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1. Introduction

Endowed with suitable topologies, vector spaces yield rich and well-studied struc-
tures. They permit an extensive duality theory whose study gives valuable insight
into the spaces themselves. However, some important mathematical settings, while
close to the structure of vector spaces do not allow subtraction of their elements or
multiplication by negative scalars. Examples are certain classes of functions that may
take infinite values or are characterized through inequalities rather than equalities.
They arise naturally in integration and in potential theory. Likewise, families of con-
vex subsets of vector spaces which are of interest in various contexts, do not form
vector spaces. If the cancellation law fails, domains of this type can not be embedded
into larger vector spaces in order to apply results and techniques from classical func-
tional analysis. The theory of locally convex cones, as developed in [3] and [4], uses
order theoretical concepts to introduce a topological structure on ordered cones. In
Section 2 of this paper we shall review some of the main concepts of this approach.
In Section 3 we introduce convex equivalent relations, locally convex quotient cones,
and some of their main properties. Section 4 contains an application to boundedness
components.

2. Locally Convex Cones

A cone is a set P endowed with an addition (a, b) 7→ a+ b and a scalar multiplication
(α, a) 7→ αa for real numbers α ≥ 0. The addition is supposed to be associative and
commutative, and there is a neutral element 0 ∈ P. For the scalar multiplication the
usual associative and distributive properties hold, that is α(βa) = (αβ)a, (α+β)a =
αa + βa, α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b ∈ P and α, β ≥ 0. The
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cancellation law, stating that a + c = b + c implies a = b, is not required in general.
It holds if and only if the cone P can be embedded into a real vector space.

An ordered cone P carries a reflexive transitive relation ≤ such that a ≤ b implies
a + c ≤ b + c and αa ≤ αb for all a, b, c ∈ P and α ≥ 0. Anti-symmetry is however
not required. Equality on P is obviously such an order.

The theory of locally convex cones as developed in [3] uses order theoretical concepts
to introduce a quasiuniform topological structure on an ordered cone. In a first
approach, the resulting topological neighborhoods themselves will be considered to
be elements of the cone. In this vein, a full locally convex cone (P,V) is an ordered
cone P that contains an abstract neighborhood system V , that is a subset of positive
elements which is directed downward, closed for addition and multiplication by scalars
α > 0. The elements v of V define upper resp. lower neighborhoods for the elements
of P by

v(a) = { b ∈ P | b ≤ a+ v } resp. (a)v = { b ∈ P | a ≤ b+ v },

creating the upper resp. lower topologies on P. Their common refinement is called the
symmetric topology generated by the neighborhoods vs(a) = v(a)∩ (a)v. All elements
of P are supposed to be bounded below, that is for every a ∈ P and v ∈ V we have
0 ≤ a + λv for some λ ≥ 0. They need however not be bounded above. An element
a ∈ P is called bounded (above) if for every v ∈ V there is λ ≥ 0 such that a ≤ λv.
The presence of unbounded elements represents the main difference between locally
convex cones and locally convex vector spaces and accounts for much of the richness
and subtlety of this setting.

Finally, a locally convex cone (P,V) is a subcone of a full locally convex cone not
necessarily containing the abstract neighborhood system V . Every locally convex
ordered topological vector space is a locally convex cone in this sense, as it may
be canonically embedded into a full locally convex cone (see Examples 2.1(c) below
and I.2.7 in [3]). The subsets {(a, b) | a, b ∈ P a ≤ b + v} of P2, for all v ∈ V
form a convex quasiuniform structure on P. Conversely, it is shown in Chapter I.5.2
of [3] how a convex quasiuniform structure on a cone can be used to construct a full
locally convex cone which contains the given one as a subcone and induces the given
quasiuniform structure. This yields a second, equivalent approach to locally convex
cones. We shall recall a few examples. Many more can be found in [4].

Examples 2.1. (a) On the extended real number systemR = R∪{+∞} we consider
the usual order and algebraic operations, in particular a +∞ = +∞ for all a ∈ R,
α · (+∞) = +∞ for all α > 0 and 0 · (+∞) = 0. Endowed with the neighborhood
system V = {ε ∈ R | ε > 0}, R is a full locally convex cone. For a ∈ R the intervals
(−∞, a+ ε] are the upper and the intervals [a− ε,+∞] are the lower neighborhoods,
while for a = +∞ the entire cone R is the only upper neighborhood, and {+∞} is
open in the lower topology. The symmetric topology is the usual topology on R with
+∞ as an isolated point. It is finer than the usual topology of R where the intervals
[a,+∞] for a ∈ R are the neighborhoods of +∞.

(b) For the subcone R+ = {a ∈ R | a ≥ 0} of R we may also consider the singleton
neighborhood system V = {0}. The elements of R+ are obviously bounded below even
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with respect to the neighborhood v = 0, hence R+ is a full locally convex cone. For
a ∈ R the intervals (−∞, a] and [a,+∞] are the only upper and lower neighborhoods,
respectively. The symmetric topology is the discrete topology on R+.

(c) Let (E,V ,≤) be a locally convex ordered topological vector space, where V is
a basis of closed, convex, balanced and order convex neighborhoods of the origin in
E. Recall that equality is an order relation, hence this example will cover locally
convex spaces in general. In order to interpret E as a locally convex cone we shall
embed it into a larger full cone. This is done in a canonical way: Let P be the
cone of all non-empty convex subsets of E, endowed with the usual addition and
multiplication of sets by non-negative scalars, that is αA = {αa | a ∈ A} and
A+B = {a+ b | a ∈ A and b ∈ B} for A,B ∈ P and α ≥ 0. We define the order on
P by

A ≤ B if A ⊂ B + E−,

where E− = {x ∈ E | x ≤ 0} is the negative cone in E. The requirements for
an ordered cone are easily checked. The neighborhood system in P is given by the
neighborhood basis V ⊂ P. We observe that for every A ∈ P and V ∈ V there is
ρ > 0 such that ρV ∩ A 6= ∅. This yields 0 ∈ A + ρV. Therefore {0} ≤ A + ρV, and
every element A ∈ P is indeed bounded below. Thus (P,V) is a full locally convex
cone. Via the embedding x 7→ {x} : E → P the space E itself is a subcone of P.
This embedding preserves the order structure of E, and on its image the symmetric
topology of P coincides with the given vector space topology of E. Thus E is indeed
a locally convex cone, but not a full cone. Other subcones of P that merit further
investigation are those of all closed, closed and bounded, or compact convex sets in
P, respectively. Details on these and further related examples may be found in [3]
and [4].

(d) Let (P,V) be a locally convex cone, X a set and let F(X,P) be the cone of all
P-valued functions on X, endowed with the pointwise operations and order. If P̄ is
a full cone containing both P and V , then we may identify the elements v ∈ V with
the constant functions x 7→ v for all x ∈ X, hence V is a subset and a neighborhood
system for F(X, P̄). A function f ∈ F(X, P̄) is uniformly bounded below, if for every
v ∈ V there is ρ ≥ 0 such that 0 ≤ f + ρv. These functions form a full locally convex
cone

(
Fb(X, P̄),V

)
, carrying the topology of uniform convergence. As a subcone,(

Fb(X,P),V
)
is a locally convex cone. Alternatively, a more general neighborhood

system VY for F(X,P) may be created using a suitable family Y of subsets Y of X,
directed downward with respect to set inclusion, and the neighborhoods vY for v ∈ V
and Y ∈ Y, defined for functions f, g ∈ F(X,P) as f ≤ g+ vY if f(x) ≤ g(x) + v for
all x ∈ Y. In this case we consider the subcone FbY (X,P) of all functions in F(X,P)
that are uniformly bounded below on the sets in Y . Together with the neighborhood
system VY , it forms a locally convex cone.

(
FbY (X,P),VY

)
carries the topology of

uniform convergence on the sets in Y .

(e) For x ∈ R denote x+ = max{x, 0} and x− = −min{x, 0}. For 1 ≤ p ≤ +∞
and a sequence (xi)i∈N in R let ‖(xi)‖p denote the usual lp norm, that is ‖(xi)‖p =
(∑∞

i=1 |xi|
p
)(1/p)

∈ R for p < +∞ and ‖(xi)‖∞ = sup{|xi| | i ∈ N} ∈ R. Now let

Cp be the cone of all sequences (xi)i∈N in R such that ‖(x−
i )‖p ≤ +∞. We use the
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pointwise order in Cp and the neighborhood system Vp = {ρvp | ρ > 0}, where

(xi)i∈N ≤ (yi)i∈N + ρvp

means that ‖(xi − yi)
+‖p ≤ ρ. (In this expression the lp norm is evaluated only over

the indexes i ∈ N for which yi < +∞.) It can be easily verified that (Cp,Vp) is a
locally convex cone. In fact (Cp,Vp) can be embedded into a full cone following a
procedure analogous to that in 2.1(c). The case for p = +∞ is of course already
covered by Part (d).

For cones P and Q a mapping T : P → Q is called a linear operator if T (a + b) =
T (a) + T (b) and T (αa) = αT (a) holds for all a, b ∈ P and α ≥ 0. If both P and Q
are ordered, then T is called monotone, if a ≤ b implies T (a) ≤ T (b). If both (P,V)
and (Q,W) are locally convex cones, the operator T is called (uniformly) continuous
if for every w ∈ W one can find v ∈ V such that T (a) ≤ T (b)+w whenever a ≤ b+ v
for a, b ∈ P. It is immediate from the definition that uniform continuity implies and
combines continuity for the operator T : P → Q with respect to the upper, lower and
symmetric topologies on P and Q, respectively. Continuous operators are monotone,
even though in a slightly modified sense (Lemma II.1.4 in [3]).

A linear functional on P is a linear operator µ : P → R. The dual cone P∗ of a locally
convex cone (P,V) consists of all continuous linear functionals on P and is the union
of all polars v◦ of neighborhoods v ∈ V, where µ ∈ v◦ means that µ(a) ≤ µ(b) + 1
whenever a ≤ b + v for a, b ∈ P. Continuity implies that a linear functional µ is
monotone, and for a full cone P it requires just that µ(v) ≤ 1 holds for some v ∈ V in
addition. We endow P∗ with the topology w(P∗,P) of pointwise convergence on the
elements of P, considered as functions on P∗ with values in R with its usual topology.
As in locally convex topological vector spaces, the polar v◦ of a neighborhood v ∈ V
is seen to be w(P∗,P)-compact and convex ([3], Theorem II.2.4). A variety of Hahn-
Banach type extension and separation theorems for linear functionals is available and
can be found in [3], [5] and [4]. These are essential for the development of a powerful
duality theory for locally convex cones.

Examples 2.2. Revisiting the preceding Examples 2.1, we observe that the dual
cone R

∗
of R

(
see 2.1(a)

)
consists of all positive reals (via the usual multiplication),

and the singular functional 0̄ such that 0̄(a) = 0 for all a ∈ R and 0̄(+∞) = +∞.
Likewise, in 2.1(b), the continuous linear functionals on R+, endowed with the neigh-
borhood system V = {0}, are the positive reals together with 0̄, but further include
the element +∞, acting as +∞(0) = 0 and +∞(a) = +∞ for all 0 6= a ∈ R+. This
functional is obviously contained in the polar of the neighborhood 0 ∈ V. In 2.1(c) and
(d) on the other hand, due to the generality of the settings, a complete description
for the respective dual cones is not immediately available. We may, however, identify
some of their elements: In 2.1(c), let µ be a continuous monotone linear function on
the locally convex ordered topological vector space (E,≤). Then the mapping

A 7→ sup{µ(a) | a ∈ A} : Conv(E) → R

is seen to be an element of Conv(E)∗. In 2.1(d), if µ ∈ P∗ and if x ∈ Y for some
Y ∈ Y, then the mapping µx : FbY (X,P) → R such that

µx(f) = µ
(
f(x)

)
for all f ∈ FbY (X,P)
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is a continuous linear functional on FbY (X,P); more precisely: If µ ∈ v◦ for v ∈ V
and x ∈ Y for Y ∈ Y, then µx ∈ v◦Y . In 2.1(e) for p < +∞ the dual cone of Cp consists
of all sequences (yi)i∈N such that yi ≥ 0 for all i ∈ N and ‖(yi)‖q < +∞, where q is
the conjugate index of p.

We also consider a (topological and linear) closure of the given order on a locally
convex cone, called the weak preorder � which is defined as follows (see I.3 in [4]):
We set a � b+ v for a, b ∈ P and v ∈ V if for every ε > 0 there is 1 ≤ γ ≤ 1+ ε such
that a ≤ γb+ (1 + ε)v, and set a � b if a � b+ v for all v ∈ V. This order is clearly
weaker than the given order, that is a ≤ b or a ≤ b + v implies a � b or a � b + v.
Importantly, the weak preorder on a locally convex cone is entirely determined by
its dual cone P∗, that is a � b holds if and only if µ(a) ≤ µ(b) for all µ ∈ P∗, and
a � b+ v if and only µ(a) ≤ µ(b) + 1 for all v◦ (Corollaries I.4.31 and I.4.34 in [4]).

Corresponding to the weak preorder, the upper, lower and symmetric relative topolo-
gies on a locally convex cone (P,V) are generated by the neighborhoods vε(a), (a)vε
and vsε(a) = vε(a) ∩ (a)ε, respectively, for a ∈ P, v ∈ V and ε > 0, where

vε(a) = {b ∈ P | b ≤ γa+ εv for some 1 ≤ γ ≤ 1 + ε},

(a)vε = {b ∈ P | a ≤ γb+ εv for some 1 ≤ γ ≤ 1 + ε}.

The relative topologies are generally coarser than the given upper, lower and sym-
metric topologies, but locally coincide with them at bounded elements of P (Propo-
sition I.4.2(iv) in [4]). The symmetric relative topology is known to be Hausdorff if
and only if the weak preorder on P is antisymmetric (Proposition I.4.8 in [4]).

3. Locally Convex Quotient Cones

We consider an equivalence relation ∼ on a locally convex cone (P,V) which is com-
patible with the algebraic operations in P, that is a+c ∼ b+c and αa ∼ αb whenever
a ∼ b for a, b, c ∈ P and α ≥ 0. By ã we denote the equivalence class of an element
a ∈ P. Since a ∼ a′ and b ∼ b′ implies that a + b ∼ a′ + b and b + a′ ∼ b′ + a′, thus

a+ b ∼ a′+ b′, the operations ã+ b̃ = ]a+ b and αã = α̃a are well-defined for a, b ∈ P
and α ≥ 0, and

P̃ = {ã | a ∈ P}

becomes a cone with these operations. It is fairly obvious how to assign a suitable
order . and a locally convex cone topology to P̃. The order . is the strongest order
on P̃ which is compatible with the algebraic operations of P̃ and guarantees that
the canonical projection Π : P → P̃, that is Π(a) = ã for a ∈ P, is monotone. The

weakest order relating all elements of P̃ obviously satisfies this requirement, and the
intersection over any family of such order relations is again of this type. Therefore
such a strongest order exists on P̃. Likewise, there is a finest convex quasiuniform
structure on P̃ which guarantees that the projection Π : P → P̃ is a continuous linear
operator. This can be expressed explicitly, although not very elegantly as follows:

Definition 3.1. For a, b ∈ P and v ∈ V ∪ {0} we set

ã . b̃+ ṽ
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if there are c1, d1, . . . , cn, dn ∈ P and 0 ≤ λ1, . . . , λn ∈ R such that λ1 + . . .+ λn ≤ 1
and c1 ∼ a, dn ∼ b, as well as ci ≤ di + λiv for all i = 1, . . . , n, and di ∼ ci+1 for all
i = 1, . . . , n− 1.

As required, this order is reflexive, transitive and compatible with the algebraic op-
erations. The subsets {(ã, b̃) | ã . b̃ + ṽ} ⊂ P̃2 for all v ∈ V describe a convex

quasiuniform structure on P̃. Then according to I.5.4 in [3] there exists a full cone

P̃ ⊕ Ṽ whose neighborhoods yield the same quasiuniform structure on P̃. The neigh-
borhoods ṽ ∈ Ṽ from above form a basis for Ṽ in the following sense: For every w ∈ Ṽ
there is v ∈ V such that ã . b̃ + ṽ for ã, b̃ ∈ P̃ implies that ã . b̃ + w. The locally
convex cone (P̃, Ṽ) is called the locally convex quotient cone of (P,V) over ∼ .

Proposition 3.2. Let (P̃, Ṽ) be the locally convex quotient cone of (P,V) over ∼ .

The projection Π : P → P̃ is a monotone and continuous linear operator.

Proposition 3.3. Let (P,V) and (Q,W) be locally convex cones and (P̃, Ṽ) the
quotient of (P,V) over ∼ . If T : P → Q is a continuous linear operator such that

T (a) = T (b) whenever a ∼ b, then the operator T̃ : P̃ → Q such that T̃ (ã) = T (a) is
also linear and continuous.

Proof. The continuity of the operator Π : P → P̃ is obvious, since a ≤ b + v
implies ã . b̃ + ṽ. For 3.3 let T : P → Q be a continuous linear operator such
that T (a) = T (b) whenever a ∼ b for a, b ∈ P. Given w ∈ W there is v ∈ V

such that a ≤ b + v implies T (a) ≤ T (b) + w. Let ã, b̃ ∈ P̃ such that ã ≤ b̃ + ṽ,
and let c1, d1, . . . , cn, dn ∈ P and 0 ≤ λ1, . . . , λn ∈ R be as in the definition of
the neighborhood ṽ. Then T (c1) = T (a), T (dn) = T (b), as well as T (di) = T (ci+1)
for all i = 1, . . . , n − 1, and T (ci) ≤ T (di) + λiw for all i = 1, . . . , n. This yields

T (a) ≤ T (b) +
∑n−1

i=1 λiw ≤ T (b) + w, hence T̃ (ã) ≤ T̃ (b̃) + w as well.

Corollary 3.4. Let (P,V) and (Q,W) be locally convex cones and let T : P → Q
be a continuous linear operator. If an equivalence relation is defined on P by a ∼ b
if T (a) = T (b), then the operator T̃ : P̃ → Q such that T̃ (ã) = T (a) is one-to-one,
linear and continuous.

Let P∗
∼ denote the subcone of P∗ consisting of all linear functionals µ ∈ P∗ such

µ(a) = µ(b) whenever a ∼ b for a, b ∈ P. According to Proposition 3.3 then every

µ ∈ P∗
∼ corresponds to a linear functional µ̃ ∈ P̃∗. Conversely, for every µ̃ ∈ P̃∗, the

functional µ̃ ◦ Π : P → R is contained in P∗
∼ . This yields:

Proposition 3.5. Let (P̃, Ṽ) be the locally convex quotient cone of (P,V) over ∼ .

The dual cone P̃∗ of P̃ can be identified with P∗
∼ . The polar ṽ◦ of a neighborhood

ṽ ∈ Ṽ is given by v◦ ∩ P∗
∼ .

Let us denote the weak preorder on (P̃, Ṽ) by - . Then ã - b̃+ṽ holds for ã, b̃ ∈ P̃ and

ṽ ∈ Ṽ if and only if for every ε > 0 there is 1 ≤ γ ≤ 1+ ε such that ã . γb̃+(1+ ε)ṽ,
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and a - b if ã - b̃ + ṽ for all ṽ ∈ Ṽ . According to Corollaries I.4.43 and I.4.31 in [4]
and Proposition 3.5 this is equivalent to µ(a) ≤ µ(b) + 1 for all µ ∈ v◦ ∩ P∗

∼ , and
µ(a) ≤ µ(b) for all µ ∈ P∗

∼ , respectively.

If Ω is a subset of the dual cone P∗ of P, then a Ω∼ b if µ(a) = µ(b) for all µ ∈ Ω
defines a compatible equivalence relation on P. According to Proposition 3.5, Ω is
contained in the dual P̃∗ of the quotient cone P̃ in this case.

Proposition 3.6. Let (P̃, Ṽ) be the locally convex quotient cone of (P,V) over ∼,

and let Ω = P∗
∼ ⊂ P∗. The symmetric relative topology is Hausdorff for P̃ if and only

if the equivalence relations ∼ and Ω∼ coincide on P.

Proof. According to Proposition I.4.8 in [4] the symmetric relative topology is Haus-
dorff if and only if the weak preorder is antisymmetric. On the other hand we have
ã - b̃ for ã, b̃ ∈ P̃ if and only if µ(a) ≤ µ(b) for all µ ∈ Ω = P∗

∼ . Thus a Ω∼ b is
equivalent to ã - b̃ and b̃ - ã. The latter therefore yields ã = b̃ if and only if the
equivalence relations ∼ and Ω∼ coincide on P.

Remarks and Examples 3.7. (a) If the order relation ≤ is indeed the equality for
elements of P, then a brief inspection of Definition 3.1 yields that . is the equality
for elements of P̃. Relations involving neighborhoods can however not necessarily be
simplified, even in this case.

(b) If ∼ is defined on P as a ∼ b for a, b ∈ P if a ≤ b and b ≤ a, then P̃ is the
antisymmetric reflection of P, that is ã . b̃ if a ≤ b, and the order . is antisymmetric
on P̃.

(c) If ∼ is defined on P as a ∼ b for a, b ∈ P if a ≤ b+ v and b ≤ a+ v for all v ∈ V,

then P̃ is the separate reflection of P. Indeed, ã ≤ b̃ + ṽ and b̃ ≤ ã + ṽ for ã, b̃ ∈ P̃
and all ṽ ∈ Ṽ implies that a ≤ b + v and b ≤ a + v for all v ∈ V, hence ã = b̃. Thus
for ã 6= b̃ there is ṽ ∈ Ṽ such that b̃ is not contained in the symmetric neighborhood
ṽs(ã). With ũ = (1/2)ṽ ∈ Ṽ then ũs(ã) ∩ ũs(b̃) = ∅, and the symmetric topology of

P̃ is seen to be Hausdorff. A similar construction can be carried out using the weak
preorder � and the corresponding relative topologies as elaborated in I.3 of [4].

(d) If (P,V) is indeed a locally convex ordered topological vector space (see Exam-
ple 2.1(c)), then M = {m ∈ P | m ∼ 0} is a subspace of P, and a ∼ b holds for

a, b ∈ P if and only if a − b ∈ M. Thus P̃ is the usual quotient space P/M (see I.2
in [8]). We have ã . b̃ for ã, b̃ ∈ P/M if a ≤ b+m for some m ∈ M, and ã . b̃+ V
for V ∈ V if a ≤ b+m+ v for some m ∈ M and v ∈ V.

(e) As in 2.1(c) let P be the cone of all non-empty convex subsets of a locally
convex ordered topological vector space (E,V ,≤) endowed with the canonical order
and neighborhood system from 2.1(c) and consider the following equivalence relation:
We set A ∼ B for A,B ∈ P if Ā = B̄, that is if the topological closures of A and
B coincide. Then Ã . B̃ if A ⊂ B̄ + E− and Ã . B̃ + Ṽ if A ⊂ B + V + E− for
Ã, B̃ ∈ P̃ and V ∈ V. Thus P̃ corresponds to the cone of all non-empty closed convex
subsets of E endowed with the given scalar multiplication, the modified addition
A⊕B = A+B for closed convex subsets E, and the set inclusion as order.
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(f) Let X be a set and let Y be a family of subsets of X, directed downward with
respect to set inclusion. Let P = FbY (X,R) be the cone of all R-valued functions on
X that are bounded below on the sets in Y (see Example 2.1(d)). The neighborhood
system VY is generated by the neighborhoods εY for ε > 0 and Y ∈ Y such that
f ≤ g + εY for f, g ∈ P if f(y) ≤ g(y) + ε for all y ∈ Y. For f ∈ P we set
If = {x ∈ X | f(x) = +∞} and define a compatible equivalence relation on P by

f ∼ g for f, g ∈ P if If = Ig. The order on the quotient cone P̃ is given by f̃ . g̃ if

If ⊂ Ig for f̃ , g̃ ∈ P̃ and f̃ . g̃+ ε̃Y for εY ∈ VY if If ∩Y ⊂ Ig. We have If+g = If ∪Ig

and Iαf = If for α > 0. Thus P̃ corresponds to P(X), the family of all subsets of X,
endowed with the operations A⊕ B = A ∪ B and αA = A for A,B ∈ P and α > 0,
and 0 · A = ∅. The order on P is the set inclusion, and the neighborhoods are given
by A ≤ B + εY for εY ∈ VY if A ∩ Y ⊂ B.

4. Factorization over Boundedness Components

Let (P,V) be a locally convex cone. We define an equivalence relation ∼ on P by
a ∼ b for a, b ∈ P if for every neighborhood v ∈ V there are constants α, β, ρ > 0
such that a ≤ βb+ρv and b ≤ αa+ρv. This relation is compatible with the algebraic
operations of P. Indeed, suppose that a ∼ b. This obviously implies that δa ∼ γb for
all δ, γ > 0. Moreover, for c ∈ P and v ∈ V there is λ ≥ 0 such that 0 ≤ a + λv,
0 ≤ b+ λv and 0 ≤ c+ λv. Now for a ≤ βb+ ρv set γ = max{β, 1}. Then

a+ c ≤ βb+ c+ ρv ≤ βb+ c+ ρv + (γ − β)(b+ λv) + (γ − 1)(c+ λv)

= γ(b+ c) + δv,

where δ = ρ+λ(2γ−β−1). Similarly, for b ≤ αa+ρv and γ = max{α, 1} one argues
that b + c ≤ γ(a + c) + δv. Hence a + c ∼ b + c. The equivalence classes ã of this
relation are called the boundedness components of P and are in the sequel denoted
as Bs(a). We shall list some of the properties of boundedness components which can
be found in Section I.4 of [4].

Proposition 4.1. Let (P,V) be a locally convex cone, and let a, b, c ∈ P.

(a) If b, c ∈ Bs(a) and α > 0, then αb, b+ c ∈ Bs(a).

(b) b ∈ Bs(a) if and only if for every µ ∈ P∗ we have µ(a) + ∞ if and only if
µ(b) = +∞.

We shall say that a locally convex cone (P,V) has uniform boundedness components
(see 4.23 in [4]) if there is a particular neighborhood v0 ∈ V such that the neighbor-
hood subsystem V0 = {λv0 | λ > 0} generates the same boundedness components
in P as the full system V . Ordered locally convex topological vector spaces are ob-
viously of this type since they have only a single boundedness component. We cite
the following from Section I.4 of [4]. (For notions concerning connectedness see Ch. 8
in [9].)

Proposition 4.2. Let (P,V) be a locally convex cone. With respect to the symmetric
relative topology on P the following hold:
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(a) The boundedness components are connected and coincide with the connectedness
components of P.

(b) The boundedness components are closed in P.

(c) If P has uniform boundedness components, then P is locally connected and the
boundedness components are also open in P.

Now let us consider the quotient cone P̃ = {Bs(a) | a ∈ P} together with its neigh-

borhood system Ṽ and the quotient order . . According to Definition 3.1 we have
Bs(a) . Bs(b) + ṽ for a, b ∈ P and v ∈ V ∪ {0} if there are c1, d1, . . . , cn, dn ∈ P
and 0 ≤ λ1, . . . , λn ∈ R such that λ1 + . . . + λn ≤ 1 and c1 ∼ a, dn ∼ b, as well
as ci ≤ di + λiv for all i = 1, . . . , n, and di ∼ ci+1 for all i = 1, . . . , n − 1. The
induced weak preorder on P̃, on the other hand, is given by Bs(a) - Bs(b) + ṽ
if for every ε > 0 there is 1 ≤ γ ≤ 1 + ε such that Bs(a) . γBs(b) + (1 + ε)ṽ.
Thus Bs(a) . Bs(b) + ṽ implies that a ≤ βb + ρv for some β, ρ > 0. Conversely,
if a ≤ βb + ρv holds for a, b ∈ P, v ∈ V and β, ρ > 0, then we set c = (1/ρ)a
and d = (β/ρ)b. Thus a ∼ c, d ∼ b and c ≤ d + v. This yields Bs(a) - Bs(b) + ṽ.
Furthermore, Bs(a) - Bs(b) holds if and only if Bs(a) - Bs(b) + ṽ for every v ∈ V.
Thus Bs(a) - Bs(b) and Bs(b) - Bs(a) implies that a ∼ b, hence Bs(a) = Bs(b). The
weak preorder is therefore antisymmetric, hence the symmetric relative topology on
P̃ is Hausdorff. Moreover, if P has uniform boundedness components generated by
the neighborhood v0 ∈ V, then Bs(b) ∈ (ṽ0)

s
ε

(
Bs(a)

)
for a, b ∈ P and ε > 0 implies

that a ≤ βb+ ρv0 and b ≤ αa+ ρv0 for some α, β, ρ > 0. Therefore b is contained in
the boundedness component of a generated by the single neighborhood v0 which in
this case coincides with Bs(a). Hence Bs(b) = Bs(a) and (ṽ0)

s
ε

(
Bs(a)

)
⊂

{
Bs(a)

}
. We

summarize:

Lemma 4.3. Let (P,V) be a locally convex cone, (P̃, Ṽ) the quotient cone of its

boundedness components. The symmetric relative topology on P̃ is Hausdorff, and
indeed discrete if P has uniform boundedness components. The weak preorder - on
P̃ is antisymmetric and given by Bs(a) - Bs(b) + ṽ for a, b ∈ P and v ∈ V if there
are β, ρ > 0 such that a ≤ βb+ ρv.

For the algebraic operations in P̃ we observe:

Lemma 4.4. Let (P,V) be a locally convex cone, and let a, b ∈ P.

(a) αBs(a) = Bs(a) for all α > 0.

(b) Bs(a),Bs(b) - Bs(a) + Bs(b).

(c) Bs(a) - Bs(b) if and only if Bs(a) + Bs(b) = Bs(b).

Proof. Part (a) follows from Proposition 4.1(a), which yields αa ∈ Bs(a) for all
α > 0. Part (b) is evident, since for every v ∈ V there is λ ≥ 0 such that 0 ≤ b+ λv,
hence a ≤ a+(b+λv) = (a+b)+λv. This yields Bs(a) - Bs(a+b)+ ṽ for every v ∈ V,
hence Bs(a) - Bs(a + b) = Bs(a) + Bs(b). For (c) suppose that Bs(a) - Bs(b). Then
for every v ∈ V there are β, ρ > 0 such that a ≤ βb+ ρv. Thus a+ b ≤ (β +1)b+ ρv.
This yields Bs(a+ b) - Bs(b). Since Bs(b) - Bs(a+ b) by Part (b), we conclude that

Bs(a+b) = Bs(b) since - is antisymmetric on P̃. Conversely, if Bs(a)+Bs(b) = Bs(b),
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then for every v ∈ V there are β, ρ, λ > 0 such that a+ b ≤ βb+ ρv and 0 ≤ b+ λv.
Thus a ≤ a+ (b+ λv) ≤ βb+ (ρ+ λ)v. This shows Bs(a) - Bs(b) as claimed.

Lemma 4.4(a) implies in particular that the linear functionals µ̃ ∈ P̃ can only take
the values 0 and +∞. For a linear functional µ ∈ P∗ set µ̃ (Bs(a)) = +∞ if µ(a) =
+∞, and µ̃ (Bs(a)) = 0 else. Part (b) of Proposition 4.1 implies that on a given
boundedness component, the values of µ are either all finite or identically +∞. Thus

µ̃ ∈ P̃∗ = P∗
∼ . Moreover, since µ̃ ◦ Π ∈ P∗

∼ and ]̃µ ◦ Π = µ̃ for every µ̃ ∈ P̃∗, the

mapping µ 7→ µ̃ : P∗ → P̃∗ is linear and onto.

A locally convex cone (P,V) is called quasi-linear if there is a neighborhood v0 ∈ V
such that a ≤ b + v0 holds for a, b ∈ P and if and only if a ≤ b + s for some
bounded element s ∈ P such that s ≤ v0. Obviously, every ordered locally convex
topological vector space is quasi-linear in this sense, likewise every full locally convex
cone whose neighborhood system V ⊂ P is generated by a single neighborhood v0 ∈
P. A quasi-linear locally convex cone (P,V) has uniform boundedness components,
since a ≤ b + v0 for a, b ∈ P implies that a ≤ b + λv with some λ ≥ 0 for every
other neighborhood v ∈ V. Moreover, if P is quasi-linear, then the quotient order
. and the weak preorder - coincide on P̃. Indeed, if Bs(a) - Bs(b) + ṽ0 for the
particular neighborhood v0 ∈ V, then there are β, ρ > 0 such that a ≤ βb+ ρv, that
is a ≤ d with d = βb + ρs ∈ P for some bounded element s ≤ v0. We shall verify
that b ∼ d. Indeed, given v ∈ V there is λ ≥ 0 such that both 0 ≤ s + λv and
s ≤ λv. This shows d ≤ βb + (ρλ)v as well as b ≤ b + ρ(s + λu) ≤ d + (ρλ)v. Thus
b ∼ d. We infer Bs(a) . Bs(b) according to Definition 3.1. On the other hand, the
statement Bs(a) . Bs(b) is stronger than either of the statements Bs(a) - Bs(b) or
Bs(a) . Bs(b) + v0, both of which are stronger than Bs(a) - Bs(b) + v0. Thus these
four notions coincide coincide for a quasi-linear cone.

Example 4.5. Let us reconsider Example 3.7(e) (a special case of 2.1(d)), that is
P = FbY (X,R), the cone of all bounded below (on the sets in Y) R-valued functions
on X with the neighborhood system VY generated by the neighborhoods εY for ε > 0
and Y ∈ Y (see 3.7(e)). For a function f ∈ FbY (X,R) its boundedness component

Bs(f) =

{
g ∈ FbY (X,R)

∣∣∣∣
for every Y ∈ Y there are α, β, γ, δ > 0 such that
γf(x)− δ ≤ g(x) ≤ αf(x) + β for all x ∈ Y

}

is closed in the symmetric relative topology according to 4.2(b). (This can also
be easily checked directly.) If the set X itself is contained in Y , then the cone
(FbY (X,R),V) is quasi-linear. Indeed, for the neighborhood v0 = 1X we have f ≤
g + 1X if and only if f ≤ g + 1, where 1 denotes the (bounded) constant function

x 7→ 1 in FbY (X,R). Thus the order . of the quotient cone F̃bY (X,R) coincides
with its weak preorder - and is easy to describe (Lemma 4.3). Following 4.2(c)
the boundedness components are also open with respect to the symmetric relative
topology of FbY (X,R) and the symmetric relative topology of F̃bY (X,R) is discrete
in this case (4.3). If, for another special case, Y consists of all finite subsets of X,
then the above description yields that two functions f, g ∈ FbY (X,R) are contained
in the same boundedness component if and only if for every Y ∈ Y they take the
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value +∞ at exactly the same points of Y, that is if they take the value +∞ at
exactly the same points of X0 =

⋃
Y ∈Y

Y. The symmetric relative topology is the
topology of pointwise convergence on X0 in this case. If X0 is an infinite set, then
the boundedness components are seen to be closed but not open in FbY (X,R) in this
topology.
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