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Theorems 4.1 and 4.7 of our previous paper "Optimality conditions using approxi-
mations for nonsmooth vector optimization problems under general inequality con-
straints" [Journal of Convex Analysis 16 (2009) 169–186] are incorrect and need be
changed. Hence, illustrative examples 4.2 and 4.8 should be modified.

Theorem 4.1. Assume that C is polyhedral and z∗ ∈ K∗ with 〈z∗, g(x0)〉 = 0. Im-
pose further that (f

′

(x0), Bf (x0)) and (g
′

(x0), Bg(x0)) are asymptotically p-compact
second-order approximations of f and g, respectively, at x0 with norm-bounded Bg(x0).

If x0 ∈ LWE(f, g) then, for any v ∈ T (G(z∗), x0), there exists y∗ ∈ B, where B is fi-
nite and cone(coB) = C∗, such that 〈y∗, f

′

(x0)v〉+〈z∗, g
′

(x0)v〉 ≥ 0 . If, furthermore,
y∗ ◦ f

′

(x0)+ z∗ ◦ g
′

(x0) = 0, we have either M ∈ p− clBf (x0) and N ∈ p− clBg(x0)
such that

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 ≥ 0,

or M ∈ p−Bf (x0)∞ \ {0} such that

〈y∗,M(v, v)〉 ≥ 0.

Proof. Fix v ∈ T (G(z∗), x0). There exists (tn, vn) → (0+, v) such that xn := x0 +
tnvn ∈ G(z∗) for all n. As x0 ∈ LWE(f, g) and C is polyhedral, there exists y∗ ∈ B

such that (using a subsequence if necessary), for all n,

〈y∗, f(xn)− f(x0)〉 ≥ 0.

Hence
〈y∗, f(xn)− f(x0)〉+ 〈z∗, g(xn)− g(x0)〉 ≥ 0.

Dividing this inequality by tn and passing to limit one has

〈y∗, f
′

(x0)v〉+ 〈z∗, g
′

(x0)v〉 ≥ 0.
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If y∗ ◦ f
′

(x0) + z∗ ◦ g
′

(x0) = 0, then (0, y∗ ◦ Bf (x0) + z∗ ◦ Bg(x0)) is a second-order
approximation of L(., y∗, z∗) := 〈y∗, f(.)〉 + 〈z∗, g(.)〉 at x0. Therefore, Mn ∈ Bf (x0)
and Nn ∈ Bg(x0) exist such that, for large n,

L(x0 + tnvn, y
∗, z∗)− L(x0, y

∗, z∗) = t2n〈y
∗,Mn(vn, vn)〉+ t2n〈z

∗, Nn(vn, vn)〉+ o(t2n).

On the other hand,

L(x0 + tnvn, y
∗, z∗)− L(x0, y

∗, z∗) = 〈y∗, f(x0 + tnvn)− f(x0)〉 ≥ 0.

Consequently, for large n,

〈y∗,Mn(vn, vn)〉+ 〈z∗, Nn(vn, vn)〉+
o(t2n)

t2n
≥ 0.

The remaining part is unchanged.

Example 4.2. Let X = R
2, Y = Z = R, C = R+, B = {1}, K = {0}, x0 = (0, 0)

and

f(x, y) = −
2

3
|x|

3

2 +
1

2
y2,

g(x, y) = x2 − y.

Then f
′

(x0) = (0, 0), g
′

(x0) = (0,−1),

Bf (x0) =

{(

α 0
0 1

2

)

| α < −1

}

,

clBf (x0) =

{(

β 0
0 1

2

)

| β ≤ −1

}

,

Bf (x0)∞ =

{(

γ 0
0 0

)

| γ ≤ 0

}

,

Bg(x0) =

{(

1 0
0 0

)}

.

Choose z∗ = 0 ∈ K∗ = R and v = (1, 0) ∈ T (G(z∗), x0) = R × {0}. Then, for any
y∗ ∈ B, i.e. y∗ = 1, we have y∗ ◦ f

′

(x0) + z∗ ◦ g
′

(x0) = 0 and

〈y∗,M(v, v)〉+ 〈z∗, N(v, v)〉 = α ≤ −1 < 0

for all M ∈ clBf (x0) and all N ∈ clBg(x0), and

〈y∗,M(v, v)〉 = γ < 0

for all M ∈ Bf (x0)∞ \{0}. Therefore, following Theorem 4.1, x0 is not a local weakly
efficient solution of problem (P ).

Theorem 4.7. Let C be polyhedral and z∗ ∈ K∗ with 〈z∗, g(x0)〉 = 0. Assume
that (Af (x0), Bf (x0)) and (Ag(x0), Bg(x0)) are asymptotically p-compact second-order
approximations of f and g, respectively, at x0, with Af (x0), Ag(x0) and Bg(x0) being
norm bounded. If x0 ∈ LWE(f, g) then, for all v ∈ T (G(z∗), x0),
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(a) for all w ∈ T 2(G(z∗), x0, v), there exist y
∗ ∈B (where B is finite and cone(co(B))

= C∗), P ∈ p− clAf (x0) and Q ∈ p− clAg(x0) such that 〈y∗, Pv〉+〈z∗, Qv〉 ≥
0. If, in addition, v ∈ P (x0, y

∗, z∗), then either there are P ∈ p− clAf (x0),
Q ∈ p− clAg(x0), M ∈ p− clBf (x0) and N ∈ p− clBg(x0) so that

〈y∗, Pw〉+ 〈z∗, Qw〉+ 2〈y∗,M(v, v)〉+ 2〈z∗, N(v, v)〉 ≥ 0

or M ∈ p−Bf (x0)∞ \ {0} exists with

〈y∗,M(v, v)〉 ≥ 0;

(b) for all w ∈ T
′′

(G(z∗), x0, v), there exist y∗ ∈ B, P ∈ p− clAf (x0) and Q ∈
p− clAg(x0) such that 〈y∗, Pv〉+〈z∗, Qv〉 ≥ 0. If, in addition, v ∈ P (x0, y

∗, z∗),
then either P ∈ p− clAf (x0), Q ∈ p− clAg(x0) and M ∈ p−Bf (x0)∞ exist
such that

〈y∗, Pw〉+ 〈z∗, Qw〉+ 〈y∗,M(v, v)〉 ≥ 0

or, for some M ∈ p−Bf (x0)∞ \ {0},

〈y∗,M(v, v)〉 ≥ 0.

Proof. (a) Fix v ∈ T (G(z∗), x0) and w ∈ T 2(G(z∗), x0, v). There exist tn → 0+, and
wn → w such that, for all n,

xn := x0 + tnv +
1

2
t2nwn ∈ G(z∗).

As for Theorem 4.1, there exists y∗ ∈ B such that, for all n,

L(xn, y
∗, z∗)− L(x0, y

∗, z∗) = 〈y∗, f(xn)− f(x0)〉 ≥ 0.

On the other hand, there are P ′

n ∈ Af (x0) and Q′

n ∈ Ag(x0) such that, for large n

L(xn, y
∗, z∗)− L(x0, y

∗, z∗)

= tn

〈

y∗, P ′

n

(

v +
1

2
tnwn

)〉

+ tn

〈

z∗, Q′

n

(

v +
1

2
tnwn

)〉

+ o(tn).

Hence,
〈

y∗, P ′

n

(

v +
1

2
tnwn

)〉

+

〈

z∗, Q′

n

(

v +
1

2
tnwn

)〉

+
o(tn)

tn
≥ 0.

By the assumed boundedness we can assume the existence of P ′ ∈ p− clAf (x0) and

Q′ ∈ p− clAg(x0) such that P ′

n

p
−→ P ′ and Q′

n

p
−→ Q′ and then passing to limit we

obtain
〈y∗, P ′v〉+ 〈z∗, Q′v〉 ≥ 0.

If v ∈ P (x0, y
∗, z∗), from the definition of the Lagrangian we have Pn ∈ Af (x0),

Qn ∈ Ag(x0), Mn ∈ Bf (x0) and Nn ∈ Bg(x0) such that, for large n,

〈y∗, Pnwn〉+ 〈z∗, Qnwn〉+ 2

〈

y∗,Mn

(

v +
1

2
tnwn, v +

1

2
tnwn

)〉

+ 2

〈

z∗, Nn

(

v +
1

2
tnwn, v +

1

2
tnwn

)〉

+
o(t2n)
1

2
t2n

≥ 0.
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The rest of (a) is unchanged.

(b) For any v ∈ T (G(z∗), x0) and w ∈ T
′′

(G(z∗), x0, v), there are (tn, rn) → (0+, 0+)
and wn → w such that tn

rn
→ 0+ and, for all n,

xn := x0 + tnv +
1

2
tnrnwn ∈ G(z∗).

As in part (a), there is y∗ ∈ B such that, for all n, L(xn, y
∗, z∗) − L(x0, y

∗, z∗) ≥ 0.
Then, there are P ′

n ∈ Af (x0) and Q′

n ∈ Ag(x0) such that, for large n,

〈

y∗, P ′

n

(

v +
1

2
rnwn

)〉

+

〈

z∗, Q′

n

(

v +
1

2
rnwn

)〉

+
o(tn)

tn
≥ 0.

By the assumed boundedness we have P ′

n

p
−→ P ′ ∈ p− clAf (x0) and Q′

n

p
−→ Q′ ∈

p− clAg(x0). Passing the above inequality to limit we obtain

〈y∗, P ′v〉+ 〈z∗, Q′v〉 ≥ 0.

If v ∈ P (x0, y
∗, z∗) there exists Pn ∈ Af (x0), Qn ∈ Ag(x0), Mn ∈ Bf (x0) and

Nn ∈ Bg(x0) such that

(

2

tnrn

)

(L(xn, y
∗, z∗)− L(x0, y

∗, z∗))

= 〈y∗, Pnwn〉+ 〈z∗, Qnwn〉+

〈

y∗,

(

2tn
rn

)

Mn

(

v +
1

2
rnwn, v +

1

2
rnwn

)〉

+

〈

z∗,

(

2tn
rn

)

Nn

(

v +
1

2
rnwn, v +

1

2
rnwn

)〉

+
2o(t2n)

tnrn
≥ 0.

The remaining part is unchanged.

Example 4.8. Let X = Y = R
2, Z = R, C = R

2
+, B = {y∗1 = (1, 0), y∗2 = (0, 1)},

K = {0}, x0 = (0, 0), f(x, y) = (−y,−x+ |y|) and g(x, y) = −x3+ y2. Then we have
the following approximations

Af (x0) =

{(

0 −1
−1 ±1

)}

, Bf (x0) = {0},

Ag(x0) = {0}, Bg(x0) =

{(

0 0
0 1

)}

.

Let z∗ = 0 ∈ K∗. Then

G(z∗) = {(x, y) ∈ R
2 | −x3 + y2 = 0},

T (G(z∗), x0) = R+ × {0}.

Choosing v = (1, 0) ∈ T (G(z∗), x0), we have

T 2(G(z∗), x0, v) = ∅, T
′′

(G(z∗), x0, v) = R
2.
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Now let w = (0, 1) ∈ T
′′

(G(z∗), x0, v). Then for y∗1 = (1, 0) ∈ B, we have P ∈
clAf (x0) and Q ∈ clAg(x0) such that

〈y∗1, Pv〉+ 〈z∗, Qv〉 ≥ 0

and
v ∈ P (x0, y

∗

1, z
∗) = {(v1, v2) ∈ R

2 | v2 = 0}.

For all P ∈ clAf (x0), all Q ∈ clAg(x0) and all M ∈ Bf (x0)∞, one has

〈y∗1, Pw〉+ 〈z∗, Qw〉+ 〈y∗1,M(v, v)〉 = −1 < 0.

For y∗2 = (0, 1) ∈ B, we have v 6∈ P (x0, y
∗

2, z
∗).

Taking into account Theorem 4.7 one sees that x0 6∈ LWE(f, g).


