Corrigendum to "Optimality Conditions Using Approximations for Nonsmooth Vector Optimization Problems under General Inequality Constraints"

P. Q. Khanh

Department of Mathematics, International University of Hochiminh City, Linh Trung, Thu Duc, Hochiminh City, Vietnam

N. D. Tuan

Department of Mathematics, University of Natural Sciences of Hochiminh City, 227 Nguyen Van Cu, D. 5, Hochiminh City, Vietnam

Received: February 17, 2010

Theorems 4.1 and 4.7 of our previous paper "Optimality conditions using approximations for nonsmooth vector optimization problems under general inequality constraints" [Journal of Convex Analysis 16 (2009) 169–186] are incorrect and need be changed. Hence, illustrative examples 4.2 and 4.8 should be modified.

Theorem 4.1. Assume that C is polyhedral and $z^* \in K^*$ with $\langle z^*, g(x_0) \rangle = 0$. Impose further that $(f'(x_0), B_f(x_0))$ and $(g'(x_0), B_g(x_0))$ are asymptotically p-compact second-order approximations of f and g, respectively, at x_0 with norm-bounded $B_g(x_0)$.

If $x_0 \in \text{LWE}(f,g)$ then, for any $v \in T(G(z^*), x_0)$, there exists $y^* \in B$, where B is finite and cone(co B) = C^{*}, such that $\langle y^*, f'(x_0)v \rangle + \langle z^*, g'(x_0)v \rangle \ge 0$. If, furthermore, $y^* \circ f'(x_0) + z^* \circ g'(x_0) = 0$, we have either $M \in \text{p} - \text{cl} B_f(x_0)$ and $N \in \text{p} - \text{cl} B_g(x_0)$ such that

$$\langle y^*, M(v,v) \rangle + \langle z^*, N(v,v) \rangle \ge 0,$$

or $M \in p-B_f(x_0)_{\infty} \setminus \{0\}$ such that

$$\langle y^*, M(v, v) \rangle \ge 0.$$

Proof. Fix $v \in T(G(z^*), x_0)$. There exists $(t_n, v_n) \to (0^+, v)$ such that $x_n := x_0 + t_n v_n \in G(z^*)$ for all n. As $x_0 \in \text{LWE}(f, g)$ and C is polyhedral, there exists $y^* \in B$ such that (using a subsequence if necessary), for all n,

$$\langle y^*, f(x_n) - f(x_0) \rangle \ge 0.$$

Hence

$$\langle y^*, f(x_n) - f(x_0) \rangle + \langle z^*, g(x_n) - g(x_0) \rangle \ge 0.$$

Dividing this inequality by t_n and passing to limit one has

$$\langle y^*, f'(x_0)v \rangle + \langle z^*, g'(x_0)v \rangle \ge 0.$$

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

898 P. Q. Khanh, N. D. Tuan / Corrigendum to "Optimality Conditions Using ...

If $y^* \circ f'(x_0) + z^* \circ g'(x_0) = 0$, then $(0, y^* \circ B_f(x_0) + z^* \circ B_g(x_0))$ is a second-order approximation of $L(., y^*, z^*) := \langle y^*, f(.) \rangle + \langle z^*, g(.) \rangle$ at x_0 . Therefore, $M_n \in B_f(x_0)$ and $N_n \in B_g(x_0)$ exist such that, for large n,

$$L(x_0 + t_n v_n, y^*, z^*) - L(x_0, y^*, z^*) = t_n^2 \langle y^*, M_n(v_n, v_n) \rangle + t_n^2 \langle z^*, N_n(v_n, v_n) \rangle + o(t_n^2)$$

On the other hand,

$$L(x_0 + t_n v_n, y^*, z^*) - L(x_0, y^*, z^*) = \langle y^*, f(x_0 + t_n v_n) - f(x_0) \rangle \ge 0.$$

Consequently, for large n,

$$\langle y^*, M_n(v_n, v_n) \rangle + \langle z^*, N_n(v_n, v_n) \rangle + \frac{o(t_n^2)}{t_n^2} \ge 0$$

The remaining part is unchanged.

Example 4.2. Let $X = \mathbb{R}^2$, $Y = Z = \mathbb{R}$, $C = \mathbb{R}_+$, $B = \{1\}$, $K = \{0\}$, $x_0 = (0, 0)$ and

$$f(x,y) = -\frac{2}{3}|x|^{\frac{3}{2}} + \frac{1}{2}y^{2},$$
$$g(x,y) = x^{2} - y.$$

Then $f'(x_0) = (0,0), g'(x_0) = (0,-1),$

$$B_f(x_0) = \left\{ \begin{pmatrix} \alpha & 0\\ 0 & \frac{1}{2} \end{pmatrix} \mid \alpha < -1 \right\},$$

$$\operatorname{cl} B_f(x_0) = \left\{ \begin{pmatrix} \beta & 0\\ 0 & \frac{1}{2} \end{pmatrix} \mid \beta \le -1 \right\},$$

$$B_f(x_0)_{\infty} = \left\{ \begin{pmatrix} \gamma & 0\\ 0 & 0 \end{pmatrix} \mid \gamma \le 0 \right\},$$

$$B_g(x_0) = \left\{ \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \right\}.$$

Choose $z^* = 0 \in K^* = \mathbb{R}$ and $v = (1,0) \in T(G(z^*), x_0) = \mathbb{R} \times \{0\}$. Then, for any $y^* \in B$, i.e. $y^* = 1$, we have $y^* \circ f'(x_0) + z^* \circ g'(x_0) = 0$ and

$$\langle y^*, M(v,v) \rangle + \langle z^*, N(v,v) \rangle = \alpha \le -1 < 0$$

for all $M \in \operatorname{cl} B_f(x_0)$ and all $N \in \operatorname{cl} B_q(x_0)$, and

$$\langle y^*, M(v, v) \rangle = \gamma < 0$$

for all $M \in B_f(x_0)_{\infty} \setminus \{0\}$. Therefore, following Theorem 4.1, x_0 is not a local weakly efficient solution of problem (P).

Theorem 4.7. Let C be polyhedral and $z^* \in K^*$ with $\langle z^*, g(x_0) \rangle = 0$. Assume that $(A_f(x_0), B_f(x_0))$ and $(A_g(x_0), B_g(x_0))$ are asymptotically p-compact second-order approximations of f and g, respectively, at x_0 , with $A_f(x_0), A_g(x_0)$ and $B_g(x_0)$ being norm bounded. If $x_0 \in \text{LWE}(f, g)$ then, for all $v \in T(G(z^*), x_0)$, (a) for all $w \in T^2(G(z^*), x_0, v)$, there exist $y^* \in B$ (where B is finite and cone(co(B)) = C^*), $P \in p - cl A_f(x_0)$ and $Q \in p - cl A_g(x_0)$ such that $\langle y^*, Pv \rangle + \langle z^*, Qv \rangle \geq 0$. If, in addition, $v \in P(x_0, y^*, z^*)$, then either there are $P \in p - cl A_f(x_0)$, $Q \in p - cl A_g(x_0)$, $M \in p - cl B_f(x_0)$ and $N \in p - cl B_g(x_0)$ so that

$$\langle y^*, Pw \rangle + \langle z^*, Qw \rangle + 2 \langle y^*, M(v, v) \rangle + 2 \langle z^*, N(v, v) \rangle \ge 0$$

or $M \in p-B_f(x_0)_{\infty} \setminus \{0\}$ exists with

$$\langle y^*, M(v, v) \rangle \ge 0;$$

(b) for all $w \in T''(G(z^*), x_0, v)$, there exist $y^* \in B$, $P \in p - cl A_f(x_0)$ and $Q \in p - cl A_g(x_0)$ such that $\langle y^*, Pv \rangle + \langle z^*, Qv \rangle \ge 0$. If, in addition, $v \in P(x_0, y^*, z^*)$, then either $P \in p - cl A_f(x_0)$, $Q \in p - cl A_g(x_0)$ and $M \in p - B_f(x_0)_{\infty}$ exist such that

$$\langle y^*, Pw \rangle + \langle z^*, Qw \rangle + \langle y^*, M(v, v) \rangle \ge 0$$

or, for some $M \in p-B_f(x_0)_{\infty} \setminus \{0\}$,

$$\langle y^*, M(v, v) \rangle \ge 0$$

Proof. (a) Fix $v \in T(G(z^*), x_0)$ and $w \in T^2(G(z^*), x_0, v)$. There exist $t_n \to 0^+$, and $w_n \to w$ such that, for all n,

$$x_n := x_0 + t_n v + \frac{1}{2} t_n^2 w_n \in G(z^*).$$

As for Theorem 4.1, there exists $y^* \in B$ such that, for all n,

$$L(x_n, y^*, z^*) - L(x_0, y^*, z^*) = \langle y^*, f(x_n) - f(x_0) \rangle \ge 0.$$

On the other hand, there are $P'_n \in A_f(x_0)$ and $Q'_n \in A_g(x_0)$ such that, for large n

$$L(x_n, y^*, z^*) - L(x_0, y^*, z^*)$$

= $t_n \left\langle y^*, P'_n\left(v + \frac{1}{2}t_n w_n\right) \right\rangle + t_n \left\langle z^*, Q'_n\left(v + \frac{1}{2}t_n w_n\right) \right\rangle + o(t_n).$

Hence,

$$\left\langle y^*, P_n'\left(v+\frac{1}{2}t_nw_n\right)\right\rangle + \left\langle z^*, Q_n'\left(v+\frac{1}{2}t_nw_n\right)\right\rangle + \frac{o(t_n)}{t_n} \ge 0.$$

By the assumed boundedness we can assume the existence of $P' \in p - cl A_f(x_0)$ and $Q' \in p - cl A_g(x_0)$ such that $P'_n \xrightarrow{p} P'$ and $Q'_n \xrightarrow{p} Q'$ and then passing to limit we obtain

$$\langle y^*, P'v \rangle + \langle z^*, Q'v \rangle \ge 0.$$

If $v \in P(x_0, y^*, z^*)$, from the definition of the Lagrangian we have $P_n \in A_f(x_0)$, $Q_n \in A_g(x_0)$, $M_n \in B_f(x_0)$ and $N_n \in B_g(x_0)$ such that, for large n,

$$\langle y^*, P_n w_n \rangle + \langle z^*, Q_n w_n \rangle + 2 \left\langle y^*, M_n \left(v + \frac{1}{2} t_n w_n, v + \frac{1}{2} t_n w_n \right) \right\rangle$$
$$+ 2 \left\langle z^*, N_n \left(v + \frac{1}{2} t_n w_n, v + \frac{1}{2} t_n w_n \right) \right\rangle + \frac{o(t_n^2)}{\frac{1}{2} t_n^2} \ge 0.$$

The rest of (a) is unchanged.

(b) For any $v \in T(G(z^*), x_0)$ and $w \in T''(G(z^*), x_0, v)$, there are $(t_n, r_n) \to (0^+, 0^+)$ and $w_n \to w$ such that $\frac{t_n}{r_n} \to 0^+$ and, for all n,

$$x_n := x_0 + t_n v + \frac{1}{2} t_n r_n w_n \in G(z^*).$$

As in part (a), there is $y^* \in B$ such that, for all n, $L(x_n, y^*, z^*) - L(x_0, y^*, z^*) \ge 0$. Then, there are $P'_n \in A_f(x_0)$ and $Q'_n \in A_g(x_0)$ such that, for large n,

$$\left\langle y^*, P'_n\left(v+\frac{1}{2}r_nw_n\right)\right\rangle + \left\langle z^*, Q'_n\left(v+\frac{1}{2}r_nw_n\right)\right\rangle + \frac{o(t_n)}{t_n} \ge 0.$$

By the assumed boundedness we have $P'_n \xrightarrow{p} P' \in p - cl A_f(x_0)$ and $Q'_n \xrightarrow{p} Q' \in p - cl A_g(x_0)$. Passing the above inequality to limit we obtain

$$\langle y^*, P'v \rangle + \langle z^*, Q'v \rangle \ge 0.$$

If $v \in P(x_0, y^*, z^*)$ there exists $P_n \in A_f(x_0)$, $Q_n \in A_g(x_0)$, $M_n \in B_f(x_0)$ and $N_n \in B_g(x_0)$ such that

$$\begin{pmatrix} \frac{2}{t_n r_n} \end{pmatrix} (L(x_n, y^*, z^*) - L(x_0, y^*, z^*))$$

$$= \langle y^*, P_n w_n \rangle + \langle z^*, Q_n w_n \rangle + \left\langle y^*, \left(\frac{2t_n}{r_n}\right) M_n \left(v + \frac{1}{2}r_n w_n, v + \frac{1}{2}r_n w_n\right) \right\rangle$$

$$+ \left\langle z^*, \left(\frac{2t_n}{r_n}\right) N_n \left(v + \frac{1}{2}r_n w_n, v + \frac{1}{2}r_n w_n\right) \right\rangle + \frac{2o(t_n^2)}{t_n r_n} \ge 0.$$

The remaining part is unchanged.

Example 4.8. Let $X = Y = \mathbb{R}^2$, $Z = \mathbb{R}$, $C = \mathbb{R}^2_+$, $B = \{y_1^* = (1,0), y_2^* = (0,1)\}$, $K = \{0\}, x_0 = (0,0), f(x,y) = (-y, -x + |y|) \text{ and } g(x,y) = -x^3 + y^2$. Then we have the following approximations

$$A_f(x_0) = \left\{ \begin{pmatrix} 0 & -1 \\ -1 & \pm 1 \end{pmatrix} \right\}, \qquad B_f(x_0) = \{0\},$$
$$A_g(x_0) = \{0\}, \qquad B_g(x_0) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Let $z^* = 0 \in K^*$. Then

$$G(z^*) = \{(x, y) \in \mathbb{R}^2 \mid -x^3 + y^2 = 0\},\$$
$$T(G(z^*), x_0) = \mathbb{R}_+ \times \{0\}.$$

Choosing $v = (1, 0) \in T(G(z^*), x_0)$, we have

$$T^{2}(G(z^{*}), x_{0}, v) = \emptyset, \qquad T^{''}(G(z^{*}), x_{0}, v) = \mathbb{R}^{2}.$$

Now let $w = (0,1) \in T''(G(z^*), x_0, v)$. Then for $y_1^* = (1,0) \in B$, we have $P \in \operatorname{cl} A_f(x_0)$ and $Q \in \operatorname{cl} A_g(x_0)$ such that

$$\langle y_1^*, Pv \rangle + \langle z^*, Qv \rangle \ge 0$$

and

$$v \in P(x_0, y_1^*, z^*) = \{(v_1, v_2) \in \mathbb{R}^2 \mid v_2 = 0\}.$$

For all $P \in \operatorname{cl} A_f(x_0)$, all $Q \in \operatorname{cl} A_g(x_0)$ and all $M \in B_f(x_0)_{\infty}$, one has

$$\langle y_1^*, Pw \rangle + \langle z^*, Qw \rangle + \langle y_1^*, M(v, v) \rangle = -1 < 0.$$

For $y_2^* = (0, 1) \in B$, we have $v \notin P(x_0, y_2^*, z^*)$.

Taking into account Theorem 4.7 one sees that $x_0 \notin \text{LWE}(f, g)$.