalarly measurable selection. But in general I will
try to avoid selections.

Here are the most essential results of the paper.

1. Two complete characterizations of scalarly integrable multifunctions with convex
weakly compact values that are Pettis integrable in the family of convex weakly
compact sets (Theorems 2.5 and 4.6). The proof of Theorem 2.5, when restricted to
functions, gives a new proof of the corresponding result of Talagrand [25] for Pettis
integrable functions. The characterizations are new also in case of separable Banach
spaces.

2. There is a well known result of Diestel (cf. [8]) and Dimitrov [9] that if a separable
Banach space X does not contain any isomorphic copy of c0, then each X-valued
scalarly integrable function is Pettis integrable. It is also known that the result fails
for non-separable spaces. I present a non-separable version of the above result for
multifunctions with convex weakly compact values (Theorem 2.13). The result is new
also for functions (see Theorem 2.14).

3. If Γ is a multifunction with weakly compact convex values that is Pettis integrable
in the collection of weakly compact convex sets, then the sublinear operator TΓ :
X∗ → L1(µ), defined by TΓ (x

∗) = s(x∗, Γ ), (see the next section) is always weakly
compact. If such a Γ is Pettis integrable in the family of compact convex sets, then
the operator may fail to be compact.

I prove that each multifunction Γ with weakly compact convex values and Pettis
integrable in the collection of compact convex sets has a representation Γ = G + g,
where g is a Pettis integrable function and TG is compact. In particular, all Pettis
integrable selections of G have norm relatively compact ranges of their integrals
(Theorems 3.3 and 3.6). This is a significant simplification of the theory.

4. I apply the above results to obtain a few convergence theorems and one Fatou type
theorem for multifunctions that generalize known facts about functions and separable
valued multifunctions.

5. I introduce a property of a Banach space called the subsequential weak∗ lifting
property (Definition 3.8) that should be – in my opinion – interesting for functional
analysts, but I was not able to find it anywhere.
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1. Basic facts.

This section contains definitions, notation and several facts that are already mostly
known but not necessarily published.

Throughout (Ω,Σ, µ) is a complete probability space, Σ+
µ is the collection of all sets

of positive measure and X is a Banach space with its dual X∗. The closed unit
ball of X is denoted by B(X). cwk(X) denotes the family of all nonempty convex
weakly compact subsets of X and ck(X) is the collection of all nonempty convex and
compact subsets of X. cb(X) is the collection of all nonempty closed bounded and
convex subsets of X and c(X) denotes the collection of all nonempty closed convex
subsets of X. For every C ∈ c(X) the support function of C is denoted by s(·, C)
and defined on X∗ by s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗.

τ(X∗, X) denotes the topology of uniform convergence on elements of cwk(X) and
τc(X

∗, X) is the topology of uniform convergence on convex compact subsets of X. It
is known that s(·, C) is τc(X

∗, X)-continuous if and only if it is weak∗-continuous on
B(X∗). The weak∗-topology of X∗ will be denoted by σ(X∗, X). If Y is a subspace
of X, then τ(X∗, Y ) denotes the topology of uniform convergence on weakly compact
subsets of Y , σ(X∗, Y ) denotes the topology of pointwise convergence on Y and Y ⊥

is the annihilator of Y in X∗.

X∗ is weak∗-angelic if for each bounded set B ⊂ X∗ the weak∗-closure of B is equal
to the set of weak∗-limits of sequences from B.

A set V ⊂ X is called limited if x∗n → 0 uniformly on V , for every sequence x∗n → 0 in
the weak∗ topology of X∗. It is well known that limited sets are conditionally weakly
compact (i.e. sequences have weakly Cauchy subsequences) [3], and if X is weakly
compactly generated, then limited subsets of X are norm relatively compact.

A map Γ : Ω → c(X) is called a multifunction. The multifunction Γ is non-negative,

if for each x∗ ∈ X∗, we have s(x∗, Γ ) ≥ 0, a.e. A multifunction Γ̃ : Ω → c(X) is

dominated by Γ if Γ̃ (ω) ⊆ Γ (ω), for every ω ∈ Ω. A multifunction Γ̃ : Ω → c(X) is
called to be an extremal face of Γ : Ω → c(X), if there is a functional x∗0 ∈ X∗ such

that Γ̃ (ω) = {x ∈ Γ (ω) : x∗0(x) = s(x∗0, Γ (ω))}, for every ω ∈ Ω. We associate with
each Γ the set

ZΓ := {s(x∗, Γ ) : ‖x∗‖ ≤ 1},

where we consider functions, not equivalence classes of a.e. equal functions.

A function f : Ω → X is called a selection of Γ if f(ω) ∈ Γ (ω), for every ω ∈ Ω.
f : Ω → X is called a quasi selection of Γ if x∗f(ω) ∈ x∗Γ (ω) a.e., for each x∗ ∈ X∗

separately. One can easily check that a multifunction Γ is non-negative if and only
if the zero function is its quasi selection. If A ⊂ X is nonempty, then we write
|A| := sup{‖x‖ : x ∈ A}.

A map M : Σ → c(X) is called a weak multimeasure if s(x∗,M(·)) is a measure, for
every x∗ ∈ X∗. If M is a point map, then we talk about measure. If M : Σ → c(X)
is countably additive in the Hausdorff metric, then it is called an h-multimeasure. It
is known that if M : Σ → cwk(X), then M is a weak multimeasure if and only if it is
an h-multimeasure. A weak multimeasure M : Σ → c(X) is said to be µ-continuous
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(or absolutely continuous with respect to µ) if µ(E) = 0 yields M(E) = {0}, for every
E ∈ Σ.

A vector measure m : Σ → X such that m(A) ∈ M(A), for every A ∈ Σ, is called a
selection of M . S(M) will denote the set of all countably additive selections of M .

A family W ⊂ L1(µ) is uniformly integrable if W is bounded in L1(µ) and for each
ε > 0 there exists δ > 0 such that if µ(A) < δ, then supf∈W

∫
A
|f | dµ < ε.

Definition 1.1. A multifunction Γ is said to be scalarly measurable (or weakly mea-
surable) if for every x∗ ∈ X∗, the map s(x∗, Γ (·)) is measurable. A multifunction
Γ : Ω → c(X) is scalarly integrable if s(x∗, Γ ) is integrable for every x∗ ∈ X∗.
Γ : Ω → c(X) is scalarly bounded if there is a constant M ≥ 0 such that for ev-
ery x∗ ∈ X∗

| s(x∗, Γ )| ≤M‖x∗‖ a.e.

A function f : Ω → R is quasi-integrable (cf. [22]) if the integral
∫
Ω
f dµ exists. A

multifunction Γ : Ω → c(X) is scalarly quasi-integrable (see [10]) if s(x∗, Γ ) is quasi-
integrable for every x∗ ∈ X∗. A scalarly quasi-integrable multifunction Γ : Ω → c(X)
is Pettis integrable in c(X) [cb(X), ck(X), cwk(X)] if for each A ∈ Σ there exists a
set MΓ (A) ∈ c(X) [cb(X), ck(X), cwk(X), respectively] such that

s(x∗,MΓ (A)) =

∫

A

s(x∗, Γ ) dµ for every x∗ ∈ X∗. (1)

We set MΓ (A) := (P )
∫
A
Γ dµ and call MΓ (A) the Pettis integral of Γ over A. It

follows from (1) that MΓ is a weak multimeasure that is µ-continuous. �

As observed in [10], if Γ : Ω → c(X) is Pettis integrable in c(X), then

∫

Ω

s(x∗, Γ )− dµ <∞, for every x∗ ∈ X∗. (2)

(In the formula above s(x∗, Γ )− is the negative part of s(x∗, Γ )).

Similarly, if Γ is Pettis integrable in cb(X), then Γ is scalarly integrable. And in fact,
in this paper, I will mainly concentrate on multifunctions which are integrable in the
family of weakly compact sets. Therefore, the assumption of scalar integrability will
be often applied.

If Γ is an X-valued function, then we have a Pettis integrable function. Identifying
scalarly equivalent functions we obtain a linear space P(µ,X) of X-valued Pettis
integrable functions. It is well known that P(µ,X) can be normed by ‖f‖P :=
sup‖x∗‖≤1

∫
Ω
|x∗f | dµ and that this norm is equivalent to ‖|f‖|P := sup{‖Mf (E)‖ :

E ∈ Σ}. Moreover, P(µ,X) is non-complete if X is infinite dimensional and µ is not
purely atomic.

Proposition 1.2 (Compare with [20, Proposition 3.1]). Let Γ : Ω → cb(X) be
scalarly measurable. Then Γ can be represented in the form

Γ (ω) =
∑

n

Γ (ω)χEn
(3)
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where the sets En ∈ Σ are pairwise disjoint, µ (
⋃

nEn) = µ(Ω) and each Γ : En →
cb(X) is scalarly bounded.

Proof. Since | s(x∗, Γ (ω))| ≤ |Γ (ω)|‖x∗‖ for every ω and x∗, we get the existence of
a measurable function ψΓ : Ω → [0,+∞) such that:

(α) for each x∗ ∈ X∗ | s(x∗, Γ (ω))| ≤ ψΓ (ω)‖x
∗‖ for almost every ω;

(β) ψΓ (ω) ≤ |Γ (ω)| for every ω;

(γ) If ϕ is another measurable function satisfying the conditions (α) and (β) (with
ψΓ replaced by ϕ), then ψΓ ≤ ϕ a.e.

Now, if En := {ω : n − 1 ≤ ψΓ (ω) < n} and E ∈ Σ, then we get the representation
(3).

I am going to prove a characterization of the Pettis integrability of multifunctions
analogous to the operator characterization of the Pettis integrability: f : Ω → X is
Pettis integrable if and only if the operator Tf : X

∗ → L1(µ) given by Tf (x
∗) = x∗f is

weak∗-weakly continuous. In case of scalarly integrable Γ : Ω → c(X) we introduce
the operator TΓ : X

∗ → L1(µ), defined by TΓ (x
∗) := s(x∗, Γ ).

We say that TΓ is compact (weakly compact) if the set TΓ (B(X∗)) is norm relatively
compact (weakly relatively compact) in L1(µ).

The next proposition is a well known result that is usually formulated without any
relation to Pettis integration (see [7], Theorem II.16).

Proposition 1.3. Let X be an arbitrary Banach space and Γ : Ω → c(X) be scalarly
quasi-integrable. Then Γ is Pettis-integrable in c(X) if and only if the functional
x∗ −→

∫
E
s(x∗, Γ ) dµ is weak∗ lower semicontinuous for every E ∈ Σ.

If Γ is scalarly integrable, then the functional x∗ −→
∫
E
s(x∗, Γ ) dµ is weak∗ lower

semicontinuous for every E ∈ Σ if and only if Γ is Pettis-integrable in cb(X).
The operator TΓ is then bounded and norm-weakly continuous. Moreover, the set
MΓ (Σ) :=

⋃
E∈Σ MΓ (E) is bounded.

Proof. We will prove only the last assertion. Assume that Γ is Pettis integrable in
cb(X). If x∗ ∈ X∗, then

∫

Ω

| s(x∗, Γ (ω))| dµ(ω) ≤ 2 sup
E∈Σ

∣∣∣∣
∫

E

s(x∗, Γ (ω)) dµ(ω)

∣∣∣∣ (4)

= 2 sup
E∈Σ

| s(x∗,MΓ (E))| <∞,

where the last inequality follows from the fact that s(x∗, ·) is, for every x∗, a real
measure.

It follows now from (4) and the Banach–Steinhaus Theorem that MΓ (Σ) is bounded
and so (4) yields the boundedness of TΓ :

‖TΓ‖ = sup
‖x∗‖≤1

‖TΓ (x
∗)‖L1

= sup
‖x∗‖≤1

∫

Ω

| s(x∗, Γ (ω))| dµ(ω)

≤ sup{‖x‖ : x ∈MΓ (Σ)} <∞.
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We have for each E ∈ Σ and x∗ ∈ X∗

s(x∗,MΓ (E)) =

∫

E

s(x∗, Γ ) dµ = 〈TΓ (x
∗), χE〉, (5)

where MΓ (E) ∈ cb(X) and the left hand side term of (5) is norm continuous. So
the same holds true for the right hand side term. It follows that TΓ is norm-weak
continuous.

The following result is the basic operator characterization of Pettis integrability. It is
a direct generalization of the classical operator characterization of Pettis integrable
functions (cf. [21, Theorem 4.1]).

Theorem 1.4. Let X be an arbitrary Banach space and Γ : Ω → c(X) be scalarly
integrable. Then:

Γ is Pettis-integrable in cwk(X) if and only if the operator TΓ is τ(X∗, X)-weakly
continuous.

If Γ is non-negative, then TΓ is τ(X∗, X)-norm continuous.

Γ is Pettis-integrable in ck(X) if and only if the operator TΓ is τc(X
∗, X)-weakly

continuous on B(X∗).

If Γ is non-negative, then TΓ is τc(X
∗, X)-norm continuous on B(X∗).

Proof. Assume the τ(X∗, X)-weak continuity of TΓ onX∗ and define for an arbitrary
E ∈ Σ of positive measure a function ϕE : X∗ → R by the formula

ϕE(x
∗) :=

∫

E

s(x∗, Γ (ω)) dµ = 〈TΓ (x
∗), χE〉.

According to the continuity assumption, the right hand side of the equality is
τ(X∗, X)-continuous on X∗. Hence, the same holds true for the left one. This means
however that ϕE is sublinear and τ(X∗, X)-continuous functional on X∗. We are
going to prove that ϕE is also weak∗ lower semicontinuous. It is enough to show that
for each α ∈ R the set {x∗ ∈ X∗ : ϕE(x

∗) ≤ α} is weak∗-closed, but this is immediate,
since this set is convex and τ(X∗, X)-closed, due to the τ(X∗, X)-continuity of ϕE.

Thus, there is a closed convex set CE such that ϕE(x
∗) = s(x∗, CE), for every x∗.

Since ϕE is τ(X∗, X)-continuous, the set CE is weakly compact.

If TΓ is weak∗-weak continuous on B(X∗), then the proof is even simpler because the
required weak∗ lower semicontinuity is immediate.

Assume now that Γ : Ω → X is Pettis-integrable in cwk(X). For each E ∈ Σ there
is MΓ (E) ∈ cwk(X) such that for every x∗ ∈ X∗ we have

s(x∗,MΓ (E)) =

∫

E

s(x∗, Γ (t)) dµ(ω) = 〈TΓ (x
∗), χE〉, (6)

and TΓ is bounded (by Proposition 1.3).
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According to [13, Theorem 8.5.10] the range MΓ (Σ) =
⋃

E∈Σ MΓ (E) of the mul-
timeasure MΓ is a relatively weakly compact subset of X. We get from (4) the
inequalities

‖TΓ (x
∗)‖L1

=

∫

Ω

| s(x∗, Γ (ω))| dµ(ω)

≤ 2 sup
E∈Σ

| s(x∗,MΓ (E))| ≤ 2| s(x∗, convMΓ (Σ))|
(7)

Since convMΓ (E) is weakly compact, the support function s(·,MΓ (E)) is τ(X
∗, X)-

continuous. Take now an arbitrary net {x∗α} ⊂ X∗ that is τ(X∗, X)-convergent to
zero and g ∈ L∞(µ). Then

|〈TΓ (x
∗
α), g〉| ≤ ‖TΓ (x

∗
α)‖L1

· ‖g‖L∞
< 2| s(x∗α, convMΓ (Σ))| ‖g‖L∞

.

It follows that 〈TΓ (·), g〉 is τ(X
∗, X)-continuous at zero, what proves the τ(X∗, X)-

weak continuity of TΓ .

If Γ is non-negative and {x∗α} ⊂ X∗ is τ(X∗, X)-convergent to zero, then

0 ≤ lim
α

∫

Ω

s(x∗α, Γ ) dµ = lim
α

s(x∗α,MΓ (Ω)) = 0.

But this is just the convergence in L1(µ).

Assume now that Γ : Ω → X is Pettis-integrable in ck(X). We have the relation (6)
with MΓ (E) ∈ ck(X).

We are going to prove now the weak∗-weak continuity of TΓ on B(X∗). The proof has
to be a little bit different from that for weakly compact sets because the set MΓ (Σ)
is not always relatively compact. Since MΓ (E) is compact, the support function
s(·,MΓ (E)) is weak∗ continuous on B(X∗) and so it follows that 〈TΓ (·), χE〉 is a
weak∗-continuous sublinear functional on B(X∗). Hence, for each real-valued simple
function h the functional 〈TΓ (·), h〉 is weak∗-continuous on B(X∗). Take now an
arbitrary g ∈ L∞(µ), and let {x∗α} ⊂ B(X∗) be an arbitrary net which is weak∗-
convergent to zero. Let us fix ε > 0. Then there is a simple function hε : Ω → IR
with ‖g− hε‖L∞

< ε. By the weak∗-continuity of 〈TΓ (·), hε〉 there is α0 such that for
every α > α0 we have |〈TΓ (x

∗
α), hε〉| < ε. Consequently, if α > α0, then

|〈TΓ (x
∗
α), g〉| ≤ |〈TΓ (x

∗
α), g〉 − 〈TΓ (x

∗
α), hε〉|+ |〈TΓ (x

∗
α), hε〉|

≤ ‖TΓ (x
∗
α)‖L1

· ‖g − hε‖L∞
+ ε < ‖TΓ‖ε+ ε .

Hence 〈TΓ (·), g〉 is weak
∗-continuous on B(X∗), what proves the τc(X

∗, X)-weak con-
tinuity of TΓ .

If Γ is non-negative, then the proof is similar to the previous one.

Another version of the above result has been recently and independently obtained by
Cascales, Kadets and Rodriguez [5]. Instead of the operator TΓ they considered for
every E ∈ Σ the sublinear functional x∗ −→

∫
E
s(x∗, Γ ) dµ.

The next result, proved independently in [5], is essential for our further investigations.
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Corollary 1.5. Let Γ : Ω → c(X) and Γ̃ : Ω → c(X) be multifunctions such that for

every x∗ ∈ X∗ the inequality s(x∗, Γ̃ (ω)) ≤ s(x∗, Γ (ω)) holds true for almost every ω ∈
Ω (the exceptional sets depend on x∗). Assume that Γ is Pettis integrable in cwk(X)

(or in ck(X)). Then, if Γ̃ is scalarly measurable, then it is also Pettis integrable in
cwk(X) (resp. in ck(X)). In particular, every scalarly measurable selection of Γ is
then Pettis integrable.

Proof. Let us consider the case when Γ is Pettis integrable in cwk(X). We have for
every x∗ ∈ X∗ the inequalities

− s(−x∗, Γ (ω)) ≤ − s(−x∗, Γ̃ (ω)) ≤ s(x∗, Γ̃ (ω)) ≤ s(x∗, Γ (ω)) µ− a.e.

Hence, if E ∈ Σ, then

− s(−x∗,MΓ (E)) = −

∫

E

s(−x∗, Γ ) dµ ≤ −

∫

E

s(−x∗, Γ̃ ) dµ

≤

∫

E

s(x∗, Γ̃ ) dµ ≤

∫

E

s(x∗, Γ ) dµ = s(x∗,MΓ (E)).

The boundary functions are τ(X∗, X)-continuous, by Theorem 1.4, and so this yields
the τ(X∗, X)− σ(L1(µ), L∞(µ))-continuity of TΓ̃ . Consequently, according to Corol-

lary 1.4, the multifunction Γ̃ is Pettis integrable in cwk(X).

It is well known that τc(X
∗, X)-continuity is equivalent to the σ(X∗, X)-continuity

on B(X∗). It turns out that τ(X∗, X)-continuity of TΓ on B(X∗) provides a sufficient
condition for Pettis integrability in cb(X).

Proposition 1.6. Let X be an arbitrary Banach space and Γ : Ω → c(X) be scalarly
integrable. If the operator TΓ is τ(X∗, X)-weakly continuous on B(X∗), then Γ is
Pettis-integrable in cb(X).

Proof. Assume the τ(X∗, X)-weak continuity of TΓ on B(X∗) and define for an
arbitrary E ∈ Σ of positive measure a function ϕE : X∗ → R by the formula

ϕE(x
∗) :=

∫

E

s(x∗, Γ (ω)) dµ = 〈TΓ (x
∗), χE〉.

According to the continuity assumption, the right hand side of the equality is
τ(X∗, X)-continuous on B(X∗). But TΓ is positively homogeneous and so TΓ is
τ(X∗, X)-continuous on all balls B(X∗, r) centered at zero and of positive radius r.
Hence, the same holds true for ϕE. This means, however, that ϕE is sublinear on X∗

and τ(X∗, X)-continuous functional on all balls B(X∗, r). We are going to prove that
ϕE is also weak∗ lower semicontinuous. It is enough to show that for each α ∈ R the
set {x∗ ∈ X∗ : ϕE(x

∗) ≤ α} is weak∗-closed. Since it is also convex, it follows from
the Krein-S̆mulian theorem that it is weak∗-closed if and only if its intersections with
all closed balls B(X∗, r) centered at zero are weak∗-closed. But by the continuity
of ϕE the sets {x∗ ∈ B(X∗, r) : ϕE(x

∗) ≤ α} are τ(X∗, X)-closed. Since they are
convex, they are also weak∗-closed.
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Thus, there is a closed convex set CE ⊂ X such that ϕE(x
∗) = s(x∗, CE), for every

x∗. Since Γ is scalarly integrable CE is bounded and so Γ is Pettis integrable in
cb(X).

The reverse implication in Proposition 1.6 fails (see Example 1.11).

Proposition 1.7. Let Γ : Ω → cwk(X) be Pettis integrable in cb(X). If each ex-
tremal face of Γ is Pettis integrable in cb(X), then Γ is Pettis integrable in cwk(X).

Proof. Let (P )
∫
Ω
Γ dµ = M(Ω) ∈ cb(X). We are going to prove that M(Ω) ∈

cwk(X). To do it, let x∗0 ∈ X∗ be arbitrary. We shall prove that x∗0 attains its
supremum onM(Ω). It will follow from the result of James [15] thatM(Ω) is weakly
compact. Let G : Ω → cwk(X) be the extremal face of Γ defined by

G(ω) := {x ∈ Γ (ω) : x∗0(x) = s(x∗0, Γ (ω))}.

Due to [26, Lemma 3] the multifunction G is scalarly measurable. Moreover, by the
assumption, G is also Pettis integrable in cb(X). Thus, we obtain the existence of a
set PΩ ∈ cb(X) such that

s(x∗, PΩ) =

∫

Ω

s(x∗, G) dµ for every x∗ ∈ X∗.

Moreover, since s(x∗, PΩ) ≤ s(x∗,M(Ω)), for every x∗ ∈ X∗, we have PΩ ⊆ M(Ω).
Directly from the definition of G we have

s(−x∗0, G(ω)) = sup
x∈G(ω)

[−x∗0(x)] = − inf
x∈G(ω)

x∗0(x) = − s(x∗0, Γ (ω)).

As a result, we obtain the following series of equalities:

s(x∗0, PΩ) =

∫

Ω

s(x∗0, G) dµ =

∫

Ω

s(x∗0, Γ ) dµ

= −

∫

Ω

s(−x∗0, G) dµ = − s(−x∗0, PΩ) = inf
x∈PΩ

x∗0(x).

It follows that x∗0 is constant on the set PΩ and so x∗0 attains its supremum on PΩ.
But

s(x∗0, PΩ) =

∫

Ω

s(x∗0, G) dµ =

∫

Ω

s(x∗0, Γ ) dµ = s(x∗0,M(Ω)),

and so x∗0 attains its supremum on the set M(Ω). In the above proof the set Ω may
be replaced by any E ∈ Σ.

Thus, we have proven that Γ is Pettis integrable in cwk(X).

One may ask whether the assumption of the Pettis integrability of Γ in cb(X), in
Proposition 1.7, would be sufficient. A negative answer is given by Example 1.12.
But with the help of Proposition 1.7 we achieve the following remarkable fact sup-
plementing Theorem 1.4 and Proposition 1.6:
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Theorem 1.8. Let Γ : Ω → cwk(X) be a scalarly integrable multifunction. Then Γ
is Pettis integrable in cwk(X) if and only if TΓ is τ(X∗, X)-weakly continuous on
B(X∗).

Proof. One of the implications is obvious so let us assume that TΓ is τ(X∗, X)-
weakly continuous on B(X∗). By Proposition 1.6 Γ is Pettis integrable in cb(X).
If ∆ : Ω → cwk(X) is scalarly measurable and dominated by Γ , then T∆ is also
τ(X∗, X)-weakly continuous on B(X∗). Consequently, ∆ is also Pettis integrable in
cb(X). Proposition 1.7 yields the Pettis integrability of Γ in cwk(X).

The next theorem is a consequence of the just proved theorem. It is a generalization
of [25, Theorem 6-1-2] formulated in the language of stable sets.

Definition 1.9 (Fremlin, Talagrand). Let H be a collection of real valued func-
tions defined on Ω. H is said to be stable if for each A ∈ Σ+

µ and arbitrary reals
α < β there exist k, l ∈ N satisfying the inequality

µ∗
k+l

(
⋃

f∈H

{f < α}k × {f > β}l ∩ Ak+l

)
< µ(A)k+l ,

where µk+l is the direct product of k + l copies of µ.

If H is stable and pointwise bounded, then its pointwise closure is also stable (see
[25]).

Theorem 1.10. Let Γ : Ω → cwk(X) be scalarly integrable. If ZΓ is stable and
uniformly integrable, then Γ is Pettis integrable in cwk(X).

Proof. Let 〈x∗α〉α∈A be a net of points from B(X∗) converging in the Mackey topology
τ(X∗, X) to x∗0 ∈ B(X∗). Since each set Γ (ω) is weakly compact, we have the
pointwise convergence limα s(x

∗
α, Γ (ω)) = s(x∗0, Γ (ω)). But as the set ZΓ is stable, it

follows from [25, Theorem 9-5-2] that limα s(x
∗
α, Γ ) = s(x∗0, Γ ) in measure. But ZΓ

is uniformly integrable and so we may apply the Vitali convergence theorem for nets
(see [22, Proposition II.5.4+II.5.6]). As a result we obtain the convergence

lim
α

∫

Ω

| s(x∗α, Γ )− s(x∗0, Γ )| dµ = 0.

But the above convergence means that TΓ is τ(X∗, X)-norm continuous on B(X∗).
We may apply Theorem 1.8 to get the Pettis integrability of Γ in cwk(X).

Example 1.11. (The separable version of this example can be found in [10].) Let
X be an arbitrary (but preferably non-separable) Banach space. Let f : Ω → X be a
scalarly integrable function and let r : Ω → (0,∞) be an integrable function. Define
Γ : Ω → cb(X) by Γ (ω) := B(f(ω), r(ω)), where B(x, r) is the closed ball with its
center in x and of radius r. One can easily check that s(x∗, Γ (ω)) = x∗f(ω)+r(ω)‖x∗‖
and so Γ is scalarly integrable.
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If we assume that f is Pettis integrable, then Γ is Pettis integrable in cb(X) and

(P )

∫

E

Γ dµ = B

(∫

E

f dµ,

∫

E

r dµ

)
for every E ∈ Σ.

One can easily see that the family {s(x∗, Γ ) : ‖x∗‖ ≤ 1} of support functions is
uniformly integrable (because the set {x∗f : ‖x∗‖ ≤ 1} is uniformly integrable) and
so TΓ is weakly compact.

If X = l1 and e
∗
n = 〈δn,k〉

∞
k=1 is the standard weak∗ base of l∞, then e∗n → 0 in σ(l∞, l1)

and s(e∗n, Γ (ω)) → r(ω) > 0. Thus, TΓ is not weak∗-weakly continuous on B(l∞). But
as l1 has the Shur property, we have τ(l∞, l1) = σ(l∞, l1) on B(l∞). Consequently, Γ
is Pettis integrable in cb(l1) but TΓ is not τ(l∞, l1)-weakly continuous on B(l∞). �

Example 1.12. Let f : [0, 1] → c0 be a scalarly integrable function (with respect to
the Lebesgue measure) that is not Pettis integrable (cf. [8]). In particular the operator
Tf : [0, 1] → L1[0, 1] is not weakly compact. Define a ck(c0)-valued multifunction by
Γ (t) := conv{0, f(t)}, t ∈ [0, 1]. One can easily see that Γ is scalarly integrable. As
the zero function is a selection of Γ , it follows from [10, Theorem 3.7] that Γ is Pettis
integrable in cb(c0). On the other hand, the function f is a non-Pettis integrable
selection of Γ and so Γ is not Pettis integrable in cwk(c0) (see [10, Theorem 5.4] or
apply Corollary 1.5.) �

Remark 1.13. The above examples show that in case of multifunctions integrable
in cb(X) the operator TΓ may be weakly compact but may also fail to be weakly
compact. We will see that its behaviour is more stable in case of integrability in
cwk(X). Moreover, if Γ is Pettis integrable only in cb(X), then the conclusion about

Pettis integrability of Γ̃ in Corollary 1.5 may fail. �

We finish this section with a Fatou type lemma, that seems to be much less popular
than the classical one for non-negative functions. It will be applied in the proof of
Proposition 6.3.

Proposition 1.14. If 〈fn〉 is a uniformly integrable sequence of real valued functions
defined on (Ω,Σ, µ), then lim supn fn and lim infn fn are quasi-integrable and

∫

E

lim inf
n

fn dµ ≤ lim inf
n

∫

E

fn dµ ≤ lim sup
n

∫

E

fn dµ ≤

∫

E

lim sup
n

fn dµ,

for every E ∈ Σ.

2. Pettis integrability in cwk(X).

Definition 2.1. We say that a space Y ⊂ X determines a multifunction Γ : Ω →
c(X) if s(x∗, Γ ) = 0 µ-a.e. for each x∗ ∈ Y ⊥ (the exceptional sets depend on x∗). �

One can easily see that a space Y ⊂ X determines a multifunction Γ : Ω → c(X)
if and only if s(x∗1, Γ ) = s(x∗2, Γ ) µ-a.e. for each (x∗1, x

∗
2) ∈ X∗ ×X∗ such that x∗1 −

x∗2 ∈ Y ⊥ (the exceptional sets depend on (x∗1, x
∗
2)). Indeed, if Y determines Γ and
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x∗1 − x∗2 ∈ Y ⊥, then | s(x∗1, Γ )− s(x∗2, Γ )| ≤ max{| s(x∗1 − x∗2, Γ )|, | s(x
∗
2 − x∗1, Γ )|} = 0

a.e.

It follows that if x∗1 and x
∗
2 are arbitrary extensions of y

∗ ∈ Y ∗, then s(x∗1, Γ ) = s(x∗2, Γ )
a.e.

It is well known that Pettis integrable functions are determined by WCG spaces. It
is my aim now to show that a similar property is shared also by cwk(X)-integrable
multifunctions.

Proposition 2.2. If Γ : Ω → c(X) is Pettis integrable in cwk(X), then it is deter-
mined by a WCG subspace of X and TΓ is weakly compact.

Proof. According to [13, Theorem 8.5.10] the range MΓ (Σ) =
⋃

E∈Σ MΓ (E) of the
weak multimeasureMΓ is a relatively weakly compact subset ofX. Let Y ⊂ X be the
closed linear space generated by MΓ (Σ). Then Y is a weakly compactly generated
subspace of X. If x∗1, x

∗
2 are such that x∗1 − x∗2 ∈ Y ⊥, then we have

∫

A

s(x∗1, Γ ) dµ = 〈x∗1,MΓ (A)〉 = 〈x∗2,MΓ (A)〉 =

∫

A

s(x∗2, Γ ) dµ

for every A ∈ Σ. Consequently s(x∗1, Γ ) = s(x∗2, Γ ) µ-a.e.

If Γ is integrable in ck(X), then the weak compactness of TΓ follows immediately
from Theorem 1.4. So assume that Γ : Ω → c(X) is Pettis integrable in cwk(X).
Since MΓ is a weak multimeasure with values in cwk(X), it is countably additive
in the Hausdorff metric of cwk(X) (cf. [13, Theorem 8.4.10]). In the terminology of
support functions, this means that if 〈An〉 is a sequence of pairwise disjoint elements
of Σ, then

lim
m

sup
‖x∗‖≤1

∣∣∣∣∣

m∑

i=1

s(x∗,MΓ (Ai))− s

(
x∗,MΓ

(
∞⋃

i=1

Ai

))∣∣∣∣∣ = 0.

Thus, the collection {s(x∗,MΓ ) : ‖x
∗‖ ≤ 1} of scalar measures is bounded (see Propo-

sition 1.3) and uniformly σ-additive. It follows from [8, Corollary I.2.5] that the
measures of the family are uniformly absolutely continuous with respect to µ. Conse-
quently, the set {s(x∗, Γ ) : ‖x∗‖ ≤ 1} is a weakly relatively compact subset of L1(µ),
what yields the weak compactness of TΓ .

Remark 2.3. A Pettis integrable function f : Ω → X can always be treated as a
ck(X)-valued multifunction. It is well known that, in general, it is not determined by
a separable subspace of X. Thus, in case of ck(X)-valued multifunctions, Proposition
2.2 cannot be strengthened.

Theorem 2.4. Let Γ : Ω → c(X) be a scalarly integrable multifunction possessing
the following two properties:

(WC) TΓ : X
∗ → L1(µ) is weakly compact;

(D∗) Γ is determined by a space Y ⊆ X such that Y ∗ is weak∗-angelic.

Then Γ is Pettis integrable in cb(X). If Γ is cwk(X)-valued, then it is Pettis inte-
grable in cwk(X).
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Proof. Through this proof y∗e will denote an arbitrary extension of a functional
y∗ ∈ Y ∗ to a functional on X. Assume that for a fixed scalarly integrable Γ : Ω →
c(X) the conditions (WC) and (D∗) are fulfilled and define a sublinear functional
ϕ : Y ∗ → (−∞,+∞) by the formula

ϕ(y∗) :=

∫

Ω

s(y∗e ,Γ) dµ.

We want to show now that there exists M(Ω) ∈ cb(Y ) such that
∫
Ω
s(x∗,Γ) dµ =

s(x∗,M(Ω)) for all functionals x∗. We shall prove first that ϕ is w∗–lower semicon-
tinuous, i.e. that for each real α the set

Q(α) := {y∗ ∈ Y ∗ : ϕ(y∗) ≤ α}

is w∗–closed. According to the Krein-S̆mulian theorem it suffices to show that
Q(α) ∩ B(Y ∗) is w∗–closed. Due to angelicity of Y ∗, it suffices to show that Q(α)
is sequentially weak∗ closed. So let y∗n ∈ Q(α), n ∈ N, be a sequence σ(Y ∗, Y )-
converging to y∗ and, let (y∗n)e be, for each n ∈ N, a norm preserving extension of y∗n
to X. Since TΓ is weakly compact, we can extract a subsequence of 〈TΓ ((y

∗
n)e〉 that

is σ(L1(µ), L∞(µ))-convergent to a function h ∈ L1(µ). Assume that the sequence
itself is already convergent. Clearly, we have

∫
Ω
h dµ ≤ α.

It follows from Mazur’s theorem that there is an increasing sequence 〈nk〉 of natural
numbers and non-negative reals {aki : k ∈ N, nk < i ≤ nk+1} such that

∑nk+1

i=nk+1 aki =
1 and the functions

wk =

nk+1∑

i=nk+1

aki s((y
∗
i )e, Γ )

are converging to h in L1(µ) and a.e.

Then, let

z∗k =

nk+1∑

i=nk+1

akiy
∗
i and (z∗k)e :=

nk+1∑

i=nk+1

aki(y
∗
i )e .

We have z∗k → y∗ in the weak∗-topology of Y ∗.

Let us now fix ε > 0, δ > 0 and a set Aε ∈ Σ+
µ such that:

(a) For each A ∈ Σ, if µ(A) < δ, then
∫
A
|h| dµ < ε;

(b) For each A ∈ Σ, if µ(A) < δ, then
∫
A
| s(x∗, Γ )| dµ < ε, for every x∗ ∈ B(X∗)

(possible, because TΓ is weakly compact).

(c) µ(Ac
ε) < δ and wk|Aε → h|Aε uniformly.

Then, let kε ∈ N be such that

∀ k ≥ kε ∀ ω ∈ Aε|wk(ω)− h(ω)| < ε.

Since B(X∗) is weak∗-compact we can find a net {v∗p ∈ B(X∗) : p ∈ P} (where P is a
directed set) being a subnet of the sequence 〈(z∗k)e〉k≥kε and a functional (y∗)e ∈ X∗

such that
v∗p → (y∗)e in σ(X∗, X).
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Since Γ (ω) ∈ c(X), we have

s((y∗)e, Γ (ω)) ≤ lim inf
p

s(v∗p, Γ (ω)) for every ω ∈ Ω.

Now notice that

s((z∗k)e, Γ ) = s

(
nk+1∑

i=nk+1

aki(y
∗
i )e, Γ

)
≤

nk+1∑

i=nk+1

aki s((y
∗
i )e, Γ ) = wk everywhere,

and so
s(v∗p, Γ ) ≤ wp everywhere.

If ω ∈ Aε, then

wp(ω) ≤ h(ω) + ε for every ω ∈ Aε and p ∈ P.

Consequently, if p ∈ P, then

s(v∗p, Γ (ω)) ≤ h(ω) + ε and so s((y∗)e, Γ (ω)) ≤ h(ω) + ε for every ω ∈ Aε .

Thus,

ϕ(y∗) =

∫

Ω

s((y∗)e, Γ ) dµ ≤

∫

Aε

(h+ ε) dµ+

∫

Ac
ε

s((y∗)e, Γ ) dµ

≤

∫

Ω

|h| dµ+

∫

Ac
ε

|h| dµ+ εµ(Aε) + ε ≤

∫

Ω

|h| dµ+ 3ε ≤ α+ 3ε.

Since ε was arbitrary, we get y∗ ∈ Q(α), i.e. Q(α) is weak∗-closed.

Consequently, the function ϕ is w∗–lower semicontinuous and so, according to [7,
Theorem II.16] (or Proposition 1.3), there exists a non-empty bounded closed convex
set M(Ω) ⊂ Y such that ϕ(y∗) = s(y∗,M(Ω)), for every y∗ ∈ Y ∗. Equivalently,

s(x∗,M(Ω)) =

∫

Ω

s(x∗, Γ ) dµ for every x∗ ∈ X∗.

As Ω may be replaced by an arbitrary E ∈ Σ we have proven the integrability in
cb(X).

Assume now that Γ : Ω → cwk(X). According to the first part of the proof, for each
E ∈ Σ there exists a set M(E) ∈ cb(X) such that

s(x∗,M(E)) =

∫

E

s(x∗, Γ ) dµ for every x∗ ∈ X∗.

We are going to prove that M(E) ∈ cwk(X). According to Proposition 1.7 it is
enough to prove that every extremal face of Γ is Pettis integrable in cb(X). To do
it, let x∗0 ∈ X∗ be arbitrary and let G : Ω → cwk(X) be defined by

G(ω) := {x ∈ Γ (ω) : x∗0(x) = s(x∗0, Γ (ω))}.
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Due to [26, Lemma 3] the multifunction G is scalarly measurable. One can easily
see also that TG is weakly compact and G is determined by the same WCG space Y .
Consequently, applying the first part of Theorem 2.4, we obtain the existence of a set
PE ∈ cb(X) such that

s(x∗, PE) =

∫

E

s(x∗, G) dµ for every x∗ ∈ X∗.

Thus, G is Pettis integrable in cb(X), what yields Pettis integrability of Γ in cwk(X).

The next result is a generalization of the classical characterization of Pettis integrable
functions, usually formulated in terms of weakly compactly generated determining
spaces.

Theorem 2.5. A scalarly integrable multifunction Γ : Ω → cwk(X) is Pettis inte-
grable in cwk(X) if and only if it satisfies the following conditions

(WC) TΓ : X
∗ → L1(µ) is weakly compact;

(D) Γ is determined by a WCG space Y ⊆ X.

Proof. Assume that Γ : Ω → cb(X) is Pettis integrable in cwk(X). The conditions
(WC) and (D) are then consequences of Proposition 2.2. The reverse implication is
a particular case of Theorem 2.4.

The following three results are immediate consequences of Theorems 2.4 and 2.5.

Theorem 2.6. Let Γ : Ω → c(X) be a scalarly measurable multifunction. Assume
that there exists a multifunction ∆ : Σ → cwk(X) that is Pettis integrable in cwk(X)
and for each x∗ ∈ X∗

| s(x∗, Γ )| ≤ | s(x∗, ∆)| a.e.

Then Γ is Pettis integrable in cb(X). If Γ is cwk(X)-valued, then it is Pettis inte-
grable in cwk(X).

Theorem 2.7. Let Γ : Ω → c(X) be a scalarly measurable multifunction that is
determined by a WCG subspace of X. If there exists a function h ∈ L1(µ) such that
for each x∗ ∈ B(X∗)

| s(x∗, Γ )| ≤ h a.e.,

then Γ is Pettis integrable in cb(X). If Γ is cwk(X)-valued, then it is Pettis integrable
in cwk(X).

Corollary 2.8. If Γ : Ω → cwk(X) is Pettis integrable in cwk(X), then also ∆ : Ω →
cwk(X) defined pointwise by ∆(ω) := conv(Γ (ω) ∪ −Γ (ω)) is Pettis integrable in
cwk(X).

Proof. It is obvious that∆ is determined by the same WCG space as Γ is. If x∗ ∈ X∗

and ω ∈ Ω, then

s(x∗, ∆(ω)) = max{s(x∗, Γ (ω)), s(−x∗, Γ (ω))}

and so {s(x∗, ∆) : ‖x∗‖ ≤ 1} is relatively weakly compact in L1(µ).
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Remark 2.9. The result formulated in the above corollary has been proven in [1]
for ck(X)-valued multifunctions with values in a separable X. �

The next result is a very special case of the general situation described by Theorem
2.5. It will be applied in the proof of Theorem 5.1.

Corollary 2.10. If a multifunction Γ : Ω → cwk(X) is such that for each x∗ the
support function s(x∗, Γ ) is constant a.e. (the constant depending on x∗) and Γ is
determined by a WCG subspace of X, then Γ is Pettis integrable in cwk(X). In
particular, if µ is a two-valued measure, then each scalarly measurable multifunction
Γ : Ω → cwk(X) that is determined by a WCG subspace of X is Pettis integrable in
cwk(X).

Proof. To prove the required assertion we are going to apply Proposition 1.2 and
formula (3). We have then Γ (ω) =

∑
n Γ (ω)χEn

(ω). Given x∗ let cx∗ := s(x∗, Γ ) a.e.,
for each x∗ ∈ X∗. If Em is the first set of positive measure, then for each x∗ we must
have s(x∗, Γ |Em) = cx∗ a.e. Consequently Γ is scalarly bounded and TΓ is weakly
compact.

The following result is a particular case of [6, Theorem 3.8] but its proof is much
simpler.

Corollary 2.11. If Γ : Ω → cwk(X) is determined by a WCG subspace of X, then
Γ has a scalarly measurable selection.

Proof. Γ can be represented in the form

Γ (ω) =
∑

n

Γ (ω)χEn
(ω) (8)

where the sets En ∈ Σ are pairwise disjoint, µ (
⋃

nEn) = µ(Ω) and each Γ |En is
scalarly bounded. We apply now Theorem 2.5 to each multifunction Γ |En getting
its Pettis integrability. Then we take a Pettis integrable selection for each such a
multifunction (existing in virtue of [5]) and stick them together.

The following consequence is a generalization of a known result of Ionescu-Tulcea
concerning functions taking their values in a fixed weakly compact set.

Proposition 2.12. Let Γ : Ω → cwk(X) be a scalarly measurable multifunction such
that Γ (ω) ⊂W , where W ∈ cwk(X) is fixed. Then each scalarly measurable selection
of Γ is weakly equivalent to a strongly measurable selection of Γ and Γ is Pettis
integrable in cwk(X).

Proof. The Pettis integrability of Γ follows directly from Theorem 2.5, because Γ is
scalarly bounded. According to Corollary 2.11 there is a weakly measurable selection
γ : Ω → X of Γ . But now for each x∗ we have also

x∗γ(ω) ∈ x∗Γ (ω) ⊂ x∗W.
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If ρ is a lifting on the measure space, then setting 〈γ̃(ω), x∗〉 = ρ(x∗γ)(ω), for every
ω and x∗, we have (for each x∗) x∗γ = x∗γ̃ a.e. and the function γ̃ : Ω → X∗∗ is such
that

for each x∗ ∈ X∗ x∗γ̃(ω) ∈ x∗Γ (ω) ⊂ x∗W µ− a.e.

But x∗W is a closed interval (or a point) and liftings respect weak inequalities,
therefore we have x∗γ̃(ω) ∈ x∗W , for every ω ∈ Ω. A direct application of the
Hahn-Banach theorem yields γ̃(Ω) ⊂ W . There is an old result of Ionescu-Tulcea
([14], Theorem 3) saying that a weakly measurable function γ̃ : Ω → X such that
x∗γ̃ = ρ(x∗γ̃), for every x∗, is strongly measurable.

Notice that if X = l2[0, 1] and Γ (t) = {et}, where {et : t ∈ [0, 1]} is the canonical
orthonormal system, then Γ is weakly equivalent to zero, but it is not strongly mea-
surable. Thus, it is not true that scalarly measurable selections of Γ in Proposition
2.12 have to be strongly measurable.

Theorem 2.13. Let X be a Banach space not containing any isomorphic copy of c0.
If Γ : Ω → c(X) is scalarly integrable and determined by a WCG space, then Γ is
Pettis integrable in cb(X). If Γ : Ω → cwk(X) is scalarly integrable and determined
by a WCG space, then Γ is Pettis integrable in cwk(X).

Proof. Let Ω =
⋃∞

n=1Ωn be a decomposition of Ω into pairwise disjoint sets of
positive measure, such that Γ is scalarly bounded on each Ωn. By Theorem 2.4 (or
2.5 in case of cwk(X)) each multifunction Γ |Ωn

is Pettis integrable in cb(X) (resp.
cwk(X)). Let

s(x∗,Mn(E ∩Ωn)) :=

∫

E∩Ωn

s(x∗, Γ ) dµ for every E ∈ Σ and x∗ ∈ X∗.

Notice that for every E ∈ Σ, we have
∫

E

s(x∗, Γ ) dµ =
∞∑

n=1

∫

E∩Ωn

s(x∗, Γ ) dµ =
∞∑

n=1

s(x∗,Mn(E ∩Ωn)), (9)

what yields the absolute convergence of the series
∑∞

n=1 s(x
∗,Mn(E ∩ Ωn)). But in

fact we get much more.

Claim 1. If {Ek : k ∈ N} is a sequence of pairwise disjoint elements of Σ and x∗ is
arbitrary, then the double series

∑∞
k,n=1 s(x

∗,Mn(Ek ∩Ωn)) is absolutely convergent.
In particular

∞∑

n=1

∞∑

k=1

s(x∗,Mn(Ek ∩Ωn)) =
∞∑

k=1

∞∑

n=1

s(x∗,Mn(Ek ∩Ωn)). (10)

Proof. We have the following sequence of inequalities:

∞ >

∫
⋃

k
Ek

| s(x∗, Γ )| dµ =
∞∑

k=1

∫

Ek

| s(x∗, Γ )| dµ

=
∞∑

k=1

∞∑

n=1

∫

Ek∩Ωn

| s(x∗, Γ )| dµ ≥
∞∑

k=1

∞∑

n=1

| s(x∗,Mn(Ek ∩Ωn))|
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It follows that the double series
∑∞

k,n=1 s(x
∗,Mn(Ek ∩ Ωn)) is absolutely convergent

and the equality (10) is valid.

Below, by a series
∑∞

n=1Cn, where every Cn is closed and convex, we understand the
set

{
∞∑

n=1

cn : ∀ n ∈ N cn ∈ Cn &
∞∑

n=1

cn is unconditionally convergent

}
.

Claim 2. Given any E ∈ Σ, the series
∑∞

n=1Mn(E ∩ Ωn) is unconditionally con-
vergent, that is if xn ∈ Mn(E ∩Ωn) is quite arbitrary, then the series

∑∞
n=1 xn is

unconditionally convergent.

Proof. Let E ∈ Σ+
µ and x∗ be fixed. We have then for each n ∈ N

− s(−x∗,Mn(E ∩Ωn)) ≤ x∗(xn) ≤ s(x∗,Mn(E ∩Ωn))

and then

|x∗(xn)| ≤ | s(−x∗,Mn(E ∩Ωn))|+ | s(x∗,Mn(E ∩Ωn))|,

what implies

∞∑

n=1

|x∗(xn)| ≤
∞∑

n=1

| s(−x∗,Mn(E ∩Ωn))|+
∞∑

n=1

| s(x∗,Mn(E ∩Ωn))| <∞. (11)

As c0 * X, the well known result of Bessaga and Pełczyński [2] constrains the un-
conditional convergence of

∑∞
n=1 xn.

The formula

M(E) :=
∞∑

n=1

Mn(E ∩Ωn) = conv

{
∞∑

n=1

xn : xn ∈Mn(E ∩Ωn), n ∈ N

}
(12)

defines now a bounded (due to (11)) closed convex subset of X. In case of the
cwk(X)-valued multifunction, we have

M(E) =
∞∑

n=1

Mn(E ∩Ωn) =

{
∞∑

n=1

xn : xn ∈Mn(E ∩Ωn), n ∈ N

}
(13)

and M(E) is a weakly compact convex set.

Claim 3. If E ∈ Σ and x∗ is arbitrary, then

s(x∗,M(E)) =
∞∑

n=1

s(x∗,Mn(E ∩Ωn)). (14)
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Proof. We have

α := s(x∗,M(E)) = sup

{
∞∑

n=1

x∗(xn) : xn ∈Mn(E ∩Ωn), n ∈ N

}
.

If δ > 0 is arbitrary, then there is a sequence 〈xδn〉 with all xδn ∈ Mn(E ∩Ωn) such
that

∑∞
n=1 x

∗(xδn) > α− δ. Hence, there is also k ∈ N with
∑k

n=1 x
∗(xδn) > α− δ. It

follows that

∞∑

n=1

s(x∗,Mn(E ∩Ωn)) ≥
k∑

n=1

s(x∗,Mn(E ∩Ωn)) ≥
k∑

n=1

x∗(xδn) > α− δ

and so
∑∞

n=1 s(x
∗,Mn(E ∩Ωn)) ≥ s(x∗,M(E)).

To prove the reverse inequality let us fix δ > 0 and fix for each n ∈ N a point
xn ∈Mn(E ∩Ωn) with s(x∗,Mn(E ∩Ωn)) < x∗(xn) + δ/2n. Then

∞∑

n=1

s(x∗,Mn(E ∩Ωn)) ≤
∞∑

n=1

x∗(xn) + δ < s(x∗,M(E)) + δ.

Claim 4. M : Σ → cb(X) is a weak multimeasure and M : Σ → cwk(X) is an
h-multimeasure.

Proof. Let {Ek : k ∈ N} be a sequence of pairwise disjoint elements of Σ and let
E =

⋃∞
k=1Ek. If x

∗ is arbitrary, then the equality (14) (applied to E and to each Ek

separately) and (10) yield

s(x∗,M(E))

= s

(
x∗,

{
∞∑

n=1

xn : xn ∈Mn(E ∩Ωn), n ∈ N

})
=

∞∑

n=1

s(x∗,Mn(E ∩Ωn))

=
∞∑

n=1

s

(
x∗,Mn

(
⋃

k

Ek ∩Ωn

))
=

∞∑

n=1

∞∑

k=1

s(x∗,Mn(Ek ∩Ωn))

=
∞∑

k=1

∞∑

n=1

s(x∗,Mn(Ek ∩Ωn)) =
∞∑

k=1

s(x∗,M(Ek)).

The above shows thatM is a weak multimeasure, but if its values are weakly compact
and convex it is a cwk(X)-valued h-multimeasure.

The equalities (9) and (14) prove the Pettis integrability of Γ in cb(X) (resp. in
cwk(X)). This completes the proof of the whole theorem.

Theorem 2.13 is an interesting generalization of a well known result of Diestel [8] and
Dimitrov [9] saying that if X is a separable Banach space and c0 * X, then each X-
valued scalarly integrable function is Pettis integrable. It is known that separability
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of X is essential (see [11]). In particular, the reverse theorem to Theorem 2.13 is also
valid: If c0 ⊂ X isomorphically, then there exists a scalarly integrable multifunction
(in fact a function) with values in ck(X) that is not Pettis integrable in cb(X).

Theorem 2.14. Let X be an arbitrary Banach space not containing any isomorphic
copy of c0. Then each scalarly integrable function f : Ω → X that is determined by a
WCG subspace of X is Pettis integrable.

3. Pettis integrability in ck(X).

It is our aim to find conditions guaranteeing the integrability in ck(X) of ck(X)-valued
multifunctions. Unfortunately, there is an essential asymmetry between integrability
in cwk(X) and ck(X). This is presented by Theorem 3.3, where we show that the
compactness of the operator TΓ and determination of Γ by a WCG (or even separable)
space guarantees the integrability of Γ : Σ → ck(X) in ck(X) but in general, this
assumption is too strong. As a consequence, we have to apply a different technique
to obtain the required results.

Given a scalarly integrable multifunction Γ : Ω → cwk(X) determined by a space
Y ⊂ X, we define an operator TΓY : Y ∗ → L1(µ) by setting

TΓY (y
∗) := TΓ (y

∗
e),

where y∗e is an arbitrary extension of y∗ to the whole X. One can easily see that the
definition of TΓY is correct and TΓY is bounded.

The next two lemmata have sequential and general forms, but as we need the sequen-
tial ones, only these proofs are presented.

Lemma 3.1. Let Γ : Ω → ck(X) be a scalarly integrable multifunction determined
by a space Y ⊂ X. Then TΓY is [sequentially] σ(Y ∗, Y )-weakly continuous if and
only if TΓ is [sequentially] σ(X∗, Y )-weakly continuous on B(X∗).

Proof. Assume that TΓ is sequentially σ(X∗, Y )− σ(L1, L∞) continuous and take a

sequence y∗n
σ(Y ∗,Y )
→ 0. If x∗n ∈ X∗ is an extension of y∗n, then x

∗
n

σ(X∗,Y )
→ 0 and so, by

the assumption, TΓY (y
∗
n) = TΓ (x

∗
n) → 0, weakly in L1(µ).

Assume now that TΓY is sequentially σ(Y ∗, Y )−σ(L1, L∞) weak continuous on B(Y ∗)

and take x∗n
σ(X∗,Y )
→ 0. If y∗n = x∗n | Y , then y∗n

σ(Y ∗,Y )
→ 0 and so TΓ (x

∗
n) = TΓY (y

∗
n) → 0

weakly in L1(µ).

Lemma 3.2. Let Γ : Ω → ck(X) be scalarly integrable and determined by a space
Y ⊆ X. If TΓ is compact, then TΓ is [sequentially] σ(X∗, Y )-norm continuous on
B(X∗).

Proof. Let (x∗n) ⊂ B(X∗) be a sequence that is σ(X∗, Y )-convergent to zero. By the
compactness assumption, we may assume that given subsequence of (x∗n), there is a
function h ∈ L1(µ) and a subsequence (x∗nk

) of the subsequence such that TΓ (x
∗
nk
) → h

in L1(µ) and almost everywhere. We are going to show that h = 0 almost everywhere.
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Let (x∗α) be a subnet of (x∗nk
) that is σ(X∗, X) converging to a point x∗. Clearly

x∗ ∈ Y ⊥. Since Γ is compact valued, we have then for every ω ∈ Ω

TΓ (x
∗
α)(ω) = s(x∗α, Γ (ω)) → s(x∗, Γ (ω)) = TΓ (x

∗)(ω).

Clearly s(x∗, Γ ) = TΓ (x
∗) = h a.e. and so h = 0 a.e., because x∗ ∈ Y ⊥ yields

s(x∗, Γ ) = 0 a.e.

Thus, we have proven that every subsequence of (TΓ (xn)) contains a subsequence that
is norm convergent to zero in L1(µ). It follows that (TΓ (xn)) itself is norm convergent
to zero in L1(µ). This proves the required sequential σ(X∗, Y )-norm continuity of TΓ
on B(X∗).

Theorem 3.3. If Γ : Ω → ck(X) is a scalarly integrable multifunction, then the
following conditions are equivalent:

(i) Γ is Pettis integrable in ck(X) and has a Pettis integrable (quasi) selection with
norm relatively compact range of its Pettis integral;

(ii) TΓ : X
∗ → L1(µ) is compact and Γ is determined by a WCG space Y ⊆ X;

(iii) Γ is Pettis integrable in ck(X) and each Pettis integrable (quasi) selection of Γ
has norm relatively compact range of its Pettis integral.

(iv) Γ is Pettis integrable in ck(X) and MΓ (Σ) =
⋃

E∈Σ MΓ (E) is norm relatively
compact.

Proof. The version with selections. (i) ⇒ (ii) Assume Pettis integrability of
Γ : Ω → ck(X) in ck(X) and let MΓ (E) = (P )

∫
E
Γ dµ, for every E ∈ Σ. By

Proposition 2.2 there is a WCG space Y ⊂ X determining Γ . Let f : Ω → X be a
Pettis integrable selection of Γ with norm relatively compact range of its integral.
It is well known that Tf is a compact operator. Define G : Σ → ck(X) by G(ω) =
Γ (ω) − f(ω). Now, let 〈x∗n〉 ⊂ B(X∗) be an arbitrary sequence. Let 〈x∗nk

〉 be a

subsequence such that y∗k := x∗nk
|Y

k
→ y∗ ∈ B(Y ∗) weak∗ in Y ∗. We have then

lim
k

∫

E

s(x∗nk
− y∗e, G) dµ = lim

k
s(y∗k − y∗,MG(E)) = 0 for every E ∈ Σ,

and the convergence of the sequence 〈s(y∗k − y∗,MG(E))〉 is uniform on Σ, because
MG(E) ⊆ MG(Ω), for every E ∈ Σ. Thus, the sequence 〈s(x∗nk

, G)〉 is convergent in
L1(µ) to s(y∗e, G) (cf. [22, Proposition II.5.3]). It follows that TG is compact. Hence
TΓ = TG + Tf is also compact.

(i) ⇒ (iv) With the above notation MΓ (Σ) ⊂MG(Ω) +Mf (Σ).

(ii) ⇒ (iii) Assume that Γ : Ω → ck(X) fulfills the condition (ii). Assume that
Y determines Γ and for an arbitrary but fixed A ∈ Σ define a sublinear function
ϕ : Y ∗ → (−∞,+∞) by the formula

ϕ(y∗) :=

∫

A

s(y∗e ,Γ) dµ. (15)

Since Y determines Γ , Lemma 3.2 yields the sequential σ(X∗, Y )− σ(L1, L∞) conti-
nuity of TΓ on B(X∗), what is equivalent, according to Lemma 3.1, to the sequential
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σ(Y ∗, Y ) − σ(L1, L∞) continuity of TΓY . This means that if Y ∗ ∋ y∗n
σ(Y ∗,Y )
→ 0, then

(y∗n)e
σ(X∗,Y )
→ 0 and consequently, ϕ(y∗n) =

∫
E
s((y∗n)e, Γ ) dµ → 0, for every E ∈ Σ. It

follows that ϕ is sequentially σ(Y ∗, Y ) continuous.

We want to show now that for each A ∈ Σ there exists M(A) ∈ ck(X) such that∫
A
s(x∗,Γ) dµ = s(x∗,M(A)) for all functionals x∗. We shall prove first that ϕ is

w∗–lower semicontinuous, i.e. that for each real α the set

Q(α) := {y∗ ∈ Y ∗ : ϕ(y∗) ≤ α}

is w∗–closed. According to the Krein-S̆mulian theorem it suffices to show that Q(α)∩
B(Y ∗) is w∗–closed. But B(Y ∗) is weak∗-sequentially compact and so Q(α) ∩B(Y ∗)
is w∗–closed if and only if it is weak∗-sequentially closed. The weak∗-sequential close-
ness of Q(α) ∩ B(Y ∗) is, however, a direct consequence of the sequential σ(Y ∗, Y )-
continuity of ϕ.

Consequently, the function ϕ is w∗–lower semicontinuous and so, according to Propo-
sition 1.3, there exists a closed convex setM(A) ⊂ Y such that ϕ(y∗) = s(y∗,M(A)),
for every y∗ ∈ Y ∗.

I am going to prove thatM(A) ∈ ck(Y ). To achieve that, first notice that if B(Y ∗) ∋

y∗n
σ(Y ∗,Y )
→ 0, then the convergence is uniform on M(A). Indeed, we have for each

y ∈M(A)

−ϕ(−y∗n) = − s(−y∗n,M(A)) ≤ y∗n(y) ≤ s(y∗n,M(A)) = ϕ(y∗n)

with the boundary expressions tending to zero. ThusM(A) is a closed limited subset
of a WCG space Y , what means that M(A) is compact.

As Y ∗ is linearly isometric to the quotient Banach space X∗/Y ⊥, we get in this way,
for each A ∈ Σ, the equality

s(x∗,M(A)) =

∫

A

s(x∗, Γ ) dµ, (16)

what proves the integrability of Γ in ck(X).

If f is a Pettis integrable selection of Γ , then let G(ω) := Γ (ω)− f(ω), for every ω.
Notice that G is ck(X)-valued and Pettis integrable in ck(X) and the zero function is
its selection. Applying the implication (i) ⇒ (ii) to G we obtain the compactness of
TG. It follows that Tf (B(X∗)) ⊂ TΓ (B(X∗))− TG(B(X∗)), and the right hand set is
norm relatively compact in L1(µ). Thus, Tf is compact. ButMf (Σ) = {T ∗

f (χE) : E ∈
Σ}, and so the range of the Pettis integral of f is norm relatively compact.

(iii) ⇒ (i) is obvious, because in virtue of [5] there is at least one Pettis integrable
selection of Γ .

(iv) ⇒ (i) If f is a Pettis integrable selection of Γ , then Mf (Σ) ⊂ MΓ (Σ) and the
right hand side set is, by the assumption, norm relatively compact.

Corollary 3.4. Let Γ : Ω → ck(X) be scalarly integrable and such that for each
x∗ ∈ X∗ we have s(x∗, Γ ) ≥ 0, a.e. Then, Γ is Pettis integrable in ck(X) if and only
if TΓ : X

∗ → L1(µ) is compact and Γ is determined by a WCG space Y ⊆ X.
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Proof. The zero function is a quasi selection of Γ .

Remark 3.5. One should observe that if (ii) of Theorem 3.3 is fulfilled but Γ is not
ck(X)-valued, then Γ may be not Pettis integrable in ck(X). To see this, it is enough
to take a constant Γ such that Γ (ω) =W , where W ∈ cwk(X) but W /∈ ck(X).

There exist Pettis integrable functions with not norm relatively compact range of
their integrals (cf. [11, 2D], where an example of an l∞-valued function is described.
That function is determined by the separable space c0.). Each such a function f is an
example of a ck(X)-valued multifunction that is ck(X)-integrable, but does not have
any Pettis integrable selection with norm relatively compact range of its integral and
its operator Tf is not compact.

Let Γ (ω) : = conv{0, f(ω)}, where f is the just mentioned l∞-valued function. As
f is scalarly bounded, Γ is also scalarly bounded and so TΓ is weakly compact. It
follows from Theorem 2.5 that Γ is Pettis integrable in cwk(l∞). So this is an example
of a ck(l∞)-valued multifunction possesseing a Pettis integrable selection with norm
relatively compact range of its integral, that is not Pettis integrable in ck(l∞). �

The next theorem shows that the general integration in ck(X) can be reduced to that
of Theorem 3.3.

Theorem 3.6. If Γ : Ω → c(X) is Pettis integrable in ck(X) and has a Pettis inte-
grable (quasi) selection g, then Γ can be represented in the form Γ = G + g, where
G : Ω → c(X) is Pettis integrable in ck(X) and MG(Σ) is norm relatively compact.
In particular, each cwk(X)-valued multifunction which is Pettis integrable in ck(X)
has such a decomposition.

Proof. We have to observe that in the proof of (i) ⇒ (ii) and (i) ⇒ (iv) we do not
use the fact that Γ is ck(X)-valued. We use only Pettis integrability of Γ in ck(X).
Consequently, it follows from Theorem 3.3 that MG(Σ) is norm relatively compact.
If Γ : Ω → cwk(X), then in virtue of [5], Γ has a Pettis integrable selection g. If
G = Γ − g, then G satisfies the conditions of Theorem 3.3.

If we strengthen the assumptions about µ or about X, then stronger results can be
obtained. The first point of the next theorem is a generalization of Stegal’s theorem
[11, Proposition 3J] who proved that a Pettis integrable function with perfect domain
has norm relatively compact range of its integral. The second point generalizes the
result of Talagrand [24], who proved, assuming validity of Martin’s axiom, that if
l∞ is not a quotient of a Banach space X, then the Pettis integral of each X-valued
Pettis integrable function is norm relatively compact. The third point generalizes
Proposition 11.1 from [20] and Theorem 6.7 from [21].

Theorem 3.7. Let Γ : Ω → cwk(X) be a multifunction that is Pettis integrable in
ck(X) and assume that one of the following conditions is satisfied:

(i) µ be a perfect measure;

(ii) Martin’s axiom holds true and l∞ is not a quotient of X;

(iii) Each X-valued Pettis integrable function has norm relatively compact range of
its integral (spaces with the weak RNP or with the weak∗∗RNP possess such a



792 K. Musiał / Pettis Integrability of Multifunctions

property (see [20], Proposition 11.1)).

Then MΓ (Σ) is norm relatively compact.

Proof. (i) According to [5] Γ has a Pettis integrable selection f : Ω → X. But
according to [11] the range of the Pettis integral of f is norm relatively compact. Now
we have to observe that in the proof of the implications (i) ⇒ (ii) and (i) ⇒ (iv)
of Theorem 3.3 we do not use the fact that Γ is ck(X)-valued. We use only Pettis
integrability of Γ in ck(X). Consequently, it follows from Theorem 3.3 that MΓ (Σ)
is norm relatively compact.

(ii) The proof is similar to that of (i) but now, instead of [11], we apply [24].

(iii) We apply now Proposition 11.1 from [20] or Theorem 6.7 from [21].

Definition 3.8. Let Y be a linear subspace of X. We say that the pair (X, Y ) has
the subsequential w∗-lifting property, if for every weak∗-convergent sequence 〈y∗n〉 of
functionals on Y there exists a weak∗-convergent sequence 〈x∗nk

〉 of functionals on X
such that x∗nk

|Y = y∗nk
, for every k ∈ N. If (X, Y ) has the subsequential w∗-lifting

property for every WCG subspace Y of X, then we say that X has the subsequential
w∗-lifting property. �

It is obvious that each space X possessing the weak∗-sequentially compact unit ball
of X∗ has the subsequential w∗-lifting property.

Lemma 3.9. Let Γ : Ω → ck(X) be scalarly integrable and determined by a WCG
space Y ⊆ X. If (X, Y ) has the subsequential w∗-lifting property and TΓ is weakly
compact, then TΓ is compact.

Proof. Let 〈x∗n〉 ⊂ B(X∗) be an arbitrary sequence and define y∗n := x∗n|Y , for every
n ∈ N. As the unit ball of Y ∗ is weak∗-sequentially compact, there is a weak∗-
convergent subsequence 〈y∗nk

〉. Due to the lifting assumption, there is a σ(X∗, X)
convergent sequence 〈z∗nkm

〉 ⊂ B(X∗) such that z∗nkm
|Y = y∗nkm

, for every m ∈ N, and
limm→∞ z∗nkm

= z∗ in σ(X∗, X). Since Γ is ck(X) valued, we have

TΓ (z
∗
nkm

) = s(z∗nkm
, Γ ) → s(z∗, Γ ) pointwise.

Moreover, due to the weak compactness of TΓ , a subsequence of 〈TΓ (z
∗
nkm

)〉 is weakly
convergent in L1(µ). Applying the fact that Y determines Γ , we obtain for every
m ∈ N the equality

TΓ (z
∗
nkm

) = TΓ (x
∗
nkm

) a.e.

It follows that 〈TΓ (x
∗
n)〉 has an L1(µ) convergent subsequence, and so TΓ is compact.

Remark 3.10. It is an easy consequence of the above lemma that the subsequential
weak∗-lifting property is not shared by all Banach spaces. In fact, if there is an X-
valued Pettis integrable function f such that its Pettis integral in not norm relatively
compact, then Tf is weakly compact but not compact. In particular such an X is
without the subsequential weak∗-lifting property. l∞ is an example of a Banach space
without the subsequential weak∗-lifting property. In fact, in [11] there is an example
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of an l∞-valued Pettis integrable function with non-relatively compact range of its
integral.

Proposition 3.11. Let Γ : Ω → ck(X) be a scalarly integrable multifunction with
weakly compact TΓ (so for instance this holds true if Γ is Pettis integrable in cwk(X)).
If Γ is Pettis integrable in cb(X), then it is Pettis integrable in the family of limited
subsets of X. Consequently, such a Γ is Pettis integrable in ck(X), when any of the
conditions given below is satisfied:

(a) X is a Gelfand-Phillips space (that is each limited subset of X is relatively
compact);

(b) X has the subsequential w∗-lifting property;

(c) B(X∗) is weak∗-sequentially compact;

(d) X∗ is weak∗-angelic.

Proof. We are going to show that each set MΓ (E) is limited in X. So let x∗n → 0
in σ(X∗, X). By the assumption the operator TΓ is weakly compact, and so the
sequence 〈s(x∗n, Γ )〉 is uniformly integrable. Moreover, s(x∗n, Γ (ω)) → 0, because Γ is
ck(X)-valued. Thus, applying the Vitali convergence theorem, we have

lim
n

s(x∗n,MΓ (E)) = lim
n

∫

E

s(x∗n, Γ ) dµ = 0.

In a similar way, we obtain limn s(−x
∗
n,MΓ (E)) = 0. Now, if x ∈MΓ (E), then

− s(−x∗n,MΓ (E)) ≤ x∗n(x) ≤ s(x∗n,MΓ (E))

and this ends the proof.

If X has the Gelfand-Phillips property, then clearly Γ is integrable in ck(X). If the
condition (b) is satisfied, then Lemma 3.9 yields the compactness of TΓ and we may
apply Theorem 3.3. If (c) or (d) is fulfilled, then X has the subsequential w∗-lifting
property.

Corollary 3.12. Let Γ : Ω → ck(X) be a scalarly integrable multifunction with
weakly compact TΓ . If Γ is Pettis integrable in cb(X) and X does not contain any
isomorphic copy of l1 or X is weakly sequentially complete, then Γ is Pettis integrable
in cwk(X).

Proof. According to Proposition 3.11 Γ is Pettis integrable in the family of limited
subsets of X. But as it has been proven in [3], if l1 * X, then limited subsets of X
are relatively weakly compact. Similarly in case of the weak sequential completeness,
because limited sets are always conditionally weakly complete.

Another consequence of Lemma 3.9 is the following

Proposition 3.13. Assume that X has the subsequential weak∗ lifting property. Then,
a scalarly integrable multifunction Γ : Ω → ck(X) is Pettis integrable in ck(X) if and
only if TΓ : X

∗ → L1(µ) is (weakly) compact and Γ is determined by a WCG subspace
of X.



794 K. Musiał / Pettis Integrability of Multifunctions

Proof. The proof is similar to that of Theorem 3.3, but now we apply Lemma 3.9
and Lemma 3.2.

I would like to obtain a generalization of Proposition 3.11 to cwk(X) integrable
multifunctions. To achieve that I need a new notion.

Definition 3.14. We say that a set L ⊂ X is Mackey limited if each sequence 〈x∗n〉
that is τ(X∗, X) convergent to zero is uniformly convergent on L.

Obviously, each limited set is Mackey limited and each relatively weakly compact set
is Mackey limited. In case of a WCG space limited sets coincide with norm relatively
compact sets and so the family of Mackey limited sets is in general larger.

To prove the first part of the next result one has to repeat the first part of the proof
of Proposition 3.11, having in mind that now every set Γ (ω) is weakly compact.

Proposition 3.15. Let Γ : Ω → cwk(X) (or Γ : Ω → ck(X), resp.) be a scalarly
integrable multifunction with weakly compact TΓ . If Γ is Pettis integrable in cb(X),
then it is Pettis integrable in the family of Mackey limited subsets of X. If Γ is Pettis
integrable in cwk(X), then MΓ (Σ) is Mackey limited (limited, resp.).

Proof. If Γ : Ω → cwk(X) (or Γ : Ω → ck(X)) is Pettis integrable in cwk(X), then
according to [5], Γ has a Pettis integrable selection f . Let G := Γ − f . Then G is
monotone, that is E ⊂ F yields MG(E) ⊂ MG(F ). In particular, MG(Σ) = MG(Ω).
In virtue of the validity of the first part of the Proposition the set MG(Σ) is Mackey
limited (or limited, in virtue of Proposition 3.11). But it is well known that the set
Mf (Σ) is also limited. Consequently, the set MΓ (Σ) is Mackey limited (or limited,
resp.).

We finish with an analogue of Theorem 1.10 in case of ck(X) integration. Its proof
follows the same way as that of Theorem 1.10, but one has to use the weak∗-topology
instead of the corresponding Mackey topology.

Theorem 3.16. Let Γ : Ω → ck(X) be scalarly integrable. If ZΓ is stable and
uniformly integrable, then Γ is Pettis integrable in ck(X) and TΓ is compact.

4. Core characterization of integrability.

It is now my aim to prove a multivalued version of the spectacular result of Talagrand
[25, Theorem 5-2-2] characterizing Pettis integrability by the so called core property
of the integrand. Throughout this section, if Γ is a multifunction, then ZΓ :=
{s(x∗, Γ ) : ‖x∗‖ ≤ 1} is the family of support functions of Γ (not of the equivalence
classes).

Lemma 4.1. Let Γ : Ω → cwk(X) be a scalarly integrable multifunction. Assume
that the operator TΓ is weakly compact and there exist real numbers α < β, a set
E ∈ Σ+

µ and a functional x∗0 ∈ B(X∗) such that

β ≤

∫

E

s(x∗0, Γ ) dµ (17)
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and x∗0 is in the τ(X∗, X)-closure of the set

R :=

{
x∗ ∈ B(X∗) :

∫

E

s(x∗, Γ ) dµ ≤ α

}
. (18)

Then there exists a function h ∈ L1(µ) such that

µ{ω ∈ E : h(ω) < s(x∗0, Γ (ω))} > 0,

and x∗0 is in the τ(X∗, X)-closure of the set

S := {x∗ ∈ B(X∗) : s(x∗, Γ ) ≤ h a.e. on E}.

If Γ is ck(X)-valued and x∗0 is in the weak∗-closure of R, then S may be replaced by
the set

S ′ := {x∗ ∈ B(X∗) : s(x∗, Γ ) = h a.e. on E},

with x∗0 being in the weak∗-closure of S ′. Moreover, there exists a functional x∗ ∈
B(X∗) such that h = s(x∗, Γ ) a.e.

Proof. We assume for the simplicity that E = Ω. First notice that σ(L1(µ), L∞(µ))-
closure of the set conv [ZΓ ] is a weakly compact convex subset of L1(µ) ([ZΓ ] is the
range of ZΓ via TΓ in L1(µ)). Define then for every set W ∈ cwk(X) and ε > 0 the
set

UW,ε := {x∗ ∈ B(X∗) : | s(x∗ − x∗0,W )| ≤ ε & | s(x∗0 − x∗,W )| ≤ ε}

and let
VW,ε := R ∩ UW,ε.

It can be easily verified that R and UW,ε are convex. Moreover, UW,ε is a τ(X∗, X)-
closed neighborhood of x∗0. As x∗0 is in the τ(X∗, X)-closure of R, we have VW,ε 6= ∅
and the collection {VW,ε : W ∈ cwk(X), ε > 0} has the finite intersection property.

Let HW,ε be the closure of TΓ (VW,ε) in L1(µ). Since TΓ is weakly compact, the set
HW,ε, being weakly closed, is also weakly compact and the collection {HW,ε : W ∈
cwk(X), ε > 0} has the finite intersection property. This yields now the existence
of a function h ∈

⋂
(W,ε)HW,ε. Let us fix (W, ε). Then there exists a sequence of

functionals x∗n ∈ VW,ε such that

∫

Ω

| s(x∗n, Γ )− h| dµ < 1/2n (19)

and consequently s(x∗n, Γ ) −→ h a.e.

Claim 1. µ{ω ∈ Ω : h(ω) < s(x∗0, Γ (ω))} > 0.

Proof. Suppose that h ≥ s(x∗0, Γ ) a.e. It follows then from (19) that

α ≥

∫

Ω

s(x∗n, Γ ) dµ ≥

∫

Ω

h dµ− 1/2n ≥

∫

Ω

s(x∗0, Γ ) dµ− 1/2n ≥ β − 1/2n ,

what is certainly false for sufficiently large n ∈ N. The above contradiction proves
the claim.
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Claim 2. If x∗W,ε is a weak∗ cluster point of 〈x∗n〉, then s(x∗W,ε, Γ ) ≤ h a.e.

Proof. Denote by Ω0 the set {ω : s(x∗n, Γ (ω)) 9 h(ω))} and let η > 0 be arbitrary.
For each ω /∈ Ω0, let nω ∈ N be such that | s(x∗n, Γ (ω)) − h(ω)| < η, for every
n > nω. Then let 〈z∗δ (ω, η)〉δ∈∆(ω) be a net composed of convex combinations of the
set {x∗k : k > nω} and τ(X∗, X) convergent to x∗W,ε. If z

∗
δ (ω, η) =

∑
n>nω

an,ωx
∗
n, then

s(z∗δ (ω, η), Γ (ω)) ≤
∑

n>nω

an,ω s(x
∗
n, Γ (ω)) <

∑

n>nω

an,ω(h(ω) + η) ≤ h(ω) + η.

Consequently, s(x∗W,ε, Γ (ω)) ≤ h(ω)+η, what proves the claim, because η is arbitrary.

Let us now fix for each (W, ε) a point x∗W,ε as above. Since UW,ε is convex and τ(X
∗, X)

closed we have x∗W,ε ∈ UW,ε.

Let us order partially the set {(W, ε) : W ∈ cwk(X), ε > 0} by setting (W1, ε1) ≺
(W2, ε2) if W1 ⊂ W2 and ε2 < ε1. If (V, δ) ∈ cwk(X)× (0,∞) is fixed, then for each
(W, ε) ≻ (V, δ) the inequalities | s(x∗(W,ε) − x∗0,W )| < ε < δ and | s(x∗0 − x∗(W,ε),W )| <

ε < δ hold true. It follows that x∗(W,ε) → x∗0 in τ(X∗, X) and so x∗0 is a τ(X∗, X)

cluster point of the set {x∗W,ε : W ∈ cwk(X), ε > 0}.

Together with Claim 2 this proves that x∗0 is a τ(X∗, X) cluster point of the set
{x∗ ∈ B(X∗) : s(x∗, Γ ) ≤ h a.e.}, as required.

Assume now that Γ is ck(X)-valued. Then, instead of weakly compact sets W , we
choose finite sets F ⊂ Ω and put in the above proof W =

⋃
{F (ω) : ω ∈ F}. Let

x∗(F,ε) = w∗−limδ x
∗
δ , where 〈x

∗
δ〉δ∈∆ is a subnet of 〈x∗n〉 and x

∗
n ∈ VW,ε , n ∈ N. Since for

every ω the set Γ (ω) is compact, the function x∗ −→ s(x∗, Γ (ω)) is weak∗-continuous
on B(X∗) and so

s(x∗(F,ε), Γ (ω)) = lim
δ

s(x∗δ , Γ (ω)) = h(ω),

where the last equality holds a.e. We may take as x∗ an arbitrary x∗(F,ε).

Lemma 4.2. Let Γ : Ω → cwk(X) be a scalarly integrable multifunction. Assume
that the operator TΓ is weakly compact. If for an E ∈ Σ+

µ the functional x∗ −→∫
E
s(x∗, Γ ) dµ is not weak∗ lower semicontinuous, then there exist a functional x∗0 ∈

B(X∗), a function h ∈ L1(µ) and a scalarly measurable multifunction G : Σ →
cwk(X) dominated by Γ such that

µ{ω ∈ E : h(ω) < − s(−x∗0, G(ω)) = s(x∗0, G(ω)) = s(x∗0, Γ (ω))} > 0, (20)

and x∗0 is in the τ(X∗, X)-closure of the set

{x∗ ∈ B(X∗) : s(x∗, G) ≤ h a.e. on E}.

If Γ is ck(X)-valued, then the last set may be replaced by

{x∗ ∈ B(X∗) : s(x∗, G) = h a.e. on E}

and x∗0 is in its weak∗-closure.
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Proof. If x∗ −→
∫
E
s(x∗, Γ ) dµ is not weak∗ lower semicontinuous, then there exists

a point x∗0 ∈ B(X∗) and real numbers α < β such that the relations (17) and (18)
are fulfilled. Let G : Ω → cwk(X) be defined by

G(ω) := {x ∈ Γ (ω) : x∗0(x) = s(x∗0, Γ (ω))}.

Due to [26, Lemma 3] the multifunctionG is scalarly measurable. Moreover, the multi-
function G satisfies the assumptions of Lemma 4.1 because s(x∗, G(ω)) ≤ s(x∗, Γ (ω))
for every x∗ and s(x∗0, G(ω)) = s(x∗0, Γ (ω)), for every ω ∈ Ω. Consequently, there
exists a function h ∈ L1(µ) such that

µ{ω ∈ E : h(ω)) < s(x∗0, G(ω))} > 0,

and x∗0 is in the τ(X∗, X)-closure of the set

{x∗ ∈ B(X∗) : s(x∗, G) ≤ h a.e. on E}.

As x∗0 is constant on each G(ω) the condition (20) is satisfied. If G is ck(X)-valued,
then the last set may be replaced by

{x∗ ∈ B(X∗) : s(x∗, G) = h a.e. on E}

and x∗0 is in its weak∗-closure.

Definition 4.3. Let Γ : Ω → c(X) be a multifunction. For each E ∈ Σ we define
the core of Γ on E by the formula

corΓ (E) :=
⋂

µ(N)=0

convΓ (E \N) =
⋂

µ(N)=0

conv



⋃

ω∈E\N

Γ (ω)


 . (21)

It is easily seen that A ⊂ B implies corΓ (A) ⊂ corΓ (B).

Lemma 4.4. For each (x∗, a) ∈ X∗ × R let us set G(x∗, a) := {x ∈ X : x∗(x) ≤ a}
and H(x∗, a) := {x ∈ X : x∗(x) ≥ a}. If Γ : Ω → c(X) is a multifunction and E ∈ Σ,
then

corΓ (E) =
⋂

{G(x∗, a) : s(x∗, Γ ) ≤ a a.e. on E} (22)

and

corΓ (E) =
⋂

{H(x∗, a) : − s(−x∗, Γ ) ≥ a a.e. on E}. (23)

Moreover,
⋂

{H(x∗, a) : s(x∗, Γ ) ≥ a a.e. on E} ⊆ corΓ (E). (24)

and ⋂
{G(x∗, a) : − s(−x∗, Γ ) ≤ a a.e. on E} ⊆ corΓ (E). (25)
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Proof, (22). Take an arbitrary x0 /∈ corΓ (E). Then, there is N ∈ Σ0 such that
x0 /∈ convΓ (E \N). Hence, there is x∗0 ∈ X∗ and a ∈ R such that

x∗0(x0) > a ≥ s(x∗0, convΓ (E \N)) ≥ s(x∗0, Γ (E \N))

= sup{s(x∗0, Γ (ω)) : ω ∈ E \N}.

It follows that s(x∗0, Γ (ω)) ≤ a a.e. on E but x∗0(x0) > a and so x0 /∈ G(x∗0, a). This
proves one inclusion of (22).

To prove (25) notice that we have also − s(−x∗0, Γ (ω)) ≤ a a.e. on E, but x∗0(x0) > a
and so x0 /∈ G(x∗0, a).

Take now an arbitrary x0 ∈ corΓ (E) and let (x∗, a) be such that s(x∗, Γ (ω)) ≤ a for
every ω ∈ E \N , where µ(N) = 0. Then we have also s(x∗, convΓ (ω)) ≤ a for every
ω ∈ E \N . But we have corΓ (E) ⊂ convΓ (E \ N) and so s(x∗, corΓ (E)) ≤ a. In
particular x∗(x0) ≤ a. This proves that x0 ∈ G(x∗, a) and so the formula (22) holds
true.

In a similar way (23) and (24) can be proved.

Corollary 4.5. If E ∈ Σ and x0 ∈ corΓ (E), then

ess inf
E

[− s(−x∗, Γ ))] ≤ x∗(x0) ≤ ess sup
E

s(x∗, Γ ) for every x∗ ∈ X∗ .

Theorem 4.6. A scalarly integrable multifunction Γ : Ω → cwk(X) is Pettis inte-
grable in cwk(X) if and only if it has the following properties:

(WC) TΓ : X
∗ → L1(µ) is weakly compact;

(CC) If ∆ : Ω → cwk(X) is a scalarly measurable multifunction that is dominated
by Γ , then cor∆(E) 6= ∅, for every E ∈ Σ+

µ .

Proof. Assume first the Pettis integrability of Γ in cwk(X) and let MΓ : Σ →
cwk(X) be the resulting h-multimeasure. The weak compactness of TΓ is then a
consequence of Proposition 2.2. If ∆ : Ω → cwk(X) is scalarly measurable and dom-
inated by Γ , then it is Pettis integrable in cwk(X) (Corollary 1.5). If E ∈ Σ+

µ and
x∗ are fixed, then

s

(
x∗,

M∆(E)

µ(E)

)
=

1

µ(E)

∫

E

s(x∗, ∆) dµ ≤ s(x∗, conv ∆(E)),

where the right hand side may be infinity and the set E may be replaced by any set
E\N with µ(N) = 0. The Hahn-Banach Theorem yields now M∆(E)

µ(E)
⊆ conv ∆(E\N)

and so cor∆(E) 6= ∅.

Assume now that the conditions (WC) and (CC) are fulfilled and ∆ is dominated
by Γ . Then, T∆ is weakly compact. We are going to prove first that ∆ is Pettis
integrable in cb(X). According to Proposition 1.3, we have to show that for each
E ∈ Σ+

µ the functional x∗ −→
∫
E
s(x∗, ∆) dµ is weak∗ lower semicontinuous. So

suppose that for some E ∈ Σ+
µ the functional x∗ −→

∫
E
s(x∗, ∆) dµ is not weak∗ lower
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semicontinuous. Then, according to Lemma 4.2, there exist a scalarly measurable
multifunction G : Σ → cwk(X), a functional x∗0 ∈ B(X∗) and h ∈ L1(µ) such that

µ{ω ∈ E : h(ω) < − s(−x∗0, G(ω)) = s(x∗0, G(ω)) = s(x∗0, ∆(ω))} > 0,

and x∗0 is in the τ(X∗, X)-closure of the set

{x∗ ∈ B(X∗) : s(x∗, G) ≤ h a.e. on E}.

Notice that corG(F ) 6= ∅, for each F ∈ Σ+
µ , because of (CC). Let us fix γ, δ ∈ R such

that

µ{ω ∈ E : h(ω) < γ < δ < − s(−x∗0, G(ω)) = s(x∗0, G(ω)) = s(x∗0, ∆(ω))} > 0.

Let

A := {ω ∈ E : h(ω) < γ < δ < − s(−x∗0, G(ω)) = s(x∗0, G(ω)) = s(x∗0, ∆(ω))}

and, let 〈x∗α〉 be a net of functionals from {x∗ ∈ B(X∗) : s(x∗, G) ≤ h a.e. on E} that
is τ(X∗, X)-convergent to x∗0. We have then s(x∗α, G) ≤ γ a.e. on A and so, it follows
from Lemma 4.4(22) that

x∗α|corG(A) ≤ γ.

Consequently,
x∗0|corG(A) ≤ γ.

On the other hand, as − s(−x∗0, G(ω)) ≥ δ whenever ω ∈ A, it follows from Lemma
4.4(23) that

x∗0|corG(A) ≥ δ.

This contradiction shows that the functional x∗ −→
∫
E
s(x∗, ∆) dµ is weak∗ lower

semicontinuous, for every E ∈ Σ+
µ . Consequently, the multifunction ∆ is Pettis

integrable in c(X) and then in cb(X), due to its scalar integrability.

Now, we may apply Proposition 1.7 (We need here its weaker version: If every
cwk(X)-valued scalarly integrable multifunction dominated by Γ is Pettis integrable
in cb(X), then Γ is Pettis integrable in cwk(X).).

More careful analysis of the above proof shows that the following result also holds
true.

Theorem 4.7. Let Γ : Ω → cwk(X) be a scalarly integrable multifunction.

If Γ is Pettis integrable in cb(X), then corΓ (E) 6= ∅, for every E ∈ Σ+
µ .

If TΓ is weakly compact and cor∆(E) 6= ∅, for every E ∈ Σ+
µ and every extremal face

∆ of Γ , then Γ is Pettis integrable in cwk(X). �

Theorem 4.6 allows us to generalize Proposition 1.7. We obtain in this way the result
proved earlier in [6], by a different method.

Theorem 4.8. Let Γ : Ω → cwk(X) be a scalarly integrable multifunction with
weakly compact TΓ . If each scalarly measurable selection of Γ is Pettis integrable,
then Γ is Pettis integrable in cwk(X).
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Proof. If ∆ : Ω → cwk(X) is a scalarly measurable multifunction dominated by Γ ,
then – according to [6] – it has a scalarly measurable selection. By our assumption the
selection is Pettis integrable and so cor∆(E) 6= ∅, for every E ∈ Σ+

µ . Consequently,
in virtue of Theorem 4.6, Γ is Pettis integrable in cwk(X).

Remark 4.9. Let Γ : Ω → ck(X) be a scalarly integrable multifunction. Even if TΓ
is weakly compact and corΓ (E) 6= ∅ for every E ∈ Σ+

µ , it may happen that Γ is not
Pettis integrable even in cb(X).

Let (Ω,Σ, µ) be the measure space considered in [11, Theorem 2B] and let f : Ω →
l∞(Ω) be the bounded and scalarly measurable function considered there, that is
not Pettis integrable with respect to µ. Define Γ : Ω → cwk(l∞(Ω)) by the formula
Γ (ω) := conv{0, f(ω)}. Then Γ is scalarly integrable and the zero function is its
Pettis integrable selection. Consequently, corΓ (E) 6= ∅, for every E ∈ Σ+

µ . If νf
is the Gelfand integral of f , then the boundedness of f yields the weak relative
compactness of νf (Σ). Suppose that Γ is Pettis integrable in cb(l∞) and let MΓ

be its Pettis integral. Due to the specific form of Γ , one can easily check that
MΓ (Σ) ⊂ conv {0, νf (Σ)}, and the last set is weakly compact. But this means that
Γ is Pettis integrable in cwk(l∞). On the other hand, f is a non-Pettis integrable
selection of Γ and so, by Corollary 1.5, Γ cannot be Pettis integrable in cwk(l∞(Ω)).

5. Convergence theorems.

The theorem I am going to present is a generalization of the Vitali convergence
theorem for the Pettis integrable functions proved by Musiał (cf. [19] or [21]). The
assumptions of this theorem guarantee that for each x∗ ∈ X∗ and E ∈ Σ the se-
quence

{∫
E
s(x∗, Γn) dµ : n ∈ N

}
is convergent to

∫
E
s(x∗, Γ ) dµ , and that the set

{s(x∗, Γ ) : x∗ ∈ B(X∗)} is weakly relatively compact in L1(µ). They may be replaced
by any others guaranteeing the above weak compactness and the convergence of the
appropriate sequences of scalar integrals.

Theorem 5.1. Let Γ : Ω → cwk(X) be scalarly integrable and let {Γn : Ω → cwk(X) :
n ∈ N} be a sequence of multifunctions Pettis integrable in cwk(X) and satisfying the
following two conditions:

(a) the set {s(x∗, Γn) : ‖x
∗‖ ≤ 1, n ∈ N} is uniformly integrable;

(b) limn s(x
∗, Γn) = s(x∗, Γ ) in µ–measure, for each x∗ ∈ X∗.

Then Γ is Pettis integrable in cwk(X) and,

(SC)

lim
n
s

(
x∗,

∫

E

Γn dµ

)
= s

(
x∗,

∫

E

Γ dµ

)

for every x∗ ∈ X∗ and E ∈ Σ.

If Γ and Γn’s are assumed to be c(X)-valued and determined by a WCG space and,
Γn’s are Pettis integrable in cb(X), then Γ is Pettis integrable in cb(X) and (SC)
holds true.
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Proof. [Integrability in cwk(X)] Given n ∈ N, let Yn be a WCG space generated
by a weakly compact convex set Wn ⊂ B(X) and determining the multifunction Γn.
Then the set

∑
n

1
2n
Wn is a weakly compact set generating a space Y . It follows from

(b) that Γ is determined by Y .

The set {s(x∗, Γn) : ‖x
∗‖ ≤ 1, n ∈ N} is weakly relatively compact in L1(µ) and so,

due to (b), TΓ is weakly compact. It follows then from Theorem 2.5 that Γ is Pettis
integrable in cwk(X). The required scalar convergence is a direct consequence of the
Vitali convergence theorem for real valued functions.

[Integrability in cb(X)] We apply Theorem 2.4 instead of 2.5.

One may ask if the scalar convergence (SC) can be replaced by a stronger one.
In general the answer is negative even for Pettis integrable functions (see the next
remark) but assuming stronger convergence of the multifunctions one obtains also a
stronger convergence of the corresponding integrals.

Theorem 5.2. Let Γ : Ω → cwk(X) be scalarly integrable and let {Γn : Ω → cwk(X) :
n ∈ N} be a sequence of multifunctions Pettis integrable in cwk(X) and satisfying the
following two conditions:

(a) the set {s(x∗, Γn) : ‖x
∗‖ ≤ 1, n ∈ N} is uniformly integrable;

(b) limn dH(Γn, Γ ) = 0 a.e. (dH is the Hausdorff distance).

Then Γ is Pettis integrable in cwk(X) and,

lim
n

sup
‖x∗‖≤1

∫

Ω

| s(x∗, Γn)− s(x∗, Γ )| dµ = 0.

for every x∗ ∈ X∗ and E ∈ Σ.

In particular ∫

E

Γn dµ−→

∫

E

Γ dµ

in the Hausdorff metric, uniformly on Σ.

If Γ and Γn’s are assumed to be cb(X)-valued and determined by a WCG space and,
Γn’s are Pettis integrable in cb(X), then Γ is Pettis integrable in cb(X) and the above
two convergences hold true.

Proof. It follows from Theorem 5.1 that Γ is Pettis integrable in cwk(X) (or in
cb(X)). Together with the condition (a) this yields the uniform integrability of the
family {s(x∗, Γn) − s(x∗, Γ ) : ‖x∗‖ ≤ 1, n ∈ N}. Let us fix an arbitrary ε > 0 and
let δ > 0 be such that µ(E) < δ implies

∫
E
| s(x∗, Γn) − s(x∗, Γ )| dµ < ε, for every

x∗ ∈ B(X∗) and E ∈ Σ. Since for each ω ∈ Ω , x∗ ∈ B(X∗) and n ∈ N the inequality
| s(x∗, Γn(ω))− s(x∗, Γ (ω))| ≤ dH(Γn(ω), Γ (ω)) holds true, we can, as in the proof of
Proposition 1.2 find a measurable non-negative function fn such that

∀ x∗ ∈ B(X∗) | s(x∗, Γn)− s(x∗, Γ )| ≤ fn ≤ dH(Γn, Γ ) a.e.

By the assumption (b) the sequence 〈fn〉 is a.e. convergent to zero. In particular,

there is a set Ω̃ ∈ Σ such that µ(Ω \ Ω̃) < δ and 〈fn|Ω̃〉 is uniformly convergent to
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zero. Thus, if E ∈ Σ, then

dH(MΓn
(E),MΓ (E)) = sup

‖x∗‖≤1

|s(x∗,MΓn
(E))− s(x∗,MΓ (E))|

≤ sup
‖x∗‖≤1

∫

E

| s(x∗, Γn)− s(x∗, Γ )| dµ

≤ sup
‖x∗‖≤1

∫

E∩Ω̃

| s(x∗, Γn)− s(x∗, Γ )| dµ

+ sup
‖x∗‖≤1

∫

E\Ω̃

| s(x∗, Γn)− s(x∗, Γ )| dµ

≤

∫

Ω̃

fn dµ+ sup
‖x∗‖≤1

∫

Ω\Ω̃

| s(x∗, Γn)− s(x∗, Γ )| dµ < 2ε

for sufficiently large n’s, because µ(Ω \ Ω̃) < δ.

The following corollary strengthens the result of Rodriguez [23, Theorem 2.8] for
sequences of Pettis integrable functions that are pointwise norm convergent.

Corollary 5.3. Let 〈fn〉 be a sequence of X-valued Pettis integrable functions. As-
sume that the set {x∗fn : ‖x

∗‖ ≤ 1, n ∈ N} is uniformly integrable and there is a
function f : Ω → X such that ‖fn − f‖ → 0 a.e.

Then f is Pettis integrable and ‖fn − f‖P → 0. In particular,

∥∥∥∥
∫

E

fn dµ−

∫

E

f dµ

∥∥∥∥→ 0

uniformly on Σ.

Remark 5.4. If X is infinite dimensional, then there is a sequence 〈fn〉 of Pettis
integrable functions satisfying (a), (b) and (SC) with a Pettis integrable f as Γ and
such that the convergence

∥∥∥∥
∫

E

fn dµ−

∫

E

f dµ

∥∥∥∥→ 0 (26)

fails for every E ∈ Σ+
µ . Indeed, let 〈xn〉 ⊂ B(X) be a sequence that is weakly, but

not norm, convergent to zero. Let Γn = fn ≡ xn, for every n. Then fn’s are Pettis
integrable functions and the conditions (a), (b) are fulfilled with Γ = 0. Notice that
M0(Σ) = {0} is a compact set.

Consider now an arbitrary sequence 〈fn〉 of Pettis integrable simple functions that is
convergent to a Pettis integrable f : Ω → X in the sense

∀ x∗ ∀ E ∈ Σ

∫

E

x∗fn dµ −→

∫

E

x∗f dµ.

If the set Mf (Σ) is not norm relatively compact, then there are even no functions
gn ∈ conv{fk : k ≥ n} such that ‖|gn−f |‖P → 0. Indeed, if there was such a sequence
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〈gn〉, then for a fixed ε > 0 there would exist n0 ∈ N such that ‖|gn0
− f |‖P < ε. If

{
∫
Ei
gn0

dµ : i ≤ p} is an ε-mesh forMgn0
(Σ) then, for each E ∈ Σ there is i ≤ p such

that
∥∥∥∥
∫

Ei

gn0
dµ−

∫

E

f dµ

∥∥∥∥ ≤

∥∥∥∥
∫

E

gn0
dµ−

∫

E

f dµ

∥∥∥∥+
∥∥∥∥
∫

E

gn0
dµ−

∫

Ei

gn0
dµ

∥∥∥∥ < 2ε.

Consequently, {
∫
Ei
gn0

dµ : i ≤ p} is a 2ε-mesh for Mf (Σ) and so Mf (Σ) is norm
relatively compact. �

We get from the above considerations the following interesting result:

Corollary 5.5. Let P(µ,X) be the space of all X-valued Pettis integrable functions
furnished with the norm ‖ · ‖P . If there is a function f ∈ P(µ,X) such that Mf (Σ)
is separable but not norm relatively compact, then the topology on P(µ,X) induced
by the duality (P(µ,X), L∞(µ) ⊗ X∗) is strictly weaker, then the weak topology of
P(µ,X).

Proof. Clearly σ(P(µ,X), L∞(µ)⊗X∗) ⊂ σ(P(µ,X),P(µ,X)∗). In case of equality
we could apply theorem of Mazur to each sequence 〈fk〉 convergent in the topology
σ(P(µ,X), L∞(µ)⊗X∗) to get a sequence of convex combinations converging to the
same limit in the norm topology of P(µ,X), contradicting the earlier considerations.
The existence of a sequence 〈fk〉 of simple functions converging to f in the topology
σ(P(µ,X), L∞(µ) ⊗X∗) is a consequence of [19, Theorem 3] (see also [20, Theorem
10.1], [21, Theorem 5.3] and [25, Theorem 5-3-2]).

Theorem 5.6. Let X be a Banach space not containing any isomorphic copy of
c0 and let Γ : Ω → cwk(X) be a scalarly integrable multifunction. If {Γn : Ω →
cwk(X) : n ∈ N} is a sequence of multifunctions Pettis integrable in cwk(X) and
satisfying the condition

lim
n

∫

E

s(x∗, Γn) dµ =

∫

E

s(x∗, Γ ) dµ for all E ∈ Σ and all x∗ ∈ X∗, (27)

then Γ is Pettis integrable in cwk(X) and (SC) holds true for every x∗ ∈ X∗ and
E ∈ Σ.

If Γ and Γn’s are assumed to be c(X)-valued and determined by a WCG space and,
Γn’s are Pettis integrable in cb(X), then Γ is Pettis integrable in cb(X) and (SC)
holds true.

Proof. Due to Theorem 2.13 we have to check only if Γ is determined by a WCG
space but this is a direct consequence of (27).

I am going to formulate now two consequences of Theorem 5.1. The first one is the
Lebesgue Domination Convergence Theorem generalizing the corresponding theorem
of Geitz and Musiał [20, Theorem 8.2].

Theorem 5.7. Let Γ : Ω → cwk(X) be scalarly integrable and let {Γn : Ω → cwk(X) :
n ∈ N}, be a sequence of multifunctions that are Pettis integrable in cwk(X) and sat-
isfy the following conditions:
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(a’ ) There exists a function h ∈ L1(µ) such that for every x∗ ∈ B(X∗) and every
n ∈ N

| s(x∗, Γn)| ≤ h a.e.,

(b) limn s(x
∗, Γn) = s(x∗, Γ ) in µ–measure, for each x∗ ∈ X∗,

then Γ is Pettis integrable in cwk(X) and (SC) holds true for every x∗ ∈ X∗ and
E ∈ Σ.

If Γ and Γn’s are assumed to be c(X)-valued and determined by a WCG space and,
Γn’s are Pettis integrable in cb(X), then Γ is Pettis integrable in cb(X) and (SC)
holds true.

The next result was first formulated in case of Pettis integrable functions in [19,
Theorem 2].

Theorem 5.8. Let Γ , Γn : Ω → c(X), n ∈ N, be scalarly integrable multifunctions
such that

limn s(x
∗, Γn) = s(x∗, Γ ) in µ–measure, for each x∗ ∈ X∗. Let ∆ : Σ → cwk(X)

be a multifunction Pettis integrable in cwk(X) and satisfying one of the following
conditions:

(α) for every x∗ ∈ B(X∗) and every n ∈ N | s(x∗, Γn)| ≤ | s(x∗, ∆)| a.e., or

(β ) for every x∗ ∈ B(X∗) and every n ∈ N s(x∗, Γn) ≤ s(x∗, ∆) a.e.

Then Γ is Pettis integrable in cb(X) and (SC) holds true for every x∗ ∈ X∗ and
E ∈ Σ.

If Γ , Γn : Ω → cwk(X), n ∈ N, then Γ is Pettis integrable in cwk(X).

Proof. In case of (α) the integrability of each Γn and Γ is a simple consequence
of Theorem 2.6, because ∆ is Pettis integrable in cwk(X). In case of (β) it is a
consequence of Corollary 1.5. The weak compactness of T∆ yields then the uniform
integrability of the set {s(x∗, Γn) : ‖x

∗‖ ≤ 1, n ∈ N} and so the equality (SC) follows
directly from Theorem 5.1.

Remark 5.9. The assumption (β) of Theorem 5.8 is satisfied in particular if Γn(ω) ⊆
Γ (ω), for almost all ω. In case of Pettis integrable functions such an assumption
makes the result completely trivial but in case of multifunctions this makes sense. �

In case of ck(X)-valued multifunctions taking their values in a separable Banach
space X, the next result can be found in Amrani [1].

Theorem 5.10. Let Γ , Γn : Ω → c(X), n ∈ N be scalarly integrable and such that
limn s(x

∗, Γn) = s(x∗, Γ ) in µ–measure, for each x∗ ∈ X∗. Let ∆ : Σ → ck(X) be
a multifunction Pettis integrable in ck(X) and such that for every x∗ ∈ B(X∗) and
every n ∈ N

(β ) s(x∗, Γn) ≤ s(x∗, ∆) a.e.
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Then Γ is Pettis integrable in ck(X) and,

∫

E

Γn dµ−→

∫

E

Γ dµ

in the Hausdorff metric, for every E ∈ Σ.

Proof. The integrability of Γn’s in cwk(X) is a consequence of Theorem 5.8. Then
(β) implies the inclusions MΓn

(E) ⊂M∆(E) and MΓ (E) ⊂M∆(E), for every E ∈ Σ
and every n ∈ N. This forces the compactness of the integrals. Moreover, applying
the integrability of∆ in ck(X), it is easy to see that the functions s(·,

∫
E
Γn dµ), n ∈ N,

are equicontinuous in the weak∗ topology of B(X∗). Indeed, let E ∈ Σ, δ > 0 be
fixed and let Fn(x

∗) := s(x∗,
∫
E
Γn dµ), n ∈ N. By the assumption, all functions Fn

are σ(X∗, X)-continuous on B(X∗). Moreover, it follows from (β) that
∫
E
Γn dµ ⊂∫

E
Γ dµ, for every n. Then, let {x1, . . . , xk} ⊂

∫
E
Γ dµ be a δ-mesh of

∫
E
Γ dµ

and U := {x∗ : |x∗(xi)| < δ, i = 1, . . . , k} be a weak∗ neighborhood of zero. If
x∗1, x

∗
2 ∈ U∩B(X∗), then for every n let an, bn ∈

∫
E
Γn dµ be such that 〈x∗1 − x∗2, an〉 =

s(x∗1 − x∗2,
∫
E
Γn dµ) and 〈x∗2 − x∗1, bn〉 = s(x∗2 − x∗1,

∫
E
Γn dµ). We have then

|Fn(x
∗
1)− Fn(x

∗
2)| =

∣∣∣∣s
(
x∗1,

∫

E

Γn dµ

)
− s

(
x∗2,

∫

E

Γn dµ

)∣∣∣∣

≤

∣∣∣∣s
(
x∗1 − x∗2,

∫

E

Γn dµ

)∣∣∣∣+
∣∣∣∣s
(
x∗2 − x∗1,

∫

E

Γn dµ

)∣∣∣∣

= |〈x∗1 − x∗2, an〉|+ |〈x∗2 − x∗1, bn〉|

≤ |〈x∗1 − x∗2, an − xj〉|+ |〈x∗1 − x∗2, xj〉|

+ |〈x∗2 − x∗1, bn − xk〉|+ |〈x∗2 − x∗1, xk〉| ≤ 6δ,

where xj, xk are chosen in such a way that ‖an − xj‖ < δ and |bn − xk| < δ. As
δ is arbitrary, the sequence 〈Fn〉 is equicontinuous on (B(X∗), w∗). Now the Ascoli
theorem yields the existence of a subsequence 〈Fnk

〉 that is uniformly convergent on
B(X∗). Equivalently, it is convergent in the Hausdorff metric.

6. Fatou type lemmata.

Fatou type inclusions in the theory of multifunctions form quite an abundant topic,
which in case of non-separable Banach spaces deserves further deep investigation. I
present here one example of such an inclusion in case of the Kuratowski sequential
upper limit for the weak topology.

Definition 6.1. If 〈Hn〉 is a sequence of nonvoid subsets of X, then the Kuratowski
sequential upper limit of 〈Hn〉 relatively to σ(X,X∗) is denoted by w − Ls(Hn) and
defined by the formula

w − Ls(Hn) :=
{
x ∈ X : ∃ n1 < n2 < . . . ∀ k ∃ xk ∈ Hnk

xk
σ(X,X∗)
−→ x

}
.

�
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The following lemma has been proven in [12, Proposition 3.10] for a separable Banach
space, but the proof remains valid in the general case.

Proposition 6.2. Let 〈Hn〉 be a sequence of nonvoid subsets of X contained in the
same weakly compact set. Then,

conv[w − Ls(Hn)] =
∞⋂

n=1

conv
[ ⋃

k≥n

Hn

]
(28)

and

s(x∗, conv[w − Ls(Hn)] = lim sup
n

s(x∗, Hn) for every x∗ ∈ X∗. (29)

�

The subsequent proposition is a multivalued version of the Fatou lemma for Kura-
towski’s upper limit relatively to the topology σ(X,X∗), in case of a sequence of
Pettis integrable multifunctions. The result has been proven by Ziat [27, Corollary
4.3] for separable Banach spaces. His proof heavily depends on the separability of X.

Proposition 6.3. Let Γn : Σ → cwk(X) be a sequence of multifunctions that are
Pettis integrable in cwk(X) and are determined by a WCG space Y ⊂ X. Assume
that there is a multifunction Γ : Σ → cwk(X) such that:

(i) Γn(ω) ⊆ Γ (ω), for all n ∈ N and all ω ∈ Ω;

(ii) The collection {s(x∗, Γn) : ‖x
∗‖ ≤ 1, n ∈ N} is uniformly integrable.

Then

(Ks) w − Ls
[∫

E
Γn dµ

]
⊆
∫
E
conv[w − Ls(Γn(ω))] dµ(ω), for every E ∈ Σ.

Proof. Let Ξ(ω) := w−Ls(Γn(ω)), for every ω. The weak measurability of Ξ follows
from Proposition 6.2 and its scalar quasi-integrability is a consequence of Proposition
1.14. It is my aim now to prove the Pettis integrability of convΞ in c(Y ). As usual,
I am going to show that the sublinear functional

ϕ(y∗) :=

∫

Ω

s(y∗e , Ξ) dµ.

is weak∗ lower semicontinuous on Y ∗. That is given α ∈ R we have to prove that the
set

Qα :=

{
y∗ ∈ B(Y ∗) :

∫

Ω

s(y∗e , Ξ) dµ ≤ α

}

is weak∗-closed. So let 〈y∗k〉 be a weak∗-convergent sequence of points in Qα, converg-
ing to y∗, and let x∗k be a sequence in B(X∗), such that x∗k|Y = y∗k for every k ∈ N.
Then pick out a Pettis integrable selection fn of Γn, n = 1, 2 . . . By the assumption
(ii) the collection H := {x∗fn : n ∈ N, ‖x∗‖ ≤ 1} is weakly relatively compact and
so for each k there exists a subsequence of 〈x∗kfn〉n that is weakly convergent to a
function hk ∈ L1(µ). Then a convex combination of such subsequence is convergent
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to hk in L1(µ) and a.e. An appropriate application of the diagonal method yields the
existence of gm ∈ conv{fn : n ≥ m} such that

∀ k ∈ N x∗kgm −→ hk a.e.

Then, according to (i) for each ω the sequence 〈gm(ω)〉 has a weak cluster point
g(ω) ∈ Ξ(ω). In particular,

s(x∗, Ξ(ω)− g(ω)) ≥ 0 for every x∗ and, hk = x∗kg a.e. for every k.

As {hk : k ∈ N} ⊂ convH and the last set is weakly compact in L1(µ), there exist a
function h ∈ L1(µ) and a sequence 〈hkn〉 such that

x∗kng = hkn −→ h, weakly in L1(µ).

Then, due to Mazur’s Theorem, there is an increasing sequence 〈pn〉 of integers and
nonnegative reals {ani : pn < i ≤ pn+1, n ∈ N} such that

∑pn+1

i=pn+1 ani = 1, n ∈ N,
and

wn :=

pn+1∑

i=pn+1

anihki −→ h a.e. and in L1(µ), when n→ ∞.

If

z∗n :=

pn+1∑

i=pn+1

anix
∗
ki
, n ∈ N,

then z∗n|Y ∈ Qα, for every n ∈ N and,

wn = z∗ng −→ h a.e. and in L1(µ). (30)

If z∗ is a weak∗ cluster point of 〈z∗n〉, then a subnet of 〈z∗ng〉 is pointwise converging
to z∗g. Consequently,

h = z∗g a.e., z∗|Y = y∗ and lim
n

∫

Ω

z∗ng dµ =

∫

Ω

z∗g dµ. (31)

In particular, the sequence 〈
∫
Ω
z∗ng dµ〉 is bounded and so there is β ∈ R such that

∫

Ω

s (z∗n,Ξ− g) dµ ≤ β.

Applying [4] one can find a measurable function v, an increasing sequence 〈qn〉 of
integers and nonnegative reals {bni : qn < i ≤ qn+1, n ∈ N} such that

∑qn+1

i=qn+1 bni = 1,
for every n ∈ N and,

vn :=

qn+1∑

i=qn+1

bni s(z
∗
i ,Ξ− g) −→ v a.e. (32)

Let for each n ∈ N

r∗n :=

qn+1∑

i=qn+1

bniz
∗
i
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and let r̃∗ ∈ X∗ be a weak∗ cluster point of the sequence 〈r∗n〉. Notice that r̃
∗|Y = y∗.

Due to (30) and (31) we have z∗ng → z∗g a.e. and in L1(µ). Hence, we have also
r∗ng → z∗g a.e. and in L1(µ). If 〈r∗γ〉 is a subnet of 〈r∗n〉 w∗-converging to r̃∗, then
clearly r∗γg → r̃∗g a.e. and so r̃∗g = z∗g a.e. It follows that r̃∗g is measurable and

r∗ng → r̃∗g in L1(µ). (33)

By the assumption each set Ξ(ω) is closed and so s(•, Ξ(ω) − g(ω)) is weak∗ lower
semicontinuous: if 〈r∗γ〉 is the subnet of 〈r∗n〉 σ(X

∗, X)-converging to r̃∗, then

s(r̃∗, Ξ(ω)− g(ω)) ≤ lim inf
γ

s(r∗γ, Ξ(ω)− g(ω)).

Taking into account the subadditivity of support functions and the equality (32) we
have for almost all ω

s(r̃∗, Ξ(ω)− g(ω)) ≤ lim inf
γ

s(r∗γ, Ξ(ω)− g(ω)) ≤ lim inf
γ

vγ(ω) = lim
n
vn(ω).

Consequently, applying Fatou’s Lemma

∫

Ω

s(r̃∗, Ξ) dµ−

∫

Ω

r̃∗g dµ

=

∫

Ω

s(r̃∗, Ξ − g) dµ ≤

∫

Ω

lim
n
vn dµ ≤ lim inf

n

∫

Ω

vn dµ (34)

= lim inf
n

∫

Ω

qn+1∑

i=qn+1

bni s(z
∗
i ,Ξ) dµ− lim

n

∫

Ω

r∗ng dµ.

Applying (33) to (34), we obtain

ϕ(y∗) =

∫

Ω

s(r̃∗, Ξ) dµ ≤ lim inf
n

∫

Ω

qn+1∑

i=qn+1

bni s(z
∗
i ,Ξ) dµ ≤ α.

This proves the weak∗-closeness of Qα and the Pettis integrability of ω −→ conv[w−
Ls(Γn(ω))] in c(Y ) ⊂ c(X). It follows that the multifunction is also Pettis integrable
in c(X).

In order to prove the required inclusion (Ks), according to the Hahn-Banach theorem,
it is enough to prove that the following inequality holds true for every x∗ ∈ X∗:

s

(
x∗, conv

(
w − Ls

[∫

E

Γn dµ

]))
≤ s

(
x∗,

∫

E

conv[w − Ls(Γn(ω))] dµ

)
.
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But, applying Propositions 6.2 and 1.14 we obtain

s

(
x∗, conv

(
w − Ls

[∫

E

Γn dµ

]))

= lim sup
n

s

(
x∗,

∫

E

Γn dµ

)
= lim sup

n

∫

E

s(x∗, Γn) dµ

≤

∫

E

lim sup
n

s(x∗, Γn(ω)) dµ

=

∫

E

s(x∗, [w − Ls(Γn(ω))]) dµ

=

∫

E

s(x∗, conv[w − Ls(Γn(ω))]) dµ

= s

(
x∗,

∫

E

conv[w − Ls(Γn(ω))] dµ

)

.

Remark 6.4. In the proof of Proposition 6.3 one could use theorem of Komlos [16]
instead of the result of Bukhvalov and Lozanovskij [4].
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Added in proof: D. Cichon has informed me that M. Valadier introduced in 1974
[On the Strassen Theorem, in: Lecture Notes in Economics and Math. Systems 102,
203–215] a notion of a pseudo-selection, that is more general than the quasi-selection
proposed here. Each quasi-selection is a pseudo-selection, but not conversely.


