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Universidad de Murcia, 30100 Espinardo (Murcia), Spain
joserr@um.es

Received: April 28, 2010
Revised manuscript received: July 12, 2010

We study the existence of w
∗-scalarly measurable selectors and almost selectors for w

∗-scalarly
measurable multi-functions with values in dual Banach spaces. These selection results are used to
study Gelfand and Dunford integrals for multi-functions: our non separable setting extends previous
studies that have been done for separable Banach spaces. Pettis integral for multi-functions, already
studied by different authors, naturally appears as a particular case of Dunford integral. We also
study when the Gelfand integral of a multi-function is not only w

∗-compact but w-compact.

Keywords: Multi-function, measurable selector, Gelfand integral for multi-functions, Dunford in-
tegral for multi-functions, Pettis integral for multi-functions

2000 Mathematics Subject Classification: 28B05, 28B20, 46G10

1. Introduction

Gelfand integral was first studied by Gelfand in 1936, [15]. Gelfand integral for single
and multi-valued functions has been extensively studied and applied over the years,
see amongst others [2, 16, 17, 18, 19, 22, 24, 25, 26]; a common motivation for some of
these papers comes from game theory and mathematical economy, where the need of
studying infinite dimensional Banach spaces is motivated, for instance, by the need of
dealing with infinite dimensional commodity spaces. Another common thing in the
papers above is that their studies are restricted to duals of separable Banach spaces in
the range. As far as we see it, this limitation has only been made because one has to
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ensure the existence of scalarly measurable selectors for given measurable multi-valued

functions: the (measurable) selection results at hand always relied on arguments that
require separability. In this paper we overcome this technical difficulty and get rid of
the separability hypothesis. To do so we prove a general w∗-almost selection result
and then we study Gelfand integral for multi-valued functions in full generality and
some of its consequences.

Throughout this paper (Ω,Σ, µ) is a complete probability space, X is a Banach space
and X∗ its dual space; the weak (resp. weak∗) topology on X (resp. X∗) is denoted
by w (resp. w∗). By cw∗k(X∗) we denote the family of all non-empty convex w∗-
compact subsets of X∗.

Recall that a function f : Ω → X∗ is said to be w∗-scalarly measurable (resp. Gelfand

integrable) if, for each x ∈ X, the function 〈f, x〉 : Ω → R given by t 7→ 〈f(t), x〉
is measurable (resp. integrable). If f is Gelfand integrable, then for each A ∈ Σ
there exists a vector

∫
A
f dµ ∈ X∗ (called the Gelfand integral of f over A) satisfying

〈
∫
A
f dµ, x〉 =

∫
A
〈f, x〉 dµ for all x ∈ X. For basic information on the Gelfand

integral, see [2, 11.9] and [13, p. 53].

A multi-function from Ω to X is a multi-valued map sending each t ∈ Ω to a subset
F (t) ∈ 2X . Here one should note that in the literature multi-functions are also
referred to as correspondences, set valued functions, set valued maps, and random
sets.

This paper is organized as follows. In Section 2 we study what we call w∗-almost
selector for w∗-scalarly measurable multi-functions F : Ω → 2X

∗

. F is said to be
w∗-scalarly measurable, see Definition 2.1, if for every x ∈ X the function

δ∗(x, F ) : Ω → R ∪ {+∞}, δ∗(x, F )(t) := sup{〈x∗, x〉 : x∗ ∈ F (t)}

is measurable. Our main result in this section, Theorem 2.7, establishes that for
every w∗-scalarly measurable multi-function with bounded values F : Ω → 2X

∗

there
is a w∗-scalarly measurable single-valued function f : Ω → X∗ such that, for each
x ∈ X,

〈f, x〉 ≤ δ∗(x, F ) µ-a.e. (the exceptional µ-null set depending on x).

f is what we called a w∗-scalarly measurable w∗-almost selector.

Section 3 is devoted to study the existence of w∗-scalarly measurable selectors for
certain w∗-scalarly measurable multi-functions. We start by noting that when X is
separable and F (Ω) ⊂ cw∗k(X∗), the w∗-scalarly measurable w∗-almost selector f ,
found above, can be readily modified into a w∗-scalarly measurable selector for F ,
see Corollary 3.1. In Theorem 3.8 we establish that if K is a compact and metrizable
space and G : K → cw∗k(X∗) is a multi-function such that t 7→ δ∗(x,G)(t) is
continuous for all x ∈ X, then G admits a w∗-scalarly measurable selector. In
Theorem 3.10 we prove that if F : Ω → 2X

∗

is a w∗-scalarly measurable multi-function
with w∗-compact values such that cow

∗

(F (t)) has the Radon-Nikodým Property (RNP
for short) for all t ∈ Ω, then F admits a w∗-scalarly measurable selector. In particular
we obtain that if X∗ has the RNP then every w∗-scalarly measurable multi-function
with w∗-compact values has a w∗-scalarly measurable selector, Corollary 3.11.
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In Section 4 we define Gelfand integral for multi-functions F : Ω → cw∗k(X∗) (no
restriction on X). Our approach nicely extends the single-valued case and also the
previously studied multi-valued case when X is separable. Our main result here is
Theorem 4.5 where the Gelfand integral of a multi-function is characterized as the set
of the integrals of its Gelfand integrable w∗-almost selectors. Section 5 contains the
natural definitions and links with Dunford and Pettis integrals for multi-functions;
here one should note that Dunford integral appears as a particular case of Gelfand
integral and that when defining naturally Pettis integral as it is usually done with
single-valued functions, we recover the usual notions studied in [4, 5, 7, 9, 10, 11, 30]
and [31].

Section 6 deals with the following question: given a Gelfand integrable multi-function
F : Ω → cw∗k(X∗) with norm compact values, can we expect the integrals

∫
A
F dµ

to be norm or w-compact? We give examples proving that
∫
A
F dµ need not be norm

compact, Examples 6.1 and 6.2, and we prove that
∫
A
F dµ is always w-compact

whenever F is bounded, see Theorem 6.8.

Some open problems are included in the last Section of the paper.

Terminology

Our unexplained terminology can be found in our standard references for multi-
functions [8, 20], Banach spaces [14] and vector integration [13, 27].

All vector spaces here are assumed to be real. Given a subset S of a vector space,
we write co(S) and span(S) to denote, respectively, the convex and linear hull of S.
By letters X and Y we always denote Banach spaces. BX and SX are the closed unit
ball and the unit sphere of X, respectively. X∗ stands for the topological dual of X.
Given x∗ ∈ X∗ and x ∈ X, we write either 〈x∗, x〉 or x∗(x) to denote the evaluation
of x∗ at x. Given a non-empty set Γ (resp. a compact topological space K), we write
ℓ∞(Γ) (resp. C(K)) to denote the Banach space of all bounded (resp. continuous)
real-valued functions on Γ (resp. K), equipped with the supremum norm. Given a
Banach space X, we denote by 2X the set of all non-empty subsets of X. We will
consider the following families of sets:

• w∗k(X∗) = all w∗-compact non-empty subsets of X∗,

• wk(X) = all w-compact non-empty subsets of X,

• k(X) = all norm compact non-empty subsets of X.

By cw∗k(X∗), cwk(X) and ck(X) we denote, respectively, the subfamilies of w∗k(X∗),
wk(X) and k(X) made up of convex sets. Given a set C ⊂ X and x∗ ∈ X∗, we write

δ∗(x∗, C) := sup{〈x∗, x〉 : x ∈ C} ∈ R ∪ {+∞}.

A multi-function F : Ω → 2X is called bounded if
⋃

t∈Ω F (t) is a bounded subset
of X.

We write Σ+ to denote the subfamily of Σ made up of sets of positive measure.
Given A ∈ Σ, the subfamily of Σ+ made up of subsets of A is denoted by Σ+

A. As
usual, Lp(µ) and Lp(µ) will denote, respectively, the Lebesgue spaces of functions
and equivalence classes of functions. For a function h : Ω → R we denote by h+ the
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function defined by h+(t) := max{h(t), 0} and h− := (−h)+. The symbol 1A stands
for the characteristic function of A.

2. w∗-scalarly measurable multi-functions and w∗-almost selectors

A multi-function F : Ω → cwk(X) is said to be scalarly measurable [8] if the real-
valued map

t 7→ δ∗(x∗, F (t)) := sup{〈x∗, x〉 : x ∈ F (t)}

is measurable for all x∗ ∈ X∗. Hence, the natural definition for w∗-scalarly measurable

multi-function is:

Definition 2.1. A multi-function F : Ω → 2X
∗

is said to be w∗-scalarly measurable
if for every x ∈ X the function

δ∗(x, F ) : Ω → R ∪ {+∞}, δ∗(x, F )(t) := sup{〈x∗, x〉 : x∗ ∈ F (t)}

is measurable.

Note that if F is w∗-scalarly measurable then the function δ∗(x, F ) : Ω → R∪{−∞}
defined by δ∗(x, F )(t) := inf{〈x∗, x〉 : x∗ ∈ F (t)}, t ∈ Ω, is also measurable for every
x ∈ X. The functions δ∗(x, F ) and δ∗(x, F ) are real-valued for any x ∈ X whenever
F : Ω → 2X

∗

takes bounded values.

A multi-function F : Ω → cwk(X) is scalarly measurable if, and only if, F is w∗-
scalarly measurable when naturally considered with values F : Ω → cw∗k(X∗∗).

Definition 2.2. A single valued function f : Ω → X∗ is a w∗-almost selector of a
multi-function F : Ω → 2X

∗

if for every x ∈ X we have 〈f, x〉 ≤ δ∗(x, F ) µ-a.e. (the
exceptional µ-null set depending on x).

If F : Ω → cwk(X) is a multi-function and f : Ω → X is a w∗-almost selector of F
when naturally considered with values F : Ω → cw∗k(X∗∗), we will say that f is a

w-almost selector of F .

Next proposition collects a first nice quality of w∗-almost selectors. In the proof we
use the Mackey topology µ(X∗, X) of the dual pair 〈X∗, X〉, that is, the topology in
X∗ of uniform convergence on absolutely convex weakly compact subsets of X, [21,
§21.4.(1)]. We note that according to [21, §21.4.(2)], µ(X∗, X) is the finest locally
convex topology for which the dual (X∗, µ(X∗, X))′ = X = (X∗, w∗)′.

Proposition 2.3. Suppose X is separable. The following properties hold:

(i) If F : Ω → cw∗k(X∗) is a multi-function and f : Ω → X∗ is a w∗-almost

selector of F , then f(t) ∈ F (t) for µ-a.e. t ∈ Ω.

(ii) If F : Ω → cwk(X) is a multi-function and f : Ω → X is a w-almost selector

of F , then f(t) ∈ F (t) for µ-a.e. t ∈ Ω.

Proof. We prove (i) first. Let (xn) be a dense sequence in X. For each n ∈ N, let
En ∈ Σ with µ(En) = 1 such that 〈f(t), xn〉 ≤ δ∗(xn, F )(t) for every t ∈ En. Then
the set E :=

⋂
n∈N En ∈ Σ satisfies µ(E) = 1 and

〈f(t), xn〉 ≤ δ∗(xn, F )(t) for every t ∈ E and every n ∈ N. (1)
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Since F takes bounded values and (xn) is dense in X, inequality (1) implies that

〈f(t), x〉 ≤ δ∗(x, F )(t) for every t ∈ E and every x ∈ X.

Since F takes convex w∗-compact values, from the separation Hahn-Banach theorem
it follows now that f(t) ∈ F (t) for every t ∈ E and (i) is proved.

To prove (ii) we use ideas similar to those in the proof of (i) but slightly modified.
Since X is separable, (X∗, w∗) is also separable. So we can take D ⊂ X∗ countable
and w∗-dense in X∗. We have

X∗ = D
w∗

= spanR D
w∗ (a)

= spanR D
µ(X∗,X)

= spanQ D
µ(X∗,X)

,

where equality (a) follows from [21, §20.8.(6)]. Let {x∗
n : n ∈ N} be an enumeration

of spanQ D. Then, proceeding as we did in the proof of (i) above, we find a set E ∈ Σ
with µ(E) = 1 such that

〈f(t), x∗

n〉 ≤ δ∗(x∗

n, F )(t) for every t ∈ E and every n ∈ N. (2)

Given t ∈ E and any x∗ ∈ X∗, since F (t) is convex and weakly compact the equality

X∗ = spanQ D
µ(X∗,X)

implies that x∗ can be approximated as much as we want by
some x∗

n uniformly on F (t) ∪ {f(t)}. Therefore, from inequality (2) we deduce that
〈x∗, f(t)〉 ≤ δ∗(x∗, F )(t) for every t ∈ E and every x∗ ∈ X∗. The separation Hahn-
Banach theorem implies that f(t) ∈ F (t) for every t ∈ E and (ii) is proved.

Remark 2.4. The statements in the previous Proposition fail in general for non-
separable spaces. For instance, the function f : [0, 1] → ℓ2([0, 1]) given by f(t) := et
is a w-almost selector of the multi-function F : [0, 1] → 2ℓ

2([0,1]) given by F (t) := {0}.
Here {et}t∈[0,1] denotes the usual orthonormal basis of ℓ2([0, 1]).

Remark 2.5. We also note that the conclusion in statement (ii) in the previous
Proposition does not hold if we only assume that f : Ω → X∗∗ is a w∗-almost selector
when we look at F : Ω → cw∗k(X∗∗). Indeed, consider Ω = [0, 1] with the standard
Lebesgue measure and X = C[0, 1]. Then X∗∗ contains in the natural way the space
of all bounded Borel measurable functions on [0, 1]. Take the trivial multi-function
F : Ω → cwk(X) given by F (t) := {0}, and take as f(t) the characteristic function
of the singleton {t}. Then f : Ω → X∗∗ is a w∗-almost selector of F , but there is no
point in which f(t) ∈ F (t).

Theorem 2.7 below ensures the existence of w∗-scalarly measurable w∗-almost selec-
tors for w∗-scalarly measurable multi-functions. We first need a lemma which will be
used several times throughout the paper.

Lemma 2.6. Let F : Ω → 2X
∗

be a w∗-scalarly measurable multi-function with

bounded values. Then there exist a countable partition (En) of Ω in Σ and a sequence

(Cn) of positive real numbers such that, for each x ∈ X and each n ∈ N, we have

|δ∗(x, F )| ≤ Cn‖x‖ µ-a.e. on En.
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Proof. Observe that {δ∗(x, F ) : x ∈ BX} ⊂ R
Ω is a pointwise bounded family of

measurable functions. Then there exists a measurable function h : Ω → [0,∞) such
that, for each x ∈ BX , one has |δ∗(x, F )| ≤ h µ-a.e. (see e.g. [23, Proposition 3.1]).
Now it is enough to take Cn := n and En := {t ∈ Ω : n − 1 ≤ h(t) < n} for every
n ∈ N.

Theorem 2.7. Every w∗-scalarly measurable multi-function F : Ω → 2X
∗

with

bounded values admits a w∗-scalarly measurable w∗-almost selector.

Proof. In view of Lemma 2.6, without loss of generality we may assume that there
is C > 0 such that for every x ∈ X we have |δ∗(x, F )| ≤ C‖x‖ µ-a.e.

Fix an arbitrary selector g : Ω → X∗ of F . Denote by E the quotient Banach space of
ℓ∞(Ω) over the closed subspace of all bounded functions vanishing µ-a.e. We consider
the operator (i.e. linear continuous mapping) T : X → E that satisfies T (x) = 〈g, x〉
µ-a.e. for every x ∈ X. Clearly, for every x ∈ X we have

T (x) ≤ δ∗(x, F ) µ-a.e. (3)

Since L∞(µ) is isometrically isomorphic to a subspace of E, we can find a norm-one
projection P : E → L∞(µ) (see e.g. [1, Proposition 4.3.8]). We claim that P preserves
inequalities. For if u ∈ E and u ≥ 0, then

∥∥∥∥u−
‖u‖E
2

1Ω

∥∥∥∥
E

≤
‖u‖E
2

.

Since P is a norm-one projection, we have

∥∥∥∥P (u)−
‖u‖E
2

1Ω

∥∥∥∥
L∞(µ)

≤
‖u‖E
2

and consequently P (u) ≥ 0, as claimed.

From inequality (3) it follows that for any x ∈ X we have (P ◦T )(x) ≤ δ∗(x, F ) µ-a.e.
Let ρ : L∞(µ) → L∞(Ω) be a lifting (see e.g. [29, Theorem G.1]); in particular, ρ is
linear with norm-one and preserves inequalities. Then for every x ∈ X we have

(ρ ◦ P ◦ T )(x) ≤ δ∗(x, F ) µ-a.e. (4)

For each t ∈ Ω, denote by δt ∈ ℓ∞(Ω)∗ the evaluation functional at t. Define f : Ω →
X∗ as

f(t) := δt ◦ ρ ◦ P ◦ T.

Clearly, 〈f, x〉 = (ρ ◦ P ◦ T )(x) is measurable for every x ∈ X and inequality (4)
ensures that f is a w∗-almost selector of F . The proof is finished.

Remark 2.8. In the previous proof, for each x ∈ BX one has |(P ◦ T )(x)| ≤ C
µ-a.e., so the equality ρ(1Ω) = 1Ω yields |〈f(t), x〉| ≤ C for every t ∈ Ω. Therefore,
‖f(t)‖ ≤ C for every t ∈ Ω. In particular, this argument shows that every bounded

w∗-scalarly measurable multi-function F : Ω → 2X
∗

admits a bounded w∗-scalarly

measurable w∗-almost selector.
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3. Existence of w∗-scalarly measurable selectors

This section is devoted to prove the existence, in some cases, ofw∗-scalarly measurable
selectors for w∗-scalarly measurable multi-functions. The first positive result that we
can prove appears as the natural outcome of our work in the previous section. Note
that this result is known, see [28, Proposition 7], and ultimately is based on the
Kuratowski and Ryll-Nardzewski selection theorem, cf. [2, Theorem 18.33].

Corollary 3.1. Suppose X is separable. Every w∗-scalarly measurable multi-function

F : Ω → cw∗k(X∗) admits a w∗-scalarly measurable selector.

Proof. Combining Theorem 2.7 and (i) in Proposition 2.3 we obtain a w∗-scalarly
measurable function f : Ω → X∗ such that f(t) ∈ F (t) for µ-a.e. t ∈ Ω. Modifying
f in a set of µ-measure zero if needed we will end up with the stated w∗-scalarly
measurable selector for F .

Throughout this section K is a compact Hausdorff topological space, µ is a Radon
probability on K, Σ is the σ-algebra on K of all µ-measurable sets and X := ℓ∞(K).
For each t ∈ K we write δt to denote the functional on C(K) given by δt(h) = h(t)
and we denote by Et the family of all open neighborhoods of t. We study now the
existence of w∗-scalarly measurable selectors for the multi-function F : K → 2X

∗

given by
F (t) := {x∗ ∈ BX∗ : x∗|C(K) = δt}, t ∈ K. (5)

The lemmata that follow provide us with the technicalities needed to prove the w∗-
scalar measurability of F , the existence of w∗-scalarly measurable selectors and their
consequences.

Lemma 3.2. Let Γ be a set. If ϕ ∈ Bℓ∞(Γ)∗ satisfies ϕ(1Γ) = 1, then ϕ is positive.

Proof. Take x ∈ ℓ∞(Γ) with x ≥ 0 and set a := ‖x‖∞. Then ‖x− a
2
1Γ‖∞ ≤ a/2. So

|ϕ(x)− a/2| = |ϕ(x− a
2
1Γ)| ≤ ‖x− a

2
1Γ‖∞ ≤ a/2, hence ϕ(x) ≥ 0.

Lemma 3.3. Let t ∈ K and x ∈ X. Then

inf
U∈Et

sup
τ∈U

x(τ) = inf
g∈C(K)

(‖x+ g‖∞ − g(t)) . (6)

Proof. Let α be the left hand side of (6) and β the right hand side. We prove first
that α ≤ β. Take g ∈ C(K) and fix ε > 0. There is U ∈ Et such that |g(t)−g(τ)| ≤ ε
for all τ ∈ U , hence for each τ ∈ U we have

x(τ) ≤
(
x(τ) + g(τ)

)
− g(τ) ≤ ‖x+ g‖∞ − g(τ) ≤ ‖x+ g‖∞ − g(t) + ε.

It follows that α ≤ supτ∈U x(τ) ≤ ‖x + g‖∞ − g(t) + ε. Since ε > 0 is arbitrary, we
obtain α ≤ ‖x+ g‖∞ − g(t). Being g ∈ C(K) arbitrary we obtain α ≤ β.

The inequality α ≥ β is proved as follows. Fix ε > 0. There is a neighborhood
U ∈ Et such that supτ∈U x(τ) ≤ α + ε. Let V ∈ Et such that V ⊂ U . By Urysohn’s
lemma, there is g ∈ C(K) with 0 ≤ g ≤ 2‖x‖∞ such that g vanishes on K \ U and
g(τ) = 2‖x‖∞ for all τ ∈ V . If τ ′ ∈ U , then:
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(i) g(τ ′) ≤ 2‖x‖∞ = g(t) and so x(τ ′) + g(τ ′) ≤ supτ∈U x(τ) + g(t);

(ii) −(x(τ ′) + supτ∈U x(τ)) ≤ 2‖x‖∞ ≤ g(τ ′) + g(t), hence

−(x(τ ′) + g(τ ′)) ≤ sup
τ∈U

x(τ) + g(t).

It follows that |x(τ ′) + g(τ ′)| ≤ supτ∈U x(τ) + g(t) ≤ α + ε+ g(t) for all τ ′ ∈ U . On
the other hand, for each τ ∈ K \ U we have

|x(τ) + g(τ)| = |x(τ)| ≤ −‖x‖∞ + g(t) ≤ x(t) + g(t) ≤ α+ ε+ g(t).

We conclude that ‖x+ g‖∞ ≤ α+ ε+ g(t). This shows that

α+ ε ≥ ‖x+ g‖∞ − g(t) ≥ β.

Since ε > 0 is arbitrary, we get the desired inequality and the proof is over.

Lemma 3.4. If F : K → 2X
∗

is the multi-function defined by (5), then:

(i) F (t) ∈ cw∗k(X∗) for every t ∈ K;

(ii) F (t) is made up of positive functionals for every t ∈ K;

(iii) for each x ∈ X we have δ∗(x, F (t)) = infU∈Et supτ∈U x(τ) for every t ∈ K.

Proof. (i) F (t) is non-empty by the Hahn-Banach theorem. Clearly, F (t) is convex.
Moreover, F (t) is w∗-closed in BX∗ and so it is w∗-compact.

(ii) This follows from Lemma 3.2.

(iii) Fix x ∈ X and t ∈ K and set α := infU∈Et supτ∈U x(τ). To prove (iii) we
distinguish two cases:

Case 1. x ∈ C(K). We clearly have α = x(t) and x∗(x) = x(t) for all x∗ ∈ F (t),
hence δ∗(x, F (t)) = α.

Case 2. x ∈ X \ C(K). Observe first that

‖x+ g‖∞ ≥ x∗(x+ g) = x∗(x) + g(t) whenever x∗ ∈ F (t) and g ∈ C(K),

which together with Lemma 3.3 yields α ≥ δ∗(x, F (t)). We prove now the other
inequality.

Define S := span(C(K) ∪ {x}) and define a linear mapping φ : S → R by declaring
φ|C(K) = δt and φ(x) = α. We claim that |φ(y)| ≤ ‖y‖∞ for all y ∈ S. Indeed, let
y ∈ S and write y = λx + h, where h ∈ C(K) and λ ∈ R. Assume that λ > 0. Set
g := h/λ ∈ C(K). By Lemma 3.3 we have that α ≤ ‖x + g‖∞ − g(t), and therefore
λ(α + g(t)) ≤ ‖λ(x + g)‖∞ = ‖y‖∞. But φ(y) = λα + h(t) = λ(α + g(t)), hence
φ(y) ≤ ‖y‖∞. On the other hand, since α ≥ x(t), we also have

‖y‖∞ ≥ −(λx(t) + h(t)) ≥ −(λα+ h(t)) = −φ(y).

Therefore |φ(y)| ≤ ‖y‖∞, in the case λ > 0. If λ < 0, the previous argument applied
to −y = −λx− h ∈ S yields |φ(y)| = |φ(−y)| ≤ ‖ − y‖∞ = ‖y‖∞.

Hence, |φ(y)| ≤ ‖y‖∞ for every y ∈ S and the Hahn-Banach theorem implies that
there is x∗ ∈ BX∗ such that x∗|S = φ. In other words x∗ ∈ F (t) and x∗(x) = α.
Hence α ≤ δ∗(x, F (t)) and the proof is finished.
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Corollary 3.5. The multi-function F : K → cw∗k(X∗) defined by (5) is w∗-scalarly

measurable.

Proof. Fix x ∈ X. Given any a ∈ R, by Lemma 3.4(iii) we can write

{t ∈ K : δ∗(x, F (t)) < a} =

{
t ∈ K : there is U ∈ Et such that sup

τ∈U

x(τ) < a

}
,

which is open. So the function δ∗(x, F ) is Borel(K)-measurable.

Proposition 3.6. If K is metrizable, then the multi-function F : K → cw∗k(X∗)
defined by (5) admits a w∗-scalarly measurable selector.

Proof. Let J : C(K) → L∞(µ) be the canonical operator (that sends each function
to its equivalence class). J can be extended to a norm-one operator W : X → L∞(µ)
because L∞(µ) is isometrically injective (cf. [1, Proposition 4.3.8]).

Since K is a compact metric space, we can find a sequence (Πn) of partitions of K
into finitely many Borel sets such that each Πn+1 is finer than Πn and

lim
n→∞

max
A∈Πn

diam(A) = 0. (7)

For each n ∈ N, define the operator En : L∞(µ) → X by

En(h) :=
∑

A∈Πn

(
1

µ(A)

∫

A

h dµ

)1A

(with the convention 0/0 = 0); that is, En(h) is just the conditional expectation of h
with respect to the sub-σ-algebra Σn generated by Πn.

Claim. For each h ∈ C(K) and each t ∈ K we have limn→∞En(J(h))(t) = h(t).
Indeed, for each n ∈ N there is An ∈ Πn such that t ∈ An. Fix ε > 0. By the
continuity of h at t and (7), there is nε ∈ N such that |h(τ) − h(t)| ≤ ε whenever
τ ∈ An and n ≥ nε. Therefore

|En(J(h))(t)− h(t)| =

∣∣∣∣
1

µ(An)

∫

An

h dµ− h(t)

∣∣∣∣ =
∣∣∣∣

1

µ(An)

∫

An

(h− h(t)) dµ

∣∣∣∣ ≤ ε

for all n ≥ nε. This proves the claim.

Fix a free ultrafilter U on N. Given x ∈ X and t ∈ K, we have

|En(W (x))(t)| ≤ ‖W (x)‖L∞(µ) ≤ ‖x‖∞ for all n ∈ N

and so we can define a function f : K → BX∗ by the formula

〈f(t), x〉 := lim
U

En(W (x))(t).

The previous Claim ensures that, for each t ∈ K and h ∈ C(K), we have

〈f(t), h〉 = lim
U

En(W (h))(t) = lim
U

En(J(h))(t) = h(t).
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Hence f is a selector of F . In order to prove that f is w∗-scalarly measurable, fix
x ∈ X. Clearly (En(W (x)),Σn) is a martingale in L1(µ) and we can conclude that

lim
n→∞

En(W (x)) = W (x) µ-a.e.,

see [13, V.2, Corollary 2 and Theorem 8]. It follows that 〈f, x〉 = W (x) µ-a.e. and so
〈f, x〉 is measurable.

Next lemma shows that the existence of w∗-scalarly measurable selectors for the
multi-function F defined by (5) would ensure that certain multi-functions G : K →
cw∗k(Y ∗) also have such selectors.

Lemma 3.7. Let Y be a Banach space and G : K → cw∗k(Y ∗) a bounded multi-

function such that δ∗(y,G) is continuous for all y ∈ Y . If the multi-function F :
K → cw∗k(X∗) defined by (5) admits a w∗-scalarly measurable selector, then G
admits a w∗-scalarly measurable selector.

Proof. Since G is bounded, we can choose C > 0 such that δ∗(y,G(t)) ≤ C for all
y ∈ BY and t ∈ K. Let h : K → Y ∗ be an arbitrary selector of G and let f : K → X∗

be a w∗-scalarly measurable selector of F . For every t ∈ K and every y ∈ Y we have

|〈h(t), y〉| ≤ max{δ∗(y,G(t)), δ∗(−y,G(t))} ≤ C‖y‖.

Therefore we can define an operator T : Y → X by the formula

T (y)(t) := 〈h(t), y〉, y ∈ Y, t ∈ K.

Let U : X → X be the operator defined by

U(x)(t) := 〈f(t), x〉, x ∈ X, t ∈ K.

Clearly, U(x) = x whenever x ∈ C(K). Since T (y) ≤ δ∗(y,G) pointwise for all y ∈ Y
and U is positive (by Lemma 3.4(ii)), we infer that

U(T (y))(t) ≤ δ∗(y,G(t)) for all y ∈ Y and t ∈ K. (8)

Define g : K → Y ∗ by g(t) := ηt ◦ U ◦ T , where ηt ∈ X∗ is given by ηt(x) = x(t). For
each y ∈ Y we have

〈g(t), y〉 = U(T (y))(t) = 〈f(t), T (y)〉 for all t ∈ K

and so the function 〈g, y〉 is measurable (because f is w∗-scalarly measurable). There-
fore g is w∗-scalarly measurable. Moreover, g is a selector of G. Indeed, fix t ∈ K and
observe that inequality (8) says that 〈g(t), y〉 ≤ δ∗(y,G(t)) for all y ∈ Y . The sepa-
ration Hahn-Banach theorem and the fact that G(t) is convex and w∗-closed in Y ∗

ensure that g(t) ∈ G(t).

Theorem 3.8. If K is metrizable, Y is a Banach space and G : K → cw∗k(Y ∗)
is a multi-function such that δ∗(y,G) is continuous for all y ∈ Y , then G admits a

w∗-scalarly measurable selector.
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Proof. By a standard exhaustion argument, it suffices to prove that for each A ∈
Σ+ there is B ∈ Σ+

A such that the restriction G|B admits a w∗-scalarly measurable
selector.

By Lemma 2.6 there exist B ∈ Σ+
A and C > 0 such that, for each y ∈ BY , we have

|δ∗(y,G)| ≤ C µ-a.e. on B. Since µ is a Radon measure, we can assume further
that B is closed and that µ(O ∩ B) > 0 whenever O ⊂ K is an open set such that
O ∩B 6= ∅.

Take any y ∈ BY and consider the open set Oy := {t ∈ K : |δ∗(y,G(t))| > C}. Then
µ(Oy ∩ B) = 0 and so Oy ∩ B = ∅. Since y ∈ BY is arbitrary, G|B is bounded.
Lemma 3.7 and Proposition 3.6 applied to the compact metric space B ensure that
G|B admits a w∗-scalarly measurable selector. The proof is over.

Remark 3.9. A similar argument allows us to obtain the following result: Let K1 be

a compact Hausdorff topological space equipped with a Radon probability. Suppose that

for each closed set K ⊂ K1 the multi-function defined by (5) admits a w∗-scalarly

measurable selector. Let Y be a Banach space and G : K1 → cw∗k(Y ∗) a multi-

function such that δ∗(y,G) is continuous for all y ∈ Y . Then G admits a w∗-scalarly

measurable selector.

In [6, Theorem 3.8] we proved that every wk(X)-valued scalarly measurable multi-
function admits a scalarly measurable selector. Our proof relied strongly on the
Radon-Nikodm property (RNP for short) of weakly compact convex sets in Banach
spaces. The arguments used there can be straightforwardly adapted to obtain the
following result. For complete information on sets with the RNP, we refer the reader
to [3].

Theorem 3.10. Let F : Ω → w∗k(X∗) be a w∗-scalarly measurable multi-function

such that cow
∗

(F (t)) has the RNP for all t ∈ Ω. Then F admits a w∗-scalarly

measurable selector.

As immediate consequences we have:

Corollary 3.11. Suppose X∗ has the RNP. Then every w∗-scalarly measurable multi-

function F : Ω → w∗k(X∗) admits a w∗-scalarly measurable selector.

Corollary 3.12. Let F : Ω → wk(X∗) be a w∗-scalary measurable multi-function.

Then F admits a w∗-scalary measurable selector.

We stress that for k(X∗)-valued multi-functions, the assertion of Corollary 3.12 can
be obtained more easily by adapting the proof of [6, Theorem 3.6].

4. The set-valued Gelfand integral

We start this section with the notion of Gelfand integrable multi-function.

Definition 4.1. A multi-function F : Ω → cw∗k(X∗) is said to be Gelfand integrable
if for every x ∈ X the function δ∗(x, F ) is integrable. In this case, the Gelfand integral
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of F over A ∈ Σ is defined as

∫

A

F dµ :=
⋂

x∈X

{
x∗ ∈ X∗ :

∫

A

δ∗(x, F ) dµ ≤ 〈x∗, x〉 ≤

∫

A

δ∗(x, F ) dµ

}
.

For a Gelfand integrable multi-function F the set
∫
A
F dµ is convex and w∗-closed;

moreover, an appeal to the uniform boundedness principle ensures that
∫
A
F dµ is

bounded, hence w∗-compact. It satisfies

δ∗
(
x,

∫

A

F dµ

)
≤

∫

A

δ∗(x, F ) dµ (9)

for every x ∈ X.

Our goal now is to prove that
∫
A
F dµ is not empty and that it behaves nicely,

meaning, it can be described via the Gelfand integral of the w∗-almost selectors of F
and that indeed δ∗(x,

∫
A
F dµ) =

∫
A
δ∗(x, F ) dµ for every x ∈ X.

Lemma 4.2. Let f : Ω → X∗ be a w∗-scalarly measurable w∗-almost selector of a

Gelfand integrable multi-function F : Ω → cw∗k(X∗). Then f is Gelfand integrable

and
∫
A
f dµ ∈

∫
A
F dµ for all A ∈ Σ.

Proof. For each x ∈ X, we have δ∗(x, F ) ≤ 〈f, x〉 ≤ δ∗(x, F ) µ-a.e., hence 〈f, x〉 is
integrable and

∫
A
δ∗(x, F ) dµ ≤

∫
A
〈f, x〉 dµ ≤

∫
A
δ∗(x, F ) dµ for all A ∈ Σ.

We need to quote the following result (particular case of [28, Lemme 3]).

Lemma 4.3 (Valadier). Let F : Ω → cw∗k(X∗) be a w∗-scalarly measurable multi-

function. Then for each x ∈ X the multi-function

F |x : Ω → cw∗k(X∗), F |x(t) := {x∗ ∈ F (t) : 〈x∗, x〉 = δ∗(x, F )(t)}

is w∗-scalarly measurable.

Remark 4.4. The previous result also holds true forw∗k(X∗)-valued multi-functions,
by an argument similar to that of [6, Lemma 3.3] (now dealing with the w∗-topology
in X∗).

Theorem 4.5. Let F : Ω → cw∗k(X∗) be a w∗-scalarly measurable multi-function.

Then F is Gelfand integrable if and only if every w∗-scalarly measurable w∗-almost

selector of F is Gelfand integrable. In this case, for each A ∈ Σ, the set
∫
A
F dµ is

non-empty, convex, w∗-compact and:

(i)
∫
A
F dµ =

{∫
A
f dµ : f is a Gelfand integrable w∗-almost selector of F

}
.

(ii) δ∗(x,
∫
A
F dµ) =

∫
A
δ∗(x, F ) dµ for every x ∈ X.

Proof. The only if part has been proved in Lemma 4.2. In order to prove the if

part, fix x ∈ X. By Lemma 4.3, the multi-function F |x is w∗-scalarly measurable
and so we can apply Theorem 2.7 to find a w∗-scalarly measurable w∗-almost selector
f of F |x. Of course, f is a w∗-almost selector of F and so it is Gelfand integrable. In
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particular, 〈f, x〉 is integrable. Observe that δ∗(x, F |x) = δ∗(x, F |x) = δ∗(x, F ) and
therefore 〈f, x〉 = δ∗(x, F ) µ-a.e. It follows that δ∗(x, F ) is integrable. As x ∈ X is
arbitrary, F is Gelfand integrable.

Now, we prove (i) and (ii). Let us define

S :=

{∫

A

f dµ : f is a Gelfand integrable w∗-almost selector of F

}
.

From Lemma 4.3 it follows that
∫
A
F dµ ⊃ S. It will be clear at the end of the proof

that the converse inclusion
∫
A
F dµ ⊂ S can be established when proving that S is

w∗-compact. Once this is done both the inclusion
∫
A
F dµ ⊂ S and the proof for (ii)

are provided in a single shot below.

From now on we assume without loss of generality thatA = Ω. LetQ be the collection
of all Gelfand integrable w∗-almost selectors of F and consider

Q̃ :=
{
(〈f, x〉)x∈X ∈ L1(µ)X : f ∈ Q

}

equipped with the product topology T induced by the weak topology on L1(µ), where
for notational convenience we denote in the same way the composition 〈f, x〉 and its
equivalence class in L1(µ). Let T : Q̃ → X∗ be the mapping defined by

T
(
(〈f, x〉)x∈X

)
:=

∫

Ω

f dµ.

We claim that:

(α) Q̃ is T-compact;

(β) T is T-to-w∗-continuous;

(γ) T (Q̃) = S, hence S is w∗-compact.

Being (β) and (γ) obvious we simply prove (α). To this end, we will establish first that
Q̃ is T-closed in L1(µ)X . Let {fα} be a net in Q such that (〈fα, x〉)x∈X → (fx)x∈X ∈
L1(µ)X in the topology T, that is, for each x ∈ X the net {〈fα, x〉} converges to fx

in the weak topology of L1(µ). Fix A ∈ Σ. For every x ∈ X the net of integrals
{
∫
A
〈fα, x〉 dµ} is convergent; observe also that

∫
A
〈fα, x〉 dµ = 〈

∫
A
fα dµ, x〉. Since

{
∫
A
fα dµ} is a net contained in the w∗-compact set

∫
A
F dµ ⊂ X∗, it follows at once

that there exists the w∗-limit of {
∫
A
fα dµ} in X∗, say ν(A) ∈

∫
A
F dµ. Clearly, the

set function ν : Σ → X∗ is finitely additive, vanishes on all µ-null sets and satisfies

〈ν(A), x〉 = lim

〈∫

A

fα dµ, x

〉
= lim

∫

A

〈fα, x〉 dµ =

∫

A

fx dµ

for every x ∈ X.

Bearing in mind Lemma 2.6 and the fact that 〈ν(A), x〉 ≤
∫
A
δ∗(x, F ) dµ for every

A ∈ Σ and every x ∈ X, we can find a countable partition (En) of Ω in Σ and
positive constants (Cn) such that, for each n ∈ N, we have ‖ν(A)‖ ≤ Cnµ(A) for all
A ⊂ En, A ∈ Σ. An appeal to [29, Proposition 6.2] ensures the existence of a Gelfand
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integrable function gn : En → X∗ such that ν(A) =
∫
A
gn dµ for all A ⊂ En, A ∈ Σ.

Define g : Ω → X∗ by g(t) := gn(t) if t ∈ En, n ∈ N. Observe that for each x ∈ X
and n ∈ N we have

∫

A

〈g, x〉 dµ = 〈ν(A), x〉 ≤

∫

A

δ∗(x, F ) dµ for all A ⊂ En, A ∈ Σ.

It follows that 〈g, x〉 ≤ δ∗(x, F ) µ-a.e. and so g is a w∗-almost selector of F . Since
F is Gelfand integrable, we infer that g is Gelfand integrable after Lemma 4.2. Take
any x ∈ X. Then for each A ⊂ En, A ∈ Σ, we have

∫

A

〈g, x〉 dµ = 〈ν(A), x〉 = lim

∫

A

〈fα, x〉 dµ =

∫

A

fx dµ,

and therefore 〈g, x〉 = fx in L1(µ). Hence (〈g, x〉)x∈X = (fx)x∈X in L1(µ)X . This
shows that Q̃ is T-closed in L1(µ)X . Moreover, for each x ∈ X the set

Kx := {h ∈ L1(µ) : δ∗(x, F ) ≤ h ≤ δ∗(x, F )}

is weakly compact in L1(µ) because it is bounded, uniformly integrable, convex and
norm closed. Hence

∏
x∈X Kx is compact in (L1(µ)X ,T). Since Q̃ ⊂

∏
x∈X Kx, it

follows that Q̃ is T-compact, as claimed.

We already know that S ⊂
∫
Ω
F dµ. Since both sets are convex and w∗-compact, in

order to finish the proof of (i) we only have to check (by the separation Hahn-Banach
theorem) that for every x ∈ X we have δ∗(x,

∫
Ω
F dµ) ≤ δ∗(x, S). To this end, like

at the beginning of the proof, let f : Ω → X∗ be a w∗-scalarly measurable w∗-almost
selector of F |x, so that f is Gelfand integrable and 〈f, x〉 = δ∗(x, F ) µ-a.e. The vector∫
Ω
f dµ ∈ S ⊂

∫
Ω
F dµ satisfies

δ∗
(
x,

∫

Ω

F dµ

)
≥

〈∫

Ω

f dµ, x

〉
=

∫

Ω

〈f, x〉 dµ =

∫

Ω

δ∗(x, F ) dµ
(9)

≥ δ∗
(
x,

∫

Ω

F dµ

)
.

This completes the proof of (i) and (ii).

For separable spaces, the previous Theorem allows us to deduce (via Proposition 2.3(i))
the following result which improves [2, Corollary 18.37].

Corollary 4.6. Suppose X is separable. Let F : Ω → cw∗k(X∗) be a w∗-scalarly

measurable multi-function. Then F is Gelfand integrable if and only if every w∗-

scalarly measurable selector of F is Gelfand integrable. In this case, for each A ∈ Σ,
we have

∫

A

F dµ =

{∫

A

f dµ : f is a Gelfand integrable selector of F

}
.

5. The set-valued Dunford and Pettis integrals

Next definition extends the notion of Dunford integrable vector-valued function to
the case of multi-functions.
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Definition 5.1. A multi-function F : Ω → cwk(X) is said to be Dunford integrable
if δ∗(x∗, F ) is integrable for every x ∈ X.

We note that the multi-function F : Ω → cwk(X) is Dunford integrable if, and only
if, it is Gelfand integrable when naturally considered with values F : Ω → cw∗k(X∗∗).
Therefore, for each A ∈ Σ there is a set

∫
A
F dµ ∈ cw∗k(X∗∗) (called the Dunford

integral of F over A) such that

δ∗
(
x∗,

∫

A

F dµ

)
=

∫

A

δ∗(x∗, F ) dµ

for every x∗ ∈ X∗.

Proceeding with multi-functions as it is usually done when defining Pettis integrabil-
ity via Dunford integrability for vector-valued functions, we arrive at the following
definition.

Definition 5.2. A multi-function F : Ω → cwk(X) is said to be Pettis integrable if
it is Dunford integrable and

∫
A
F dµ ⊂ X for all A ∈ Σ.

Corollary 5.3. If the multi-function F : Ω → cwk(X) is Pettis integrable, then∫
A
F dµ is weakly compact in X for all A ∈ Σ.

Proof. When we look at F as a Gelfand integrable multi-function F : Ω → cw∗k(X∗∗)
the integral

∫
A
F dµ ⊂ X∗∗ is w∗-compact. If we require now F to be Pettis integrable

we have
∫
A
F dµ ⊂ X, and therefore

∫
A
F dµ is weakly compact in X.

As a consequence of the above we conclude that the notion of Pettis integrability
introduced here does coincide with the notion of Pettis integrability introduced in
the monograph by Castaing and Valadier [8] and that has been studied more recently
by different authors, see for instance [4, 5, 7, 9, 10, 11, 30] and [31].

Proposition 5.4. Let F : Ω → cwk(X) be a scalarly measurable multi-function.

Then F is Dunford integrable if and only if every scalarly measurable selector of F is

Dunford integrable. In this case, for each A ∈ Σ, we have

∫

A

F dµ =

{∫

A

f dµ : f is a Dunford integrable selector of F

}w∗

. (10)

Proof. We proceed as we did in the proof of Theorem 4.5 but bearing in mind that
every cwk(X)-valued scalarly measurable multi-function has always scalarly measur-

able selectors, [6, Theorem 3.8]. We note that to prove (10) we can avoid the fuss of
dealing with Q̃ as we have to do in Theorem 4.5. Indeed, if we call

S :=

{∫

A

f dµ : f is a Dunford integrable selector of F

}w∗

,
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we easily obtain the inclusion S ⊂
∫
A
F dµ. Since S is obviously w∗-compact and

convex the converse inclusion
∫
A
F dµ ⊂ S can be proved by showing

δ∗
(
x∗,

∫

A

F dµ

)
≤ δ∗(x∗, S) for every x∗ ∈ X∗.

This inequality is easily established as we did at the end of Theorem 4.5, bearing in
mind again that every cwk(X)-valued scalarly measurable multi-function has always
scalarly measurable selectors.

Corollary 5.5. A scalarly measurable multi-function F : Ω → cwk(X) is Pettis

integrable if and only if every scalarly measurable selector of F is Pettis integrable.

In this case, for each A ∈ Σ, we have

∫

A

F dµ =

{∫

A

f dµ : f is a Pettis integrable selector of F

}
. (11)

Proof. For the first part, see [5, Theorem 4.2]. The second part is a consequence of
Proposition 5.4; see also [5, Theorem 2.6].

Corollary 5.6. Suppose X is separable and contains no isomorphic copy of c0. Then
every Dunford integrable multi-function F : Ω → cwk(X) is Pettis integrable.

Proof. Every scalarlymeasurable selector of F is Dunford integrable (Proposition 5.4)
and so Pettis integrable by the Dimitrov-Diestel theorem, see e.g. [13, Theorem 7, p.
54].

Replacing selectors by w-almost selectors we can get rid of the closure in equality (11)
above. The proof of the following result imitates that of Theorem 4.5 and so we omit
it.

Proposition 5.7. If X has the weak Radon-Nikodým property and F : Ω → cwk(X)
is a Pettis integrable multi-function, then for each A ∈ Σ we have

∫

A

F dµ =

{∫

A

f dµ : f is a Pettis integrable w-almost selector of F

}
.

6. Compactness of the Gelfand integral

Next example provides a Gelfand integrable multi-function F : Ω → cw∗k(ℓ∞) with
norm compact values whose integral

∫
Ω
F dµ is not weakly compact.

Example 6.1. Let Ω := N, Σ = P(N) and µ the probability measure on (Ω,Σ)
defined by µ(A) :=

∑
n∈A 2−n. Let {en}n∈N denote the canonical basis of c0 and

define

F : Ω → ck(c0), F (n) := co{−2nen, 2
nen}.

Then F is Dunford integrable and
∫
Ω
F dµ = Bℓ∞ .
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Proof. Take x∗ = (an) ∈ c∗0 = ℓ1. Then δ∗(x∗, F )(n) = |〈x∗, 2nen〉| = 2n|an| for all
n ∈ N. So, for any given A ⊂ N we have

∫
A
|δ∗(x∗, F )| dµ =

∑
n∈A |an| < ∞. It

follows that F is Dunford integrable. Observe that

∫

A

F dµ =
⋂

x∗∈ℓ1

{
x∗∗ ∈ ℓ∞ :

∫

A

δ∗(x
∗, F ) dµ ≤ 〈x∗∗, x∗〉 ≤

∫

A

δ∗(x∗, F ) dµ

}

=
⋂

(an)∈ℓ1

{
(bn) ∈ ℓ∞ : −

∑

n∈A

|an| ≤
∑

n∈N

anbn ≤
∑

n∈A

|an|

}

= {(bn) ∈ ℓ∞ : bn = 0 for all n 6∈ A and |bn| ≤ 1 for all n ∈ A} .

Therefore for any infinite A ⊂ N we have: (i) the integral
∫
A
F dµ does not remain

in c0, hence F is not Pettis integrable; (ii)
∫
A
F dµ is not weakly compact in ℓ∞.

The goal of this section is to prove that if F : Ω → cw∗k(X∗) is a bounded Gelfand in-
tegrable multi-function having norm compact values, then

∫
A
F dµ is weakly compact

for all A ∈ Σ, see Theorem 6.8. Our previous Example 6.1 shows that the hypothesis
of boundedness of F is really needed in Theorem 6.8.

We start by proving that even for a bounded F the norm compactness of its values
does not ensure that

∫
Ω
F dµ is norm compact as well.

Example 6.2. Let X := C[0, 1] and let µ be the Lebesgue measure on [0, 1]. The
multi-function F : [0, 1] → cw∗k(X∗) defined by F (t) := {λδt : 0 ≤ λ ≤ 1} satisfies:

(i) F is bounded and takes norm compact values;

(ii) F is Gelfand integrable;

(iii)
∫
A
F dµ is not norm compact for every Borel set A ⊂ [0, 1] with µ(A) > 0.

Proof. (i) is immediate.

(ii) It suffices to check that F is w∗-scalarly measurable. Fix x ∈ X = C[0, 1]. For
each t ∈ [0, 1] we have

δ∗(x, F (t)) = sup{〈λδt, x〉 : 0 ≤ λ ≤ 1} = sup{λx(t) : 0 ≤ λ ≤ 1} = x+(t)

and similarly δ∗(x, F (t)) = −x−(t). Since x is measurable, so is x+ = δ∗(x, F ).

(iii) Fix a Borel set A ⊂ [0, 1]. We shall prove that

∫

A

F dµ =
{
f ∈ L1[0, 1] : 0 ≤ f ≤ 1A

}
, (12)

where L1[0, 1] is identified with the closed subspace of X∗ made up of all Borel
measures which are absolutely µ-continuous.

To prove “⊂� in (12), take any ν ∈
∫
A
F dµ. For each x ∈ X, x ≥ 0, the value

〈ν, x〉 =
∫
[0,1]

x dν lies between:

0 =

∫

A

−x− dµ =

∫

A

δ∗(x, F ) dµ ≤ 〈ν, x〉 ≤

∫

A

δ∗(x, F ) dµ =

∫

A

x+ dµ =

∫

A

x dµ.
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It follows from the above that ν ≥ 0, ν([0, 1] \ A) = 0 and ν(B) ≤ µ(B) for every
Borel set B ⊂ A. Therefore ν is absolutely µ-continuous and its Radon-Nikodým
derivative f = dν

dµ
satisfies 0 ≤ f ≤ 1A.

To prove “⊃� in (12), take any f ∈ L1[0, 1] with 0 ≤ f ≤ 1A and consider the
associated measure ν ∈ X∗ defined by ν(B) :=

∫
B
f dµ for every Borel set B ⊂ [0, 1].

Fix x ∈ X. Since −x−1A ≤ xf ≤ x+1A µ-a.e. and 〈ν, x〉 =
∫
[0,1]

xf dµ, we have

∫

A

δ∗(x, F ) dµ ≤ 〈ν, x〉 ≤

∫

A

δ∗(x, F ) dµ.

As x ∈ X is arbitrary, we get ν ∈
∫
A
F dµ. This finishes the proof of equality (12).

Since {f ∈ L1[0, 1] : 0 ≤ f ≤ 1A} is not norm compact whenever µ(A) > 0, statement
(iii) follows from equality (12).

Next definition and lemmata are intended to split into several parts and simplify the
proof of Theorem 6.8.

Definition 6.3. Let F,G : Ω → 2X
∗

be two multi-functions and ε > 0. We say that
G is an almost ε-net for F if:

(i) G(t) ⊂ F (t) for every t ∈ Ω;

(ii) for each x ∈ SX we have δ∗(x, F ) ≤ δ∗(x,G) + ε µ-a.e.

Lemma 6.4. Let F : Ω → k(X∗) be a w∗-scalarly measurable multi-function and let

ε > 0. Then there exist A ∈ Σ+ and finitely many w∗-scalarly measurable selectors

g1, . . . , gn of F |A such that the multi-function G : A → k(X∗) given by

G(t) := {g1(t), . . . , gn(t)}, t ∈ A,

is an almost ε-net for F |A.

Proof. Our proof is by contradiction. Assume there is ε > 0 such that:

(♥) For every A ∈ Σ+ and every finite collection g1, . . . , gn of w
∗-scalarly measurable

selectors of F |A, the multi-function t 7→ {g1(t), . . . , gn(t)} is not an almost ε-net
for F |A.

Claim. There is a sequence fn : Ω → X∗ of w∗-scalarly measurable selectors of F
such that ‖fi(t)− fj(t)‖ > ε for µ-a.e. t ∈ Ω whenever i 6= j.

To show this we proceed by induction. Assume that f1, . . . , fn have been already
constructed. Define the multi-function Fn : Ω → k(X∗) by Fn(t) := {f1(t), . . . , fn(t)}.
According to condition (♥), for each A ∈ Σ+ there exist x ∈ SX and B ∈ Σ+

A such
that δ∗(x, F (t)) > δ∗(x, Fn(t)) + ε for all t ∈ B. A standard exhaustion argument
ensures the existence of countably many pairwise disjoint measurable sets B1, B2, . . .
with µ(Ω \

⋃
k Bk) = 0 and vectors xk ∈ SX such that

δ∗(xk, F (t)) > δ∗(xk, Fn(t)) + ε for every t ∈ Bk and k ∈ N.
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Define F̃ : Ω → k(X∗) by

F̃ (t) := {x∗ ∈ F (t) : x∗(xk) = δ∗(xk, F (t))} for t ∈ Bk, k ∈ N,

and F̃ (t) := {0} for t ∈ Ω\
⋃

k Bk. Then F̃ is w∗-scalarly measurable (see Remark 4.4).

We use now Corollary 3.12 to find a w∗-scalarly measurable selector fn+1 of F̃ . Fix
t ∈ Bk, k ∈ N. Then, for each i = 1, . . . , n, we have

〈fn+1(t), xk〉 = δ∗(xk, F (t)) > δ∗(xk, Fn(t)) + ε ≥ 〈fi(t), xk〉+ ε,

and so ‖fn+1(t)− fi(t)‖ > ε. The proof of the Claim is over.

Finally, observe that the Claim ensures the existence of B ∈ Σ with µ(Ω\B) = 0 such
that, for each t ∈ B, we have ‖fi(t) − fj(t)‖ > ε whenever i 6= j. This contradicts
the norm compactness of F (t), because fn(t) ∈ F (t) for all n ∈ N.

Lemma 6.5. Let F,G : Ω → cw∗k(X∗) be Gelfand integrable multi-functions. Then

F +G is Gelfand integrable and
∫
A
(F +G) dµ =

∫
A
F dµ+

∫
A
Gdµ for every A ∈ Σ.

Proof. Clearly F +G takes values in cw∗k(X∗) and for each x ∈ X we have

δ∗(x, F +G) = δ∗(x, F ) + δ∗(x,G),

hence δ∗(x, F + G) is integrable. Fix A ∈ Σ. Then the set L :=
∫
A
F dµ +

∫
A
Gdµ

belongs to cw∗k(X∗) and Theorem 4.5(ii) ensures that

∫

A

δ∗(x, F +G) dµ =

∫

A

δ∗(x, F ) dµ+

∫

A

δ∗(x,G) dµ

= δ∗
(
x,

∫

A

F dµ

)
+ δ∗

(
x,

∫

A

Gdµ

)
= δ∗(x, L).

An appeal to the separation Hahn-Banach theorem and again to Theorem 4.5(ii)
allows us to obtain

∫
A
(F +G) dµ = L, as claimed.

Lemma 6.6. Let g1, . . . , gn : Ω → X∗ be bounded Gelfand integrable functions. Then

the multi-function G : Ω → cw∗k(X∗) given by

G(t) := co{g1(t), . . . , gn(t)}, t ∈ Ω

is Gelfand integrable and
∫
A
Gdµ is weakly compact for every A ∈ Σ.

Proof. For each x ∈ X we have δ∗(x,G) = max{〈gi, x〉 : i = 1, . . . , n} pointwise,
and so δ∗(x,G) is integrable. Thus G is Gelfand integrable.

We prove that
∫
A
Gdµ is weakly compact for A = Ω: same ideas work for an arbitrary

A ∈ Σ. Fix i ∈ {1, . . . , n}. Since gi is bounded, its indefinite Gelfand integral given
by C 7→

∫
C
gi dµ is a finitely additive X∗-valued measure satisfying

∥∥∥∥
∫

C

gi dµ

∥∥∥∥ ≤ µ(C) · sup
t∈Ω

‖gi(t)‖ for all C ∈ Σ,



892 B. Cascales, V. Kadets, J. Rodŕıguez / The Gelfand Integral for Multi-Valued ...

hence it is countably additive. Consequently the set Ki := {
∫
C
gi dµ : C ∈ Σ}

is weakly relatively compact in X∗, cf. [13, Corollary 7, p. 14]. The Krein-Smulyan
theorem (cf. [13, Theorem 11, p. 51]) ensures us that co(Ki) is weakly compact in X∗.
The multi-function Hi : Ω → cw∗k(X∗) given by

Hi(t) := {λgi(t) : 0 ≤ λ ≤ 1},

is Gelfand integrable, since δ∗(x,Hi) = 〈gi, x〉
+ for every x ∈ X. Moreover, we have∫

Ω
Hi dµ ⊂ co(Ki). Indeed, to prove this it suffices to apply the separation Hahn-

Banach theorem, taking into account that co(Ki) is convex w∗-closed (it is weakly
compact) and that, for each x ∈ X, we have

δ∗
(
x,

∫

Ω

Hi dµ

)
=

∫

Ω

δ∗(x,Hi) dµ =

〈∫

Ωx

gi dµ, x

〉
≤ δ∗(x, co(Ki)),

where Ωx := {t ∈ Ω : 〈gi(t), x〉 ≥ 0} ∈ Σ.

Let H : Ω → cw∗k(X∗) be the multi-function defined by H(t) :=
∑n

i=1 Hi(t). By
Lemma 6.5, H is Gelfand integrable and

∫

Ω

H dµ =
n∑

i=1

∫

Ω

Hi dµ ⊂
n∑

i=1

co(Ki).

Observe that K :=
∑n

i=1 co(Ki) is weakly compact. Since G(t) ⊂ H(t) for every
t ∈ Ω, it follows that

∫
Ω
Gdµ ⊂

∫
Ω
H dµ ⊂ K and so

∫
Ω
Gdµ is weakly compact.

Lemma 6.7. Let F : Ω → cw∗k(X∗) be a bounded Gelfand integrable multi-function.

Then the set function

νF : Σ → ℓ∞(BX), νF (A)(x) := δ∗
(
x,

∫

A

F dµ

)
,

is a countably additive vector measure.

Proof. We have νF (A)(x) =
∫
A
δ∗(x, F ) dµ for every A ∈ Σ and x ∈ BX by Theo-

rem 4.5(ii), hence νF is finitely additive. Fix C > 0 large enough such that ‖x∗‖ ≤ C
for every x∗ ∈

⋃
t∈Ω F (t). Then |δ∗(x, F )| ≤ C pointwise for every x ∈ BX and so

‖νF (A)‖ℓ∞(BX) ≤ Cµ(A) for every A ∈ Σ. Thus νF is countably additive.

We arrive at the main result of this section:

Theorem 6.8. Let F : Ω → cw∗k(X∗) be a bounded Gelfand integrable multi-

function having norm compact values. Then
∫
C
F dµ is weakly compact for all C ∈ Σ.

Proof. We prove that
∫
C
Gdµ is weakly compact for C = Ω: same ideas work for

an arbitrary C ∈ Σ. Fix ε > 0. By Lemma 6.4 there exist A ∈ Σ+ and finitely
many w∗-scalarly measurable selectors g1, . . . , gn of F |A such that the multi-function
t 7→ {g1(t), . . . , gn(t)} is an almost ε-net for F |A. Clearly, the multi-function

G : A → cw∗k(X∗), G(t) := co{g1(t), . . . , gn(t)},
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is also an almost ε-net for F |A. By Lemma 6.6, G is Gelfand integrable and its
integral

∫
A
Gdµ is weakly compact. Since G is an almost ε-net for F |A, for each

x ∈ SX we have δ∗(x, F ) ≤ δ∗(x,G) + ε µ-a.e. in A and Theorem 4.5(ii) ensures us
that

δ∗
(
x,

∫

A

F dµ

)
=

∫

A

δ∗(x, F ) dµ ≤

∫

A

δ∗(x,G) dµ+ εµ(A)

= δ∗
(
x,

∫

A

Gdµ

)
+ εµ(A) = δ∗

(
x,

∫

A

Gdµ+ εµ(A)BX∗

)
.

It follows that
∫
A
F dµ ⊂

∫
A
Gdµ+ εµ(A)BX∗ .

A standard exhaustion argument guarantees the existence of countably many pairwise
disjoint measurable sets A1, A2, . . . with µ(Ω \

⋃
k Ak) = 0 and countably many

Gelfand integrable multi-functionsGk : Ak → cw∗k(X∗), with
∫
Ak

Gk dµ being weakly
compact, such that

∫

Ak

F dµ ⊂

∫

Ak

Gk dµ+ εµ(Ak)BX∗ for all k ∈ N. (13)

By Lemma 6.7, there is K ∈ N such that ‖νF (
⋃

k>K Ak)‖ℓ∞(BX) ≤ ε, that is,

δ∗

(
x,

∫
⋃

k>K
Ak

F dµ

)
≤ ε for all x ∈ BX .

Bearing in mind Theorem 4.5(ii), it follows that

δ∗
(
x,

∫

Ω

F dµ

)
=

∫

Ω

δ∗(x, F ) dµ =
K∑

k=1

∫

Ak

δ∗(x, F ) dµ+

∫
⋃

k>K
Ak

δ∗(x, F ) dµ

=
K∑

k=1

δ∗
(
x,

∫

Ak

F dµ

)
+ δ∗

(
x,

∫
⋃

k>K
Ak

F dµ

)

= δ∗

(
x,

K∑

k=1

∫

Ak

F dµ

)
+ δ∗

(
x,

∫
⋃

k>K
Ak

F dµ

)

≤ δ∗

(
x,

K∑

k=1

∫

Ak

F dµ

)
+ ε = δ∗

(
x,

K∑

k=1

∫

Ak

F dµ+ εBX∗

)
,

for all x ∈ SX , hence

∫

Ω

F dµ ⊂
K∑

k=1

∫

Ak

F dµ+ εBX∗

(13)
⊂

K∑

k=1

∫

Ak

Gk dµ+ 2εBX∗ ,

and the set
∑K

k=1

∫
Ak

Gk dµ is weakly compact. As ε > 0 is arbitrary, Grothendieck’s

test (cf. [12, Lemma 2, p. 227]) guarantees that
∫
Ω
F dµ is weakly compact.

Remark 6.9. The previous Theorem also works when F is integrably bounded, that
is, there is h ∈ L1(µ) such that sup{‖x∗‖ : x∗ ∈ F (t)} ≤ h(t) for µ-a.e. t ∈ Ω. This
can be deduced easily from the proofs of Lemmas 6.6 and 6.7.
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7. Some open problems

(A) Let F : Ω → w∗k(X∗) be a w∗-scalarly measurable multi-function. Does F admit
a w∗-scalarly measurable selector? What about cw∗k(X∗)-valued F?

(B) Let K be a compact space equipped with a Radon probability and X := ℓ∞(K).
Let F : K → cw∗k(X∗) be the multi-function given by

F (t) := {x∗ ∈ BX∗ : x∗|C(K) = δt}, t ∈ K.

Does F admit a w∗-scalarly measurable selector?

(C) Let F : Ω → cwk(X) be a Dunford (resp. Pettis) integrable multi-function. Does

∫

Ω

F dµ =

{∫

Ω

f dµ : f is a Dunford (resp. Pettis) integrable selector of F

}
?

(D) Let F : Ω → cw∗k(X∗) be a bounded Gelfand integrable multi-function having
weakly compact values. Is

∫
Ω
F dµ weakly compact?
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