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We characterize functions defined on times scales by the contingent epiderivative. Relations between
delta and nabla derivatives and the contingent epiderivative of functions defined on time scales are
investigated. We formulate two notions that are exploited in optimal control theory, namely the
Fermat Rule and pseudo-convexity. Appropriate illustrative examples are presented.

1. Introduction

The time scales calculus was introduced by Bernd Aulbach and Stefan Hilger in 1988
[7]. The calculus unifies two areas of the classical analysis: discrete and continu-
ous. It is known that applications of the calculus on time scales can be found in
economics, engineering, biology, finance and physics [1, 4, 15]. In general, the dif-
ferentiation tools that are usually used for functions defined on time scales are delta
and nabla derivatives. On the other hand, the contingent epiderivative that was
introduced in [6] is widely used in optimal control theory. The contingent epideriva-
tive is a derivative that involves a notion of set-valued maps (maps that have sets
as their values). Namely, we associate with a function f the set-valued map F↑ de-
fined by F↑(x) := [f(x), +∞), whose graph is the epigraph of f . The graphs of the
derivatives of such set-valued maps F↑ are the epigraphs of functions which are called
epiderivatives. There are tools of nonsmooth analysis that allow to differentiate maps
(single-valued) that are not differentiable in the classical sense.
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The present work is dedicated to the study of relations between nabla, delta deriva-
tives and the contingent epiderivative. We apply the results to the Fermat Rule and
pseudo-convexity. Results in this paper are motivated by the following ([2, 3, 5, 6, 7,
8, 13, 14, 16]). We use the contingent epiderivative in order to characterize functions
defined on time scales and it seems to be very fresh and new approach. It turns out
that in some cases, as it is shown in Example 5.8, the contingent epiderivative is a
better tool than ∆ and ∇ derivatives: it is possible to compute the epiderivative at
a right and left dense point, while nabla or delta derivatives do not exist at such a
point. Moreover, applying the contingent epiderivative to functions defined on time
scales we get that the Fermat Rule can be extended to any function defined on any
time scale.

The paper is organized as follows. In Section 2 we overview basic facts about time
scales and give some preliminary information. In Section 3 some ideas of epigraphs
and convexity for functions defined on time scales are presented. In Section 4 we
characterize the relations between the contingent epiderivative and delta and nabla
derivatives while in Section 5 the Fermat Rule and a converse of the Fermat Rule
for pseudo-convex functions are formulated. We finish the paper with some exam-
ples illustrating the relations between the contingent epiderivative and nabla, delta
derivatives.

2. Preliminaries

An introduction to time scales can be found in [9, 10, 11]. Here we recall only some
basic facts. By a time scale, denoted here by T, we mean a nonempty closed subset
of R. Throughout the text we assume T to be a time scale with at least two points
and I to be an arbitrary interval of R. As the theory of time scales gives the way
to unify continuous and discrete analysis, the standard cases of time scales are the
following: T = R, T = Z, T = cZ, c > 0 or T = qZ := {qk | k ∈ Z ∧ q > 1} ∪ {0}.

For t ∈ T we define the forward jump operator σ : T → T and the forward graininess
function µ : T → [0, +∞) by

(i) σ(t) = inf{s ∈ T : s > t} and σ(sup T) = sup T if sup T < +∞;

(ii) µ(t) = σ(t) − t.

One can also define the backward jump operator ρ : T → T and the backward graini-
ness function ν : T → [0, +∞) by

(i) ρ(t) = sup{s ∈ T : s < t} and ρ(inf T) = inf T if inf T > −∞;

(ii) ν(t) = t − ρ(t).

A point t is called left-scattered (right-scattered, respectively) if ρ(t) < t, (σ(t) > t,
respectively). A point t is called left-dense (right-dense, respectively) if ρ(t) = t,
(σ(t) = t, respectively). In the continuous-time case, when T = R, we have that
for all t ∈ R : σ(t) = ρ(t) = t and µ(t) = ν(t) = 0. In the discrete-time case, for
each t ∈ T = cZ : σ(t) = t + c, ρ(t) = t − c, µ(t) = ν(t) = c. For the composition
between a function f : T → R with functions σ : T → T and ρ : T → T we use the
following abbreviations: fσ(t) = f(σ(t)) and f ρ(t) = f(ρ(t)). Additionally we define
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the following sets:

T
κ :=

{

T\(ρ(sup T), sup T] if sup T < ∞

T
κ = T if sup T = ∞;

Tκ :=

{

T\[inf T, σ(inf T)) if | inf T| < ∞

Tκ = T if inf T = −∞;

T
κ
κ := T

κ ∩ Tκ.

Definition 2.1. For a function f : T → R we define the delta derivative of f at
t ∈ T

κ, denoted by f∆(t), to be the number, if it exists, with the property that for all
ε > 0 there is a neighborhood U ⊂ T of t ∈ T

κ such that for all s ∈ U the following
holds

|f(σ(t)) − f(s) − f∆(t)(σ(t) − s)| ≤ ε|σ(t) − s|.

Moreover, we say that a function f is ∆ – differentiable on T
κ provided f∆(t) exists

for all t ∈ T
κ.

Definition 2.2. For a function f : T → R we define the nabla derivative of f at
t ∈ Tκ, denoted by f∇(t). It is the number, if it exists, such that for all ε > 0 there
is a neighborhood U ⊂ T of t ∈ Tκ such that for all s ∈ U holds

|f(ρ(t)) − f(s) − f∇(t)(ρ(t) − s)| ≤ ε|ρ(t) − s|.

Moreover, we say that a function f is ∇ – differentiable on Tκ provided f∇(t) exists
for all t ∈ Tκ.

Example 2.3. (a) Let T = R, then f∆(t) = f∇(t) = f ′(t) and f is ∆ and ∇ –
differentiable iff it is differentiable in the ordinary sense.

(b) Let T = cZ, c > 0 then f∆(t) = f(t+c)−f(t)
c

and f∇(t) = f(t)−f(t−c)
c

and they
always exist.

(c) Let T = qZ, q > 1 then f∆(t) = f(qt)−f(t)
(q−1)t

and f∇(t) = q ·
f(t)−f( t

q
)

(q−1)t
for t 6= 0, while

for t = 0 we get f∆(0) = f∇(0) = lims→0
f(s)−f(0)

s
.

3. Epigraphs and convexity

Although such property like convexity is defined for functions on real intervals, the
following definition of convexity was proposed in [16]. Here we state the definition of
a convex function defined on any subset X ⊂ T such that X consists of at least two
different points. Moreover, we do not demand here f to be continuous on X.

Definition 3.1. Let X ⊂ T and X consists of at least two points. A function f
defined on X is called convex on X if for any t1, t2, t ∈ X such that t1 < t2 and
t1 ≤ t ≤ t2 holds

(t2 − t)f(t1) + (t1 − t2)f(t) + (t − t1)f(t2) ≥ 0. (1)

Similarly, f is said to be concave on X if we substitute inequality ”≥” by ”≤” in (1).
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Remark 3.2. (a) Note that X ⊂ T may be closed or open, finite or infinite.

(b) For T = R, Definition 3.1 agrees with the standard definition of convexity and
concavity of a function. Indeed, let t1, t2 ∈ X and t1 < t2. If t ∈ X and t1 ≤ t ≤ t2,
then t = αt1 + (1 − α)t2 with α = t2−t

t2−t1
, 1 − α = t−t1

t2−t1
. Thus, we define convexity

using convex combinations of points from X. Then condition (1) can be rewritten as

f(t) = f(αt1 + (1 − α)t2) ≤ αf(t1) + (1 − α)f(t2).

(c) Let I be any interval of R. Then if f : I → R is convex/concave on I (in
usual sense for a function on real interval) then also the function f |T : X → R is
convex/concave on X = I ∩ T.

We can also make another interpretation of convexity of a function defined on a time
scale. We need the following general definition.

Definition 3.3. Let X be any nonempty subset of R. By the epigraph of f : X → R,
denoted by Epi(f), we mean the following set:

Epi(f) := {(t, λ) ∈ X × R : f(t) ≤ λ}. (2)

The hypograph of g : X → R is defined in the symmetric way:

Hyp(g) := {(t, λ) ∈ X × R : g(t) ≥ λ}. (3)

Note that Epi(f) ∩ Hyp(f) = Graph(f).

If X = T is a time scale then we can rewrite the same definition of epigraph and
introduce the following extension of the epigraph of a function f : T → R. By G(f)
we denote the following set:

G(f) =
⋃

t∈T

{α(t, y) + β(σ(t), z) : y ≥ f(t), z ≥ fσ(t), α + β = 1, α, β ≥ 0} . (4)

Remark 3.4. It is easy to see that G(f) ⊂ conv Epi(f), where conv Epi(f) is the
closure of the convex hull of Epi(f).

Let X = I ∩ T 6= ∅, where I is an arbitrary interval of R. Using the formulation of
G(f) we can assign to any f : X → R the function f : I → R defined by the formula

Epi(f) = G(f). (5)

Let us notice that for f, g : X → R and a, b ∈ R holds: af + bg = af + bg.

Proposition 3.5. Let f : X → R, where X = I ∩ T and I be an arbitrary interval
of R. Then the following statements are equivalent.

a) The set G(f) is convex.

b) f is convex on I.

c) f is convex on X.
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Proof. Directly from the definition of f , items a) and b) are equivalent. And it is
easy to see that b) implies c). So we only need to prove that c) implies a). Let
us assume, on the contrary, that G(f) is not convex. Then there are two points
p = (t1, y1), q = (t2, y2) ∈ G(f) such that t1, t2 ∈ X and w = αp + βq 6∈ G(f) for
some α, β ≥ 0 and α + β = 1. Moreover, there exists t ∈ X such that t = αt1 + βt2
and f(t) > αy1 + βy2 ≥ αf(t1) + βf(t2) what is in contradiction with the convexity
of f .

Remark 3.6. Note that function f defined by formula (5) can be presented in the
following way (see e.g. [12])

f(t) =

{

f(t), if t ∈ T

f(s) + f(σ(s))−f(s)
µ(s)

(t − s), if t ∈ (s, σ(s)), s ∈ T, s is right-scattered.

Moreover, if we set σ(s) = s1 and s = ρ(s1) then for t ∈ (ρ(s1), s1), s1 ∈ T, s1 being

left-scattered one can write f(t) = f(s1) + f(s1)−f(ρ(s1))
ν(s1)

(t − s1).

4. Contingent epiderivatives

In this section we introduce the notion of the contingent epiderivative using the idea
of a set-valued map (or a multifunction) from R to R. The general definition, for a
multifunction between metric spaces, one can find in [5, 6].

Definition 4.1. A set-valued map (multifunction) F : R → 2R is a map that has
sets as its values and we denote it simply by

F : R ։ R.

Every set-valued map is characterized by its graph, Graph(F ), as the subset of R
2

defined by

Graph(F ) := {(x, y) ∈ R
2 : y ∈ F (x)}. (6)

We shall say that F (x) is the image or the value of F at x. A set-valued map is said
to be nontrivial if its graph is not empty, i.e. if there exists an element x ∈ R such
that F (x) is not empty. The domain of F is the set of elements x ∈ R such that
F (x) is not empty: Dom(F ) = {x ∈ R : F (x) 6= ∅}. The image of F is the union of
the images (or values) F (x), when x ranges over R: Im(F ) =

⋃

x∈R
F (x).

Definition 4.2 ([6]). We say that a set-valued map F : R ։ R is Lipschitz around
x ∈ R if there exists a positive constant l and a neighborhood U ⊂ Dom(F ) of x such
that

∀ x1, x2 ∈ U, F (x1) ⊂ F (x2) + |x1 − x2|[−l, l]. (7)

In this case F is also called Lipschitz (or l-Lipschitz on U).

We recall a general definition of contingent cones to a subset of R
2. This theory is

presented for a subset of any normed space X in [6].
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Definition 4.3 ([6]). Let K ⊂ R
2 and a point p ∈ K belong to the closure of K.

The contingent cone TK(p) is defined by

TK(p) :=
{

v : lim inf
h→0+

d(p + hv, K)/h = 0
}

, (8)

where d(q, K) = infk∈K d(q, k) is the distance between point q = p+hv and the set K.

Remark 4.4 ([6]). TK(p) is a closed set.

It is very convenient to have the following characterization of the contingent cone in
terms of sequences:

v ∈ TK(p) ⇐⇒ ∃hn → 0+ and ∃ vn → v such that ∀n, p + hnvn ∈ K. (9)

Remark 4.5 ([6]). If p ∈ Int(K), then TK(p) = R
2.

Definition 4.6 ([6]). Let F : R ։ R be a set-valued map. The contingent derivative
of F at p ∈ Graph(F ), denoted by DF (p), is the set-valued map from R to R defined
by:

Graph (DF (p)) := TGraph(F )(p).

For F := f a single-valued function, we set Df(x) := Df(x, f(x)).

Let us point out that

Graph (DF (p)) = {u = (u1, u2) : u2 ∈ DF (p)(u1)} and u ∈ TGraph(F )(p). (10)

In [6] one can find the following characterization of the contingent derivative (based
on [6, Proposition 5.1.4, p. 186]):

Proposition 4.7 ([6]). Let F : R ։ R be a set-valued map and let p = (x, y) ∈
Graph(F ). Then

v ∈ DF (p)(u) ⇐⇒ lim inf
h→0+,u′→u

d

(

v,
F (x + hu′) − y

h

)

= 0.

If x ∈ Int (Dom(F )) and F is Lipschitz around x, then

v ∈ DF (p)(u) ⇐⇒ lim inf
h→0+

d

(

v,
F (x + hu) − y

h

)

= 0.

Let X ⊂ R, possibly a time scale, and let us consider an extended function f : X →
R ∪ {±∞} whose domain is Dom(f) = {t ∈ X : f(t) 6= ±∞}. We call an extended
function nontrivial if Dom(f) 6= ∅. To introduce elements of the theory of contingent
epiderivatives for functions on time scales we define two set-valued maps F↑ : X ։ R

and F↓ : X ։ R, both corresponding to f : X → R, in the following way (see [6]):

Definition 4.8. Let X ⊂ R and f : X → R ∪ {±∞} be an extended function with
nonempty domain Dom(f) 6= ∅. Then
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a) F↑(t) =











f(t) + R+ if t ∈ Dom(f)

∅ if f(t) = +∞

R if f(t) = −∞,

b) F↓(t) =











f(t) − R+ if t ∈ Dom(f)

∅ if f(t) = −∞

R if f(t) = +∞,

where f(t) + R+ = {λ : f(t) ≤ λ} and f(t) − R+ = {λ : f(t) ≥ λ}.

Remark 4.9. It is easy to notice that Graph(F↑) = Epi(f) =
⋃

t{(t, y) : y ∈ F↑(t)}
and Graph(F↓) = Hyp(f).

With set-valued functions F↑ and F↓ one can associate their contingent derivatives.
We naturally have that values of the contingent derivative of F↑ : R ։ R are half
lines in the sense that: ∀λ ≥ f(t), ∀u ∈ Dom(DF↑(t, λ)), holds:

DF↑(t, λ)(u) = DF↑(t, λ)(u) + R+.

Definition 4.10 ([6]). Let f : X → R∪{±∞} be a function with nonempty domain
and let t ∈ Dom(f). We say that the extended function D↑f(t) : R → R ∪ {±∞}
defined by

D↑f(t)(u) := inf{v : v ∈ DF↑(t, f(t))(u)}

where F↑ is from Definition 4.8 and u ∈ R, is the contingent epiderivative of f at t
in the direction u. The function f is said to be contingently epidifferentiable at t if
its contingent epiderivative never takes the value −∞. If DF↑(t, f(t))(u) = ∅ then
we set D↑f(t)(u) = +∞.

Remark 4.11 ([6]). Notice that for a function f : X → R ∪ {±∞} with nonempty
domain the following conditions are equivalent:

(i) f is contingently epidifferentiable at t ∈ Dom(f);

(ii) D↑f(t)(0) = 0.

In [5] one can find the following characterization of the contingent epiderivative for
some particular situations:

a) DF↑(t, f(t))(u) = R iff D↑f(t)(u) = −∞;

b) DF↑(t, f(t))(u) = [v0, +∞) iff D↑f(t)(u) = v0.

Now let us consider I ⊂ R, X = I∩T. Then with f : X → R∪{±∞} we associate the
function f : I → R∪{±∞} defined by formula (5). Let F ↑ denote the corresponding
multifunction for f according to Definition 4.8.

Proposition 4.12. For all p ∈ Graph (F↑) and for each u ∈ R holds

DF↑(p)(u) ⊂ DF ↑(p)(u). (11)

Proof. Since Graph(F↑) ⊂ Graph(F ↑) and Graph (DF↑(p)) = TGraph(F↑)(p), it fol-

lows that Graph(DF↑(p)) ⊂ Graph(DF ↑(p)). Let v ∈ DF↑(p)(u). Then (u, v) ∈
Graph (DF↑(p)) ⊂ Graph

(

DF ↑(p)
)

and we get that v ∈ DF ↑(p)(u).
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Remark 4.13. Inclusion (11) is also satisfied when both sets are empty. It means
then that the contingent epiderivative D↑f(t)(u) = +∞.

Remark 4.14. Directly from definitions of F ↑ and its contingent derivative we have
the following:

1. for t ∈ T being right-dense and u ≥ 0: DF↑(t, f(t))(u) = DF ↑(t, f(t))(u);

2. for t ∈ T being left-dense and u ≤ 0: DF↑(t, f(t))(u) = DF ↑(t, f(t))(u);

3. for t ∈ T being two sided-scattered and u 6= 0: DF↑(t, f(t))(u) = ∅.

We recall the following useful proposition from [6] that shows that the contingent
epiderivative can be characterized as a limit of differential quotients:

Proposition 4.15 ([6]). Let g : I → R ∪ {±∞} be a nontrivial extended function
and t belong to its domain. Then

D↑g(t)(u) = lim inf
h→0+,u′→u

g(t + hu′) − g(t)

h
. (12)

The function g is contingently epidifferentiable at t if and only if D↑g(t)(0) = 0.

Corollary 4.16. Let f : T → R ∪ {±∞} and t ∈ Dom(f). Then for u ∈ R

D↑f(t)(u) ≥ lim inf
h→0+,u′→u

f(t + hu′) − f(t)

h
= D↑f(t)(u). (13)

Proof. From Proposition 4.12 and Definition 4.10 we have that D↑f(t)(u) ≥
D↑f(t)(u). The equality follows from Proposition 4.15.

We can state the following relations between delta and nabla derivatives of f at
point t (if they exist) and the contingent epiderivative of the corresponding function
f defined by formula (5).

Proposition 4.17. Let t ∈ T
κ
κ and f : X → R ∪ {±∞}, where I ⊂ R, X = I ∩ T.

a) If f∆(t) exists then for u ≥ 0:

D↑f(t)(u) = uf∆(t). (14)

b) If f∇(t) exists then for u ≤ 0:

D↑f(t)(u) = uf∇(t). (15)

Proof. We give the proof for the part a) while the part b) one can prove analogously.
First let us observe that if f is delta-differentiable at t and f is contingently epidif-
ferentiable then for u = 0 we have true formula (14). Thus let us consider u > 0 and
let t be right-scattered. Then for all s ∈ [t, σ(t)] (by Theorem 1.16 from [10]) we have
that f(s) = f∆(t)(s − t) + f(t), while for t ∈ T we have that f(t) = f(t). Moreover,

D↑f(t)(u) = lim inf
h→0+,u′→u

f∆(t)(t + hu′ − t) + f(t) − f(t)

h
= uf∆(t).
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Let t be right-dense. Then for u > 0

uf∆(t) = u lim
tn→t

f(tn) − f(t)

tn − t
.

As t is right-dense there exist sequences (hn) and (un) such that tn = t + hnun and
with n going to infinity we have that hn tends to zero, un tends to u and, consequently,
tn ∈ T tends to t. Hence uf∆(t) = limn→∞

f(t+hnun)−f(t)
hnun

= D↑f(t)(u).
Now we consider u ≤ 0. The case when u = 0 is obvious and formula (15) holds.
Thus let us take u < 0 and let t be left-scattered. Then for all s ∈ [ρ(t), t] we get

f(s) = f∇(t)(s − t) + f(t)

where f(t) = f(t), for t ∈ T. Moreover,

D↑f(t)(u) = lim inf
h→0+,u′→u

f(t) + f∇(t)(t + hu′ − t) − f(t)

h
= uf∇(t).

To finish the proof one has to consider t left-dense but this can be done analogously.

We can characterize values of the contingent epiderivative of f : T → R ∪ {±∞} by
the contingent epiderivative of f . Directly from definitions of f and its contingent
epiderivative we have the following:

Proposition 4.18. Let f : X → R∪{±∞}, f : I → R∪{±∞} for I ⊂ R, X = I∩T

and Epi(f) = G(f). Then

1. f is contingently epidifferentiable iff f is contingently epidifferentiable;

2. for t ∈ T being right–dense and u ≥ 0 : D↑f(t)(u) = D↑f(t)(u);

3. for t ∈ T being left–dense and u ≤ 0 : D↑f(t)(u) = D↑f(t)(u);

4. for t ∈ T being two sided–scattered and u 6= 0 : D↑f(t)(u) = +∞.

5. Properties and examples

In [11] one can find the definition of local right–maximum and local right–minimum of
a function on T. Following this idea we propose definitions of local right–minimizer,
local left–minimizer and local minimizer.

Definition 5.1. We call a point t0 ∈ T
κ a local right–minimizer of a function f :

T → R provided

(i) if t0 is right–scattered, then f(σ(t0)) ≥ f(t0);

(ii) if t0 is right–dense, then there is a neighborhood U of t0 such that f(t) ≥ f(t0)
for all t ∈ U ∩ T with t > t0.

We call a point t0 ∈ Tκ a local left–minimizer of a function f : T → R provided

(i) if t0 is left–scattered, then f(ρ(t0)) ≥ f(t0);

(ii) if t0 is left–dense, then there is a neighborhood U of t0 such that f(t) ≥ f(t0)
for all t ∈ U ∩ T with t < t0.
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We call a point t0 ∈ T
κ
κ a local minimizer of a function f : T → R if it is local

right–minimizer and local left–minimizer of f .

The definition of f for a function f implies the following equivalence.

Proposition 5.2. Let f : X → R, f : I → R, where I ⊂ R, X = I ∩ T and f is
defined by formula (5). Then t0 ∈ T is a local minimizer of f : X → R if and only if
t0 is a local minimizer of corresponding f .

Proof. If we assume that t0 is a local minimizer of f , then by the definition of f ,
it is obvious that t0 is a local minimizer of f . Thus, let us assume that t0 is a local
minimizer of f : X → R. In order to show that t0 is a local minimizer of f : I → R,
where I ⊂ R and X = I ∩ T, we have to prove that t0 is a local right-minimizer and
a local left-minimizer of f . We start with the proof of the statement that t0 is a local
left-minimizer of f .

Firstly, we assume that t0 is left–scattered. It is clear that f(ρ(t0)) ≥ f(t0) since
f(t) = f(t) for t ∈ T. Thus we consider s ∈ (ρ(t0), t0) and then one can write

f(s) = a(s − t0) + f(t0)

where a = f(t0)−f(ρ(t0))
t0−ρ(t0)

. Since t0 > ρ(t0) and, by the assumption of minimality,

f(t0) ≤ f(ρ(t0)) we get a ≤ 0 and a(s − t0) ≥ 0. Therefore,

a(s − t0) + f(t0) ≥ f(t0)

what implies that
f(s) ≥ f(t0)

for s ∈ (ρ(t0), t0).

Nextly we assume that t0 is left-dense. Then there exists U = (t0 − δ, t0], δ > 0 such
that for every t ∈ U ∩ T, f(t) ≥ f(t0) and f is non-increasing on (t0 − δ, t0] ∩ T. As
before, for t ∈ T the proof is obvious, thus we consider s ∈ U \ T. Then there exists
t ∈ U ∩ T such that s ∈ (ρ(t), t) and

f(s) = f(t) +
f(t) − f(ρ(t))

ν(t)
(s − t).

Since for t ∈ T, f(t) = f(t), s < t and (by monotonicity) f(ρ(t)) ≥ f(t), we get

f(s) = f(t) +
f(t) − f(ρ(t))

ν(t)
(s − t) ≥ f(t) ≥ f(t0) = f(t0).

Therefore f(s) ≥ f(t0) for s ∈ (t0−σ, t0], what implies that t0 is a local left-minimizer
of f .

Now we prove that t0 is a local right-minimizer of f . Firstly we assume t0 to be
right-scattered. Since f(τ) = f(τ) for τ ∈ T, f(σ(t0)) ≥ f(t0). If s ∈ (t0, σ(t0)), then

f(s) = f(t0) +
f(σ(t0)) − f(t0)

µ(t0)
(s − t0).
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By the assumption we get f(t0) ≤ f(σ(t0)), so f(σ(t0))−f(t0)
µ(t0)

≥ 0 and f(σ(t0))−f(t0)
µ(t0)

(s −

t0) ≥ 0. Therefore,

f(s) = f(t0) +
f(σ(t0)) − f(t0)

µ(t0)
(s − t0) ≥ f(t0) = f(t0).

Thus f(s) ≥ f(t0) for s ∈ [t0, σ(t0)).

Assume now that t0 is right-dense. Then there exists a neighborhood U = [t0, t0 + δ),
δ > 0 of t0 such that f(t) ≥ f(t0) for all t ∈ U∩T and f is non-decreasing on U∩T. As
before, f(t) = f(t) ≥ f(t0) = f(t0) for all t ∈ T. Thus we consider s ∈ [t0, t0 + δ) \T.
Then there exists t ∈ U ∩ T such that s ∈ (t, σ(t)). By Remark 3.6, we can write

f(s) = f(t) +
f(σ(t)) − f(t)

µ(t)
(s − t).

Since for t ∈ T, f(t) = f(t), s > t and (by monotonicity) f(σ(t)) ≥ f(t), we get
f(s) ≥ f(t) ≥ f(t0) for s ∈ [t0, t0 + δ). Therefore t0 is a local right-minimizer of f
and the proof is complete.

Theorem 5.3 (Fermat Rule). Let f : T → R ∪ {+∞} be a nontrivial (Dom(f) 6=
∅) extended function and t ∈ Dom(f) be a local minimizer of f . Then t is a solution
to the variational inequalities:

∀u ∈ R, D↑f(t)(u) ≥ 0. (16)

Proof. By Proposition 5.2, if t is a local minimizer of f then it is also a local
minimizer of f . Hence the Fermat Rule is also true for f . Based on [6] we can write

that for all u′ ∈ R and all h > 0, f(t+hu′)−f(t)
h

≥ 0. Next taking the lim inf when h

tends to 0 and u′ tends to u we get inequality (16) true for f and all u ∈ R. By (13)
we have that D↑f(t)(u) ≥ D↑f(t)(u) for all u, so the thesis is true for f .

In the sequel we need the following.

Definition 5.4. Let f : T → R ∪ {±∞}. We say that f is pseudo-convex at t0 ∈
Dom(f) if

∀t ∈ T, D↑f(t0)(t − t0) ≤ f(t) − f(t0).

Definition 5.4 gives similar characterization like one can find for global minimum in
[11].

Proposition 5.5. Let f : X → R ∪ {±∞}, where I ⊂ R, X = I ∩ T, t0 ∈ Dom(f)
and for all u ∈ R the corresponding function f satisfy D↑f(t0)(u) ≥ 0. If f is
pseudo-convex at t0 then f achieves its global minimum at t0.

Proof. Let u = t − t0. Then

0 ≤ D↑f(t0)(u) ≤ D↑f(t0)(u) ≤ f(t) − f(t0).

Hence f(t)−f(t0) ≥ 0. So f(t) ≥ f(t0) and function f achieves global minimum at t0.
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Remark 5.6. Let f : X → R ∪ {±∞}, where I ⊂ R, X = I ∩ T, be a convex
function. For such a function Proposition 5.5 is still valid.

Example 5.7. Let T = {qZ}∪Z, q > 1. Then t0 = 0 ∈ T. Let us consider f(t) = t2

for t ≥ 0 and f(t) = −t for t < 0. Then

f∆(t) =

{

t + σ(t), if t ≥ 0

−1, if t < 0
and f∇(t) =

{

t + ρ(t), if t ≥ 0

−1, if t < 0.

Therefore f∆(0) = 0 and f∇(0) = −1. The graphs of the function f : T → R and its
corresponding function f : R → R are given by Figures 5.1(a), 5.1(b).

t

b

b

b

b b b
b

b

b

b

b

(a) the graph of f

t

(b) the graph of f

Figure 5.1: The graphs of the functions f and f

According to Definition 5.3 the multifunctions that correspond to f and f , have the
graphs given by Figures 5.2(a) and 5.2(b).

t

b

b

b

b b b
b

b

b

b

b

(a) the graph of F↑

t

(b) the graph of F ↑

Figure 5.2: Graph(F↑) and Graph(F ↑).

Then the contingent derivative of F ↑ at (0, 0) ∈ Graph(F ↑) is the set-valued map
from R to R with the graph given by Figure 5.3.
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u
-1

1

Figure 5.3: DF ↑(0, 0).

Hence the contingent derivative of F ↑ at (0, 0) in u is given by Figures 5.6(a) and
5.6(b).

u
-1

D↑f(0)(−1)=1

(a) for u = −1

u
1

D↑f(0)(1)=0

(b) for u = 1

Figure 5.4: DF ↑(0, 0)(u).

Then

D↑f(0)(u) =

{

−u, for u < 0

0, for u > 0

and additionally (see Proposition 4.17)

D↑f(0)(u) =

{

u · f∇(0), for u < 0

u · f∆(0), for u > 0.

Example 5.8. Let T = {2Z} ∪
{

−2Z
}

∪ {0} and t0 = 0 ∈ T. The function that is
taken under our consideration is again the same as in Example 5.7, namely f(t) = t2

for t ≥ 0 and f(t) = −t for t < 0. In this case ∆ and ∇ derivatives at t0 = 0 do not
exist. It turns out that the contingent epiderivative of function f exists at t0 = 0.
Indeed, the contingent derivative of F ↑ at (0, 0) ∈ Graph(F ↑) is the set-valued map
from R to R with the graph given by Figure 5.5
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u
-1

1

Figure 5.5: DF ↑(0, 0).

So, again the contingent derivative of F ↑ at (0, 0) in u is given by Figures 5.6(a) and
5.6(b).

u
-1

D↑f(0)(−1)=1

(a) for u = −1

u
1

D↑f(0)(1)=0

(b) for u = 1

Figure 5.6: DF ↑(0, 0)(u).

Now it is easy to see that

D↑f(0)(u) =

{

−u, for u < 0

0, for u > 0.

Example 5.9. Let T = {2Z} ∪
{

−2Z
}

∪ {0} and let us consider f(t) = t2. Then

f∆(t) = t + σ(t) and f∇(t) = t + ρ(t)

Therefore f∆(0) = f∇(0) = 0 and f∆ (1) = 3 and f∇ (1) = 3
2
. The graphs of function

f : T → R and its corresponding function f : R → R are given by Figures 5.7(a) and
5.7(b).
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t

b

b

b

b

b b b b b

b

b

b

b

(a) the graph of f

t

(b) the graph of f

Figure 5.7: The graph of the functions f and f

According to Definition 5.3 the multifunctions that correspond to f and f , have the
graphs given by Figures 5.8(a) and 5.8(b).

t

b

b

b

b
b b b b b

b

b

b

b

(a) the graph of F↑

t

(b) the graph of F ↑

Figure 5.8: Graph(F↑) and Graph(F ↑).

Then the contingent derivative of F ↑ at (0, 0) ∈ Graph(F ↑) is the set-valued map
from R to R with the graph given by Figure 5.9.

u

Figure 5.9: DF ↑(0, 0).

Hence the contingent derivative of F ↑ at (0, 0) in u is given by 5.10(a) and 5.10(b).
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u
-1

D↑f(0)(−1)=0

(a) for u = −1

u
1

D↑f(0)(1)=0

(b) for u = 1

Figure 5.10: DF ↑(0, 0)(u).

Then

D↑f(0)(u) = 0

and additionally (see Proposition 4.17)

D↑f(0)(u) =

{

u · f∇(0), for u < 0

u · f∆(0), for u > 0.

Moreover the contingent derivative of F ↑ at (1, 1) ∈ Graph(F ↑) is the set-valued map
from R to R with the graph given by Figure 5.11

u

1

2

−1

1−1

3

Figure 5.11: DF ↑ (1, 1).

Hence the contingent derivative of F ↑ at (1, 1) in u is given by Figures 5.12(a) and
5.12(b).
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u
-1

D↑f (1) (−1)=−
3

2

(a) for u = −1

u
1

D↑f(1)(1)=3

(b) for u = 1

Figure 5.12: DF ↑(1, 1)(u).

Then

D↑f (1) (u) =

{

3
2
· u, for u < 0

3 · u, for u > 0.

and additionally (see Proposition 4.17)

D↑f (1) (u) =

{

f∇(1) · u, for u < 0

f∆(1) · u, for u > 0.
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