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1. Introduction

The target of this paper is the treatment of a single scale homogenization problem,
formulated in terms of an integral energy, occurring in the description of elastic
materials which exhibit an overall behavior depending not only on the strain but also
on the chemical composition.

Homogenization theory deals with composites whose overall behavior is established
taking into account their microstructure. Indeed such materials are characterized
by the fact that they contain two or more several mixed constituents, that in a
first approximation, can be thought to be periodically distributed, but even more
general dependences can be considered. The size of the heterogeneities is very small
compared with the dimension of the composite: the ratio between the microscopic
and the macroscopic dimensions is the ‘so called’ homogenization parameter ε.
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In detail we study the asymptotic behavior, as ε → 0+ of integral functionals of the
form ∫

Ω

fε (x,∇u(x), v(x)) dx (1)

where fε is some oscillating integrand, Ω is an open bounded subset in RN and ∇u
represents the deformation gradient of some field u belonging to some Sobolev space
whose fields are p-th power summable, and v is an Lq-function, (not necessarily scalar
valued in our analysis), taking into account the chemical composition of the material.

This type of integrals find applications not only in the study of coherent thermochem-
ical equilibria for multiphase solids as in [29, 28], but even in the ‘directors’ theory
in Elasticity, (cf. [37] in the framework of thin structures), and, when u is a field of
Bounded Variation, the integrand can be intended as a TV model (total variation
model) for image decomposition (see [40], [43]).

For energies growing linearly without considering the chemical composition of the
material, this kind of homogenization problems has been sucessively studied in [7],
[23] and in [9] with an extra surface energy term.

To understand the asymptotic behavior of the (almost) minimizers of energies in the
form of (1), we perform a Γ− convergence analysis (see [11, 22] for a detailed descrip-
tion of this subject), showing that the Γ-limit still admits an integral representation.
The presence of the two vector fields with different growths lead us to the crucial no-
tion of quasiconvexity-convexity which requires an appropriate Lipschitz continuity
property (see Proposition 2.11).

Similar problems, when the integrands depend just on one field and exhibit a periodic
behavior in the spatial variable, i.e., fε(x, ξ, b) = f

(
x
ε
, ξ
)
or f

(
x
ε
, b
)
have been studied

by many authors with different sets of assumptions and techniques. In the first case
for energies with superlinear growth, i.e., 1

C
|ξ|p − C ≤ f(x, ξ) ≤ C(|ξ|p + 1), p > 1

we refer to pioneering papers [38] and [17] (where in the scalar case f = f (y, ξ)
is assumed to be convex with respect to ξ). The vectorial case is presented in the
independent works of [10] and [41]. A wide literature has been produced since the
present time with different methods, among the others we recall the papers [1] where
the two-scale convergence method (see [42]) has been adopted, in the scalar setting,
[18] with the approach of the unfolding method (see [19, 20]) and recently [30] where
the unfolding method has been used to deal with linear differential constraints. The
case when the function fε is periodic in the first variable and it has just dependence
on b has been treated in [39], adopting the two-scale convergence method.

For what concerns the multiple scale case, for example, fε(x, ξ) = f
(
x, x

ε
, x
ε2
, ξ,
)
we

refer, in particular to [5, 12, 14, 36], (see also [3] in the realm of thin structures). In
details, in [5], with very mild hypotheses a characterization as ε → 0+ of a family

of integral functionals of the type
∫
Ω
f
(
x, x

ε
,∇u(x)

)
dx where u ∈ W 1,p

(
Ω;Rd

)
and

p > 1 is obtained, using Γ−convergence techniques combined with techniques of
two-scale convergence. Moreover, we recall [4, 6] where the approach through Young
measures has been adopted.

Besides we provide an integral representation theorem for the Γ-limit (up to a sub-
sequence) of the functionals in (1) (see Theorem 3.2), generalizing the results of
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[11, 16]. To deal with the presence of the new vector field which is in the Lq space,
we use an approximation argument which allows to work with piecewise constant
functions. We emphasize that we are mainly concerned with a single scale model,
i.e., fε(x, ξ, b) = f

(
x
ε
, ξ, b

)
, leaving to a forthcoming paper the multiple scales case.

The case p = q has already been studied in [13], in the realm of A-quasiconvexity,
even if under the continuity assumption on f on all the variables. In the present
work, we consider any p, q > 1 and we only require f to be a Carathéodory integrand
satisfying

(H1) f(·, ξ, b) is Q−periodic, for all (ξ, b) ∈ Rd×N × Rm, (Q being the unit cube in
RN);

(H2) there exist p, q > 1 and a positive constant C such that

1

C
(|ξ|p + |b|q)− C ≤ f(x, ξ, b) ≤ C(1 + |ξ|p + |b|q),

for a.e. x ∈ Ω and for every (ξ, b) ∈ Rd×N × Rm.

For ε > 0, we define the family of functionals Fε : L
p(Ω;Rd)× Lq(Ω;Rm) → R by

Fε(u, v) :=





∫

Ω

f
(x
ε
,∇u (x) , v (x)

)
dx if (u, v) ∈ W 1,p(Ω;Rd)× Lq(Ω;Rm),

+∞ otherwise.
(2)

We are interested in studying the asymptotic behavior of Fε as ε → 0+, using Γ-
convergence, i.e., we want to show that the following functionals

F−
{ε}(u, v) := inf

{
lim inf
ε→0+

Fε(uε, vε) : uε → u in Lp(Ω;Rd), vε ⇀ v in Lq(Ω;Rm)

}

F+
{ε}(u, v) := inf

{
lim sup
ε→0+

Fε(uε, vε) : uε → u in Lp(Ω;Rd), vε ⇀ v in Lq(Ω;Rm)

}

coincide, denoting the common value by F{ε}, the Γ-limit of {Fε}, we will provide an
integral representation for it. Indeed, cf. Theorem 1.1, we will show that it coincides
with the functional Fhom : Lp(Ω;Rd)× Lq(Ω;Rm) → R, such that

Fhom(u, v) :=





∫

Ω

fhom(∇u (x) , v (x)) dx if u ∈ W 1,p(Ω;Rd)× Lq(Ω;Rm),

+∞ otherwise,

where the energy density fhom is defined as

fhom(ξ, b) := lim
T→∞

inf

{
1

TN

∫

(0,T )N
f(y, ξ +∇ϕ (y) , b+ η (y)) dy : (3)

ϕ ∈ W 1,p
0 ((0, T )N ;Rd), η ∈ Lq((0, T )N ;Rm) :

∫

(0,T )N
η (y) dy = 0

}
.

Using the classical techniques of Γ-convergence (see [22]), integral representation
theorems, together with the local Lipschitz continuity properties of integrands (see
formula (9) below) we prove our main result.
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Theorem 1.1. Let Ω ⊂ RN be a bounded open set and let f : Ω×Rd×N ×Rm → R be
a Carathéodory function. Let {Fε} be the family of functionals defined in (2). Under
the hypotheses (H1) and (H2), the sequence {Fε} Γ-converges to Fhom, as ε → 0+,
i.e.,

F{ε} (u, v) = Fhom (u, v) , ∀ (u, v) ∈ Lp(Ω;Rd)× Lq(Ω;Rm).

The proof is achieved as an application of a compactness result for Γ-limits of gen-
eral families of integral functionals depending on two fields, one in W 1,p through its
gradient, and the other in Lq (cf. Theorem 3.2). Moreover, we call the attention that
the existence of the Γ-limit for the whole family in (2) deeply relies on a fundamental
estimate suited to the present context (see Remark 3.6). Finally we apply an integral
representation result proven in Theorem 3.1.

Moreover, in order to achieve Theorem 1.1 and to characterize the convexity prop-
erties of the limit energy density fhom in (3), namely its quasiconvexity-convexity in
the last two variables (see Definition 2.9) we prove the relaxation result below.

Theorem 1.2. Let 1 < p < ∞ and 1 < q < ∞ and assume that f : Ω×Rd×N×Rm →
R is a Carathéodory function that satisfies

1

C
(|ξ|p + |b|q)− C ≤ f (x, ξ, b) ≤ C (1 + |ξ|p + |b|q)

for a.e. x ∈ Ω, for every (ξ, b) ∈ Rd×N × Rm and for some C > 0.

Then for every u ∈ W 1,p
(
A;Rd

)
, v ∈ Lq (A;Rm) and A ∈ A (Ω) we have

F (u, v;A) =

∫

A

QCf (x,∇u (x) , v (x)) dx,

where F (u, v;A) stands for the sequential lower semicontinuous envelope with respect
to W 1,p

w × Lq
w convergence, namely

F(u, v;A) = inf

{
lim inf
n→+∞

∫

A

f(x,∇un(x), vn(x))dx :

un ⇀ u in W 1,p(A;Rd), vn ⇀ v in Lq(A;Rm)

}
, (4)

and QCf stands for the quasiconvex-convex envelope of f with respect to the last two
variables (cf. (7)).

Remark 1.3. For what concerns the case p = 1, it is not known a priori that the
functional in (4) is sequentially weakly lower semicontinuous with respect to the
W 1,1

w × Lq
w topology. However the identity stated in Theorem 1.2 is also true in

this case. Indeed, the lower bound can be achieved as in the first part of the proof
of Theorem 1.2 and for the upper bound we can argue as in [13, Theorem 1.3 and
Theorem 3.6].

On the other hand, if we introduce the functional G as the sequentially weakly lower
semicontinuous envelope of

(u, v, A) 7→
∫

A

f(x,∇u(x), v(x)) dx
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with respect to the W 1,1
w × Lq

w topology, one can get that F and G coincide. In fact,
the identity

G(u, v, A) =
∫

A

QCf(x,∇u(x), v(x)) dx,

can be achieved as an application of Theorem 3.1 arguing as in the proof of Theorem
4.4.1 and Remark 4.4.5 of [15].

Theorem 1.2 provides also an extension of the relaxation theorem in [29] to the case
where f exhibits also dependence on x, (see also [44] for the homogeneous constrained
case).

The paper is organized as follows. In Section 2 we recall the notion of Γ−convergence
and present standard results on this theory. A local Lipschitz property inherited by
quasiconvex-convex functions which satisfies (H2) is derived. In Section 3 we provide
an integral representation result for functionals depending on the strain and the chem-
ical composition in the spirit of that obtained in the nonlinear elastic setting by But-
tazzo and Dal Maso in [16] to local functionals defined in W 1,p

(
Ω;Rd

)
×Lq (Ω;Rm).

This result is applied to obtain an integral representation for a general family of
functionals (see Theorem 3.2 below). In Section 4, Theorem 1.2 and Theorem 1.1 are
proved as an application of Theorem 3.2.

2. Preliminaries

This section is devoted to recall and prove concepts and results that will be exploited
throughout the paper.

In the following Ω ⊂ RN is an open bounded set and we denote by A (Ω) the family

of all open subsets of Ω. The unit cube in RN ,
(
−1

2
, 1
2

)N
, is denoted by Q and we set

Q (x0, ε) := x0 + εQ for ε > 0. We write Bρ (x) for the open ball in RN centered at
x with radius ρ > 0.

The constant C may vary from line to line.

2.1. Γ-convergence

First we remind De Giorgi’s notion of Γ-convergence and some of its properties (see
De Giorgi and Dal Maso [24] and De Giorgi and Franzoni [25]). For a more extended
treatment of the subject we refer to the books [11] and [22].

Let (X, d) be a metric space.

Definition 2.1 (Γ-convergence for a sequence of functionals). Let {Fn} be a

sequence of functionals defined on X with values in R. The functional F : X → R is
said to be the Γ− lim inf (resp. Γ− lim sup) of {Fn} with respect to the metric d if
for every u ∈ X

F (u) = inf
{
lim inf
n→∞

Fn(un) : un ∈ X, un → u in X
}

(resp. lim sup
n→∞

).

Thus we write

F = Γ− lim inf
n→∞

Fn (resp. F = Γ− lim sup
n→∞

Fn).
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Moreover, the functional F is said to be the Γ−limit of {Fn} if

F = Γ− lim inf
n→∞

Fn = Γ− lim sup
n→∞

Fn,

and we may write
F = Γ− lim

n→∞
Fn.

For every ε > 0, let Fε be a functional over X with values in R, Fε : X → R.

Definition 2.2 (Γ-convergence for a family of functionals). A functional F :

X → R is said to be the Γ-liminf (resp. Γ-limsup or Γ-limit) of {Fε} with respect to
the metric d, as ε → 0+, if for every sequence εn → 0+

F = Γ− lim inf
n→∞

Fεn (resp. F = Γ− lim sup
n→∞

Fεn or F = Γ− lim
n→∞

Fεn),

and we write

F = Γ− lim inf
ε→0+

Fε (resp. F = Γ− lim sup
ε→0+

Fε or F = Γ− lim
ε→0+

Fε).

Next we state the Urysohn property for Γ-convergence in a metric space.

Proposition 2.3. Given F : X → R and εn → 0+, F = Γ− limn→∞ Fεn if and only
if for every subsequence {εnj

} ≡ {εj} there exists a further subsequence {εnjk
} ≡ {εk}

such that {Fεk} Γ−converges to F .

In addition, if the metric space is also separable the following compactness property
holds.

Proposition 2.4. Each sequence εn → 0+ has a subsequence {εnj
} ≡ {εj} such that

Γ− limj→∞ Fεj exists.

Proposition 2.5. If F = Γ− lim infε→0+ Fε (or Γ− lim supε→0+ Fε) then F is lower
semicontinuous (with respect to the metric d). Clearly, if F = Γ− limε→0+ Fε then F
is lower semicontinuous.

Definition 2.6. A family of functionals {Fε} is said to be equi-coercive if for every
real number λ there exists a compact setKλ inX such that for each sequence εn → 0+,

{u ∈ X : Fεn (u) ≤ λ} ⊂ Kλ for every n ∈ N.

The next result states that Γ-convergence is a variational convergence, in fact un-
der suitable compactness conditions, there is convergence of minimizers (or almost
minimizers) of a family of equi-coercive functionals to the minimum of the limiting
functional.

Theorem 2.7 (Fundamental Theorem of Γ−convergence). If {Fε} is a family
of equi-coercive functionals on X and if

F = Γ− lim
ε→0+

Fε,
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then the functional F has a minimum on X and

min
u∈X

F (u) = lim
ε→0+

inf
u∈X

Fε (u) .

Moreover, given εn → 0+ and {un} a converging sequence such that

lim
n→∞

Fεn (un) = lim
n→∞

inf
u∈X

Fεn (u) , (5)

then its limit is a minimum point for F on X.

If (5) holds, then {un} is said to be a sequence of almost-minimizers for F .

Now we recall the notion of Γ−convergence for sequences of functionals on a suitable
rich family of sets. Let A0 (Ω) be the family of all open subsets of Ω compactly
included in Ω and E (Ω) any class of subsets of Ω containing A0 (Ω).

Definition 2.8. We say that {Fn} Γ−converges to F in X if F is the inner regular
envelope of both Γ− lim infn→∞ Fn and Γ− lim supn→∞ Fn, this means

F (u;A) = sup

{
Γ− lim inf

n→∞
Fn (u;B) : B ∈ E (Ω) , B ⊂⊂ A

}

= sup

{
Γ− lim sup

n→∞
Fn (u;B) : B ∈ E (Ω) , B ⊂⊂ A

}

for any A ∈ A (Ω).

2.2. Quasiconvexity-convexity and Lipschitz continuity

Following [29, 37], see also [28] and [27], we recall the definition of quasiconvexity-
convexity.

Definition 2.9. A Borel measurable function h : Rd×N × Rm → R is said to be
quasiconvex-convex if there exists a bounded open set D of RN such that

h(ξ, b) ≤ 1

|D|

∫

D

h(ξ +∇ϕ(x), b+ η(x)) dx, (6)

for every (ξ, b) ∈ Rd×N × Rm, for every η ∈ L∞(D;Rm), with
∫
D
η(x) dx = 0 and for

every ϕ ∈ W 1,∞
0

(
D;Rd

)
.

If h : Rd×N ×Rm → R is any given Borel measurable function bounded from below, it
can be defined the quasiconvex-convex envelope of h, that is the largest quasiconvex-
convex function below h:

QCh(ξ, b) := sup{g(ξ, b) : g ≤ h, g quasiconvex-convex}.
Moreover, by Theorem 4.16 in [37]

QCh(ξ, b) = inf

{
1

|D|

∫

D

h(ξ +∇ϕ(x), b+ η(x)) dx :

ϕ ∈ W 1,∞
0 (D;Rd), η ∈ L∞(D;Rm),

∫

D

η(x)dx = 0

}
. (7)



1100 G. Carita, A. M. Ribeiro, E. Zappale / An Homogenization Result in W
1,p×L

q

Remark 2.10. i) It can be easily proved that, if h is quasiconvex-convex, then, both
condition (6) and (7) hold for any bounded open set D ⊂ RN .

ii) It can be also showed that if h satisfies a growth condition of the type (H2) then

in (6) and (7) the spaces L∞ and W 1,∞
0 can be replaced by Lq and W 1,p

0 , respectively.

iii) In the remainder of the paper when we will say that a function f , possibly defined
in Ω× Rd×N × Rm, is quasiconvex-convex, this property has to be understood with
respect to the last two variables.

iv) Any function quasiconvex-convex is separately convex.

Next we state and prove the local Lipschitz property inherited by a separately convex
function f which satisfies a p − q growth condition. We follow along the lines the
proof of Proposition 2.32 in [21].

Proposition 2.11. Let f : Rd×N × Rm −→ R be a separately convex function veri-
fying the growth condition

|f(ξ, b)| ≤ c(1 + |b|q + |ξ|p), ∀ (ξ, b) ∈ Rd×N × Rm (8)

for some p, q > 1, and c > 0.

Then, denoting by p′ and q′, the conjugate exponent of p and q, respectively, there
exists a constant γ > 0 such that

|f (ξ, b)− f (ξ′, b′)| ≤ γ
(
1 + |b|q/p′ + |ξ|p−1 + |ξ′|p−1

)
|ξ − ξ′|

+ γ
(
1 + |b|q−1 + |b′|q−1

+ |ξ′|p/q
′
)
|b− b′| (9)

for every b, b′ ∈ Rm and for every ξ, ξ′ ∈ Rd×N .

Remark 2.12. By Remark 2.10 iv) this result applies, in particular, to quasiconvex-
convex functions satisfying the growth condition (8).

Proof. For any (ξ, b), (ξ′, b′) ∈ Rd×N × Rm we have

|f(ξ, b)− f(ξ′, b
′
)| ≤ |f(ξ, b)− f(ξ′, b)|+ |f(ξ′, b)− f(ξ′, b

′
)|.

Therefore to achieve the Lipschitz condition stated in (9), it is enough to estimate
each of the two terms appearing in the right-hand side of the previous inequality.

We recall that given any convex function g : R → R, it results for every λ > µ > 0
and for every t ∈ R, that

g(t± µ)− g(t)

µ
≤ g(t± λ)− g(t)

λ
.

We will apply these inequalities to f , for a convenient choice of λ and µ, when all

but one of the components of (ξ, b) are fixed. Let ξ1 := (ξ2, . . . , ξd×N) and define for
every b ∈ Rm and t ∈ R

g(t) := f((t, ξ1), b).
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Choose λ := 1+ |ξ|+ |ξ′|+ |b|q/p (without loss of generality it has been assumed that
ξ′1 > ξ1). In order to evaluate |g(ξ1)− g(ξ′1)| we observe that

g(ξ′1)− g(ξ1) = g(ξ1 + (ξ′1 − ξ1))− g(ξ1) ≤ (ξ′1 − ξ1)
g(ξ1 + λ)− g(ξ1)

λ

≤ |ξ′1 − ξ1|
c(1 + |b|q + |(ξ1 + λ, ξ1)|p) + c(1 + |b|q + |ξ|p)

λ

≤ C(1 + |b|q/p′ + |ξ|p−1+ |ξ′| p−1)|ξ1 − ξ′1|,

where we have used the p− q growth condition (8).

Arguing in the same way, one deduce that

g(ξ1)− g(ξ′1) = g(ξ′1 − (ξ′1 − ξ1))− g(ξ′1) ≤ C(1 + |b|q/p′ + |ξ|p−1+ |ξ′|p−1
)|ξ1 − ξ′1|,

hence
|g(ξ1)− g(ξ′1)| ≤ C(1 + |b|q/p′ + |ξ|p−1+ |ξ′| p−1)|ξ1 − ξ′1|. (10)

Consequently, since

f(ξ, b)− f(ξ′, b) = f((ξ1, ξ1), b)− f((ξ′1,
ξ1), b)

+
d×N−2∑

i=1

[f(ξ′1, . . . , ξ
′
i, ξi+1, ξi+2, . . . , ξd×N , b)

−f(ξ′1, . . . , ξ
′
i, ξ

′
i+1, ξi+2, . . . , ξd×N , b)] (11)

+f(ξ′1, ξ
′
2, . . . , ξ

′
d×N−1, ξd×N , b)− f(ξ′, b).

Applying to each term, in the sum above, the estimate analogous to (10) one obtains

|f(ξ, b)− f (ξ′, b)| ≤ C
(
1 + | b|q/p′ +|ξ|p−1+ |ξ′|p−1

)
|ξ − ξ′|. (12)

Analogously, let b1 := ( b2, . . . , bm) and define the convex function h : R −→ R by

h(t) := f(ξ′, (t, b1)). Clearly, choosing λ := 1 + |b|+ | b′|+ |ξ′|p/q (assuming b′1 > b1)
and arguing as above it results that

|h( b1)− h( b′1)| ≤ C(1 + | b|q−1+ | b′| q−1+ |ξ| p/q′)| b− b′|.

Finally, by splitting the difference f( ξ′, b)− f( ξ′, b′) in m terms as in (11) one gets

|f(ξ, b)− f (ξ′, b)| ≤ C
(
1 + |ξ′| q−1+ | b′| q−1+ |ξ′| p/q′

)
| b− b′|. (13)

Putting together (12) and (13) and choosing suitably the constant γ we conclude the
proof.

3. General results

In this section we provide sufficient conditions for which a functional defined in
W 1,p(Ω;Rd)×Lq(Ω;Rm) admits an integral representation. Next we apply this result
to represent the Γ-limit of certain sequences of functionals.
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3.1. Integral representation theorem

In this subsection we prove an integral representation theorem for local functionals
defined on the product of Sobolev spaces and the space of Lq functions and on open
sets, by following the proof of a classical integral representation result proved by
Buttazzo and Dal Maso (see [16] and the monograph of Buttazzo [15]) dealing with
functionals defined on Sobolev spaces and open sets.

Theorem 3.1. Let p ≥ 1, q > 1 and F : W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm) × A (Ω) → R

satisfying

i) F is local on A (Ω) , i.e.

F (u, v;A) = F (u, v;A)

whenever A ∈ A (Ω), and u = u, v = v a.e. on A;

ii) F (u, v; ·) is the restriction to A (Ω) of a Radon measure;

iii) there exists C > 0 such that

|F (u, v;A)| ≤ C

∫

A

(1 + |∇u (x)|p + |v (x)|q) dx

for any u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω) ;

iv) F is translation invariant in u, i.e., for every A ∈ A (Ω), u ∈ W 1,p
(
Ω;Rd

)
, v ∈

Lq (Ω;Rm) , c ∈ Rd,

F (u+ c, v;A) = F (u, v;A) ;

v) for every A ∈ A (Ω), F (·, ·;A) is sequentially weak lower semicontinuous in

W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm).

Then there exists a Carathéodory function g : Ω× Rd×N × Rm → R such that

a) |g (x, ξ, b)| ≤ C (1 + |ξ|p + |b|q) for a.e. x ∈ Ω, for any (ξ, b) ∈ Rd×N × Rm;

b) for every A ∈ A (Ω) , u ∈ W 1,p
(
Ω;Rd

)
and v ∈ Lq (Ω;Rm) the following

integral representation holds

F (u, v;A) =

∫

A

g (x,∇u (x) , v (x)) dx.

Moreover, if

F (uξ, vb;Bρ (y)) = F (uξ, vb;Bρ (z)) (14)

for every y, z ∈ Ω, for ρ > 0 such that Bρ (y) ∪ Bρ (z) ⊂ Ω, and for every (ξ, b) ∈
Rd×N × Rm where uξ (x) := ξx and vb ≡ b, then g is independent of x and it is
quasiconvex-convex.

Proof. The proof follows the same argument as Theorem 4.3.2 in [15]. We start by

proving the integral representation for piecewise affine functions u in W 1,p
(
Ω;Rd

)

and piecewise constant functions v. Then we will use a density argument to get the
full result.
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For every ξ ∈ Rd×N , and for every b ∈ Rm, we will denote by uξ the affine map
uξ(x) = ξx and by vb the constant map vb ≡ b.

By hypothesis iii), we can assume, without loss of generality, that F ≥ 0. Using
hypothesis ii) and iii), for every (ξ, b) ∈ Rd×N × Rm we have that F (uξ, vb, ·) is
absolutely continuous with respect to the Lebesgue measure.

For every x ∈ Ω, (ξ, b) ∈ Rd×N × Rm set

g (x, ξ, b) := lim sup
ρ→0+

F (uξ, vb;Bρ (x))

|Bρ (x)|
. (15)

By Besicovitch derivation theorem g (·, ξ, b) ∈ L1 (Ω) and

F (uξ, vb;A) =

∫

A

g (x, ξ, b) dx. (16)

Moreover, from hypothesis iii) it follows that g satisfies the growth condition a).

Let u ∈ W 1,p
(
Ω;Rd

)
be a piecewise affine function and v a piecewise constant func-

tion. Precisely, let {Ωi}i∈I be a finite family of open pairwise disjoint subsets of Ω
such that, for some bi ∈ Rm,

u|Ωi
is affine, v = bi on Ωi, for each i ∈ I (17)

and
∣∣Ω\⋃i∈I Ωi

∣∣ = 0.

From (16) and hypotheses i)− iii) it follows that

F (u, v;A) =

∫

A

g (x,∇u (x) , v (x)) dx

for every u and v verifying (17).

We claim that g (x, ·, ·) is separately convex for every x ∈ Ω, i.e.,

ξi 7−→ g (x, ξ1, . . . , ξi−1, ξi, ξi+1, . . . ξd×N , b) (18)

is convex for every i ∈ {1, . . . , d×N} and

b 7−→ g (x, ξ, ·) (19)

is convex.

We leave the proof of the claim to the end and proceed with the rest of the argument.

By Proposition 2.11, g satisfies the Lipschitz condition (9) which ensures g is a
Carathéodory function.

By Lebesgue dominated convergence theorem

(u, v) 7→
∫

A

g (x,∇u (x) , v (x)) dx (20)
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is strongly continuous in W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm).

We will now prove the integral representation for general functions u ∈ W 1,p
(
Ω;Rd

)

and v ∈ Lq (Ω;Rm).

Let u ∈ W 1,p
(
Ω;Rd

)
, A ∈ A (Ω) with A ⊂⊂ Ω and û ∈ W 1,p

(
Ω;Rd

)
be with

compact support in Ω and such that u = û on A. We may find a sequence {un} of

piecewise affine functions converging to û strongly in W 1,p
(
Ω;Rd

)
.

Let v ∈ Lq (Ω;Rm). Using a density argument, we obtain that, for every n ∈ N there
exists v̂n ∈ C∞

c (Ω;Rm) such that ‖v̂n − v‖Lq < 1
n
.

Let
Kn := supp v̂n

which is included in an open subset An of Ω, and let η > 0. For δ > 0 let
{
Qδ

i

}

be a family of pairwise disjoint open cubes with side less than δ and such that

Kn ⊂ ∪Mδ

i=1Q
δ
i ⊂ An and let

mδ,n
i := inf

Qδ
i

v̂n = min
Qδ

i

v̂n, sδn :=

Mδ∑

i=1

mδ,n
i χQδ

i
.

For sufficiently small δ, it is possible to get
∥∥sδn − v̂n

∥∥
L∞

< η. (21)

In fact, since v̂n is uniformly continuous in Ω then

∀ n ∈ N, ∀ η > 0, ∃ δn > 0 : |x− x′| < δn =⇒ |v̂n (x)− v̂n (x
′)| < η.

In particular, in each cube Qδ
i

∥∥sδn − v̂n
∥∥
L∞

=

∥∥∥∥inf
Qδ

i

v̂n − v̂n

∥∥∥∥
L∞

< η.

On the other hand, if x /∈ ∪Mδ

i=1Q
δ
i then x /∈ Kn and thus v̂n = sδn = 0. Hence it

follows (21). Observe that
∥∥v − sδn

∥∥
Lq ≤ ‖v − v̂n‖Lq +

∥∥v̂n − sδn
∥∥
Lq

<
1

n
+

(∫

Ω

∣∣v̂n (x)− sδn (x)
∣∣q dx

) 1

q

<
1

n
+ |Ω|

1

q η.

Choosing η < 1
n
and letting n → ∞ we conclude that sδn → v in Lq (Ω;Rm).

Hence

F (u, v;A) = F (û, v;A) ≤ lim inf
n→∞

F
(
un, s

δ
n;A

)

= lim inf
n→∞

∫

A

g
(
x,∇un (x) , s

δ
n (x)

)
dx

=

∫

A

g (x,∇û (x) , v (x)) dx =

∫

A

g (x,∇u (x) , v (x)) dx
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where we have used the fact that F (·, ·;A) is sequentially weak lower semicontinuous

and the strong continuity of (20) in W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm). Hence

F (u, v;A) ≤
∫

A

g (x,∇u (x) , v (x)) dx

for every u ∈ W 1,p
(
Ω;Rd

)
and v ∈ Lq (Ω;Rm).

To prove the reverse inequality, let us fix u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and denote

by H : W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm)×A(Ω) → R the functional defined by

H (u, v;A) := F (u+ u, v + v;A) , ∀ (u, v) ∈ W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm), A ∈ A(Ω).

Since H satisfies the conditions of the theorem then there exists a Carathéodory
function h satisfying the p− q growth condition a) and such that

H (u, v;A) =

∫

A

h (x,∇u (x) , v (x)) dx

for every u ∈ W 1,p
(
Ω;Rd

)
piecewise affine and v piecewise constant.

Moreover, we have proved that

H (u, v;A) ≤
∫

A

h (x,∇u (x) , v (x)) dx

for u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ⊂⊂ Ω.

Fix A ∈ A (Ω) such that A ⊂⊂ Ω and let, as before, û ∈ W 1,p
(
Ω;Rd

)
be with

compact support in Ω and such that u = û on A, {un} a sequence of piecewise affine

functions converging to û strongly in W 1,p
(
Ω;Rd

)
, and vn ∈ C∞

c (Ω;Rm) converging

strongly to v in Lq (Ω;Rm).

We obtain
∫

A

h (x, 0, 0) dx = H (0, 0;A) = F (u, v;A) ≤
∫

A

g (x,∇u (x) , v (x)) dx

=

∫

A

g (x,∇û (x) , v (x)) dx = lim
n→∞

∫

A

g (x,∇un (x) , vn (x)) dx

= lim
n→∞

F (un, vn;A) = lim
n→∞

H (un − u, vn − v;A)

≤ lim
n→∞

∫

A

h (x,∇un (x)−∇u (x) , vn (x)− v (x)) dx

= lim
n→∞

∫

A

h (x,∇un (x)−∇û (x) , vn (x)− v (x)) dx

=

∫

A

h (x, 0, 0) dx,

where we have used in the last identity the strong continuity of

(u, v) 7→
∫

A

h(x,∇u(x), v(x)) dx
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in W 1,p(Ω;Rd) × Lq(Ω;Rm), which follows from Lebesgue dominated convergence
theorem.

Hence

F (u, v;A) =

∫

A

g (x,∇u (x) , v (x)) dx (22)

for every u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω) with A ⊂⊂ Ω. By

virtue of (22) on open sets A well contained in Ω and by the inner regularity of
the integral and of F (recall that F is a measure as assumed in ii)), the equality
F (u, v;A) =

∫
A
g(x,∇u (x) , v (x))dx holds for every A ∈ A(Ω), u ∈ W 1,p(Ω;Rd) and

v ∈ Lq(Ω;Rm).

To finish the proof it remains to prove that g (x, ·, ·) is separately convex.

The convexity described in (18) follows from Zig-Zag Lemma 4.3.5 in [15] (see also
Lemma 20.2 in [22]). To prove (19), we argue as in [2], Theorem 5.1. Let ξ ∈ RN and
define

vb := tb1 + (1− t) b2

for t ∈ (0, 1) and b1, b2 ∈ Rm. To prove the convexity of g it suffices to prove

F (uξ, vb;Bρ (x)) ≤ tF (uξ, b1;Bρ (x)) + (1− t)F (uξ, b2;Bρ (x))

for every fixed x ∈ Ω and for every ρ > 0.

Let x ∈ Ω, A := Q
(
x, N

√
tρ
)
and define vn(y) := b1χ(ny) + b2(1 − χ(ny)), where χ

denotes the characteristic function of A defined in the cube Q (x, ρ) and extended by
periodicity to RN .

By Riemann-Lebesgue lemma it follows that vn ⇀ tb1+(1−t)b2 in the weak topology
of Lq(Bρ(x);R

m).

Let us consider the open set An := {y ∈ Bρ(x) : χ(ny) = 1}. Since vn are
piecewise constants and F (·, ·;Bρ (x)) is sequentially weak lower semicontinuous in

W 1,p
(
Ω;Rd

)
× Lq (Ω;Rm) we obtain

F (uξ, vb;Bρ (x)) ≤ lim inf
n→∞

F (uξ, vn;Bρ (x))

= lim inf
n→∞

(∫

Bρ(x)∩An

g (y, ξ, b1) dy +

∫

Bρ(x)\An

g (y, ξ, b2) dy

)

= t

∫

Bρ(x)

g (y, ξ, b1) dy + (1− t)

∫

Bρ(x)

g (y, ξ, b2) dy

= t F (uξ, b1;Bρ (x)) + (1− t)F (uξ, b2;Bρ (x)) .

So we conclude that g is separately convex.

By (14) and (15) one has

g (y, ξ, b) = lim sup
ρ→0+

F (uξ, vb;Bρ (y))

ρN
= lim sup

ρ→0+

F (uξ, vb;Bρ (z))

ρN
= g (z, ξ, b) .

Thus given (ξ, b) ∈ Rd×N × Rm we have that g (y, ξ, b) = g (z, ξ, b) for any y, z ∈
Ω. Hence g is independent of x. By Theorem 4.4 in [29] we conclude that g is
quasiconvex-convex.
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3.2. Compactness

This subsection is devoted to prove that general families of integral functionals, essen-
tially under hypotheses (H1) and (H2) (for p, q > 1) admit a subsequence Γ(Lp×Lq

w)-
converging to a functional which is still a measure and that can admit an integral
formulation.

In this subsection p, q > 1.

First we will establish a compactness result for general families of functionals Hε :
Lp(Ω;Rd)× Lq(Ω;Rm)×A(Ω) → [0,∞] of the form

Hε(u, v;A) :=





∫

A

fε(x,∇u (x) , v (x)) dx if (u, v) ∈ W 1,p(A;Rd)× Lq(A;Rd),

+∞ otherwise,

(23)
where fε : Ω × Rd×N × Rm → R is a family of Carathéodory functions satisfying
uniform p− q growth and p− q coercivity conditions as in (H2), namely

1

C
(|ξ|p + |b|q)− C ≤ fε(x, ξ, b) ≤ C(1 + |ξ|p + |b|q) (24)

for some C > 0, for a.e. x ∈ Ω and for every (ξ, b) ∈ Rd×N × Rm.

This compactness result will ensure the existence of Γ−convergent subsequences of
Hε, whose Γ−limit admits an integral representation in W 1,p

(
Ω;Rd

)
× Lq (Ω;Rm).

Let H−
{εj}

and H+
{εj}

be defined in Lp
(
Ω;Rd

)
× Lq (Ω;Rm)×A (Ω) by

H−
{εj}

(u, v;A) := inf

{
lim inf
j→∞

Hεj(uj, vj;A) :

uj → u in Lp(A;Rd), vj ⇀ v in Lq(A;Rm)

}
,

H+
{εj}

(u, v;A) := inf

{
lim sup
j→∞

Hεj(uj, vj;A) :

uj → u in Lp(A;Rd), vj ⇀ v in Lq(A;Rm)

}
.

If H+
{εj}

(u, v;A) = H−
{εj}

(u, v;A) for each A ∈ A (Ω), for every u ∈ W 1,p
(
Ω;Rd

)
and

v ∈ Lq (Ω;Rm) then we denote H{εj} (u, v;A) := Γ− limj→∞Hεj (u, v;A).

Theorem 3.2. Let fε : Ω× Rd×N × Rm → R be a family of Carathéodory functions
satisfying (24). Let Hε be the functional defined in (23). For every sequence {εn}
converging to zero there exists a subsequence

{
εnj

}
≡ {εj} such that H{εj} exists for

all u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and A ∈ A (Ω).

Moreover, there exists a Carathéodory function g{εj} : Ω×Rd×N ×Rm → R such that

H{εj} (u, v;A) =

∫

A

g{εj} (x,∇u (x) , v (x)) dx
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for every u ∈ W 1,p
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) , A ∈ A (Ω) and

∣∣g{εj} (x, ξ, b)
∣∣ ≤ C (1 + |ξ|p + |b|q)

for a.e. x ∈ Ω, and for every (ξ, b) ∈ Rd×N × Rm.

Let C be a countable collection of open subsets of Ω such that for any δ > 0 and any
A ∈ A (Ω) there exists a finite union CA of disjoint elements of C satisfying

{
CA ⊂ A,

LN (A) ≤ LN (CA) + δ.

We may take C as the set of open cubes with faces parallel to the axes, centered at
x ∈ Ω∩QN and with rational edge length. We denote by R the countable collection
of all finite unions of elements of C, i.e.,

R :=

{
k⋃

i=1

Ci : k ∈ N, Ci ∈ C
}
.

We start by proving that the Γ−limit exists for any element C ∈ R.

Lemma 3.3. For every sequence {εn} converging to zero there exists a subsequence{
εnj

}
≡ {εj} (depending on R) such that

H{εj} (u, v;C) (25)

exists for all u ∈ Lp
(
Ω;Rd

)
, v ∈ Lq (Ω;Rm) and C ∈ R∪{Ω}.

Proof. Observing that the dual of Lp(Ω;Rd)×Lq(Ω;Rm) is a separable metric space,
by virtue of Kuratowski’s compactness theorem (see Theorem 8.5 and Corollary 8.12
in [22]) and via a diagonal argument, we may say that there exists a subsequence
{εj}, depending on R such that the Γ-limit of Hεj exists for every C ∈ R∪{Ω}, and
(u, v) ∈ Lp(Ω;Rd) × Lq(Ω;Rm), and, moreover, this Γ-limit is +∞ in (Lp(Ω;Rd) \
W 1,p(Ω;Rd))× Lq(Ω;Rm).

In order to conclude the proof of Theorem 3.2, we prove that the Γ-liminf is the trace
of a Radon measure. To this end we will invoke the following result (see [33]) which
is based on De Giorgi-Letta’s criterion (see [26]).

Lemma 3.4 (Fonseca-Malý). Let X be a locally compact Hausdorff space, let Π :
A (X) → [0,∞] be a set function and µ be a finite Radon measure on X satisfying

i) Π (A) ≤ Π(B) + Π
(
A\C

)
for all A, B, C ∈ A (X) such that C ⊂⊂ B ⊂⊂ A;

ii) given A ∈ A (X), for all ε > 0 there exists Aε ∈ A (X) such that Aε ⊂⊂ A and

Π
(
A\Aε

)
≤ ε;

iii) Π (X) ≥ µ (X) ;

iv) Π (A) ≤ µ
(
A
)
for all A ∈ A (X).

Then, Π = µ⌊A(X).
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We are now in position to prove that the Γ− lim inf is the trace of a Radon measure.

Lemma 3.5. For each u ∈ W 1,p
(
Ω;Rd

)
and v ∈ Lq (Ω;Rm), for every A ∈ A(Ω),

let {εj} be the sequence given by Lemma 3.3. Then there exists a further subsequence

{εjk} ≡ {εk} such that H−
{εk}

(u, v, ·) is the restriction to A (Ω) of a finite Radon
measure.

Proof. The proof develops following by now standard techniques (see for instance
[8]). We will see that we are in conditions to apply Lemma 3.4 with Π (·) :=
H−

{εk}
(u, v, ·) for some sequence {εk} to be chosen.

Let A, B, C ∈ A (X) such that C ⊂⊂ B ⊂⊂ A, fix η > 0 and find {uj} ⊂ Lp(Ω;Rd)

and {vj} ⊂ Lq(Ω;Rm) such that uj → u in Lp(A \ C;Rd), vj ⇀ v in Lq(A \ C;Rm)
and

lim inf
j→∞

∫

A\C

fεj(x,∇uj (x) , vj (x)) dx ≤ H−
{εj}

(u, v;A \ C) + η. (26)

Moreover, up to a subsequence (not relabeled), we may assume that

lim
j→∞

∫

A\C

fεj(x,∇uj (x) , vj (x)) dx = lim inf
j→∞

∫

A\C

fεj(x,∇uj (x) , vj (x)) dx. (27)

Let B0 ∈ R be such that C ⊂⊂ B0 ⊂⊂ B, in particular LN (∂B0) = 0. Then,
by Lemma 3.3, H−

{εj}
(u, v;B0) is a Γ-limit, and thus there exists a sequence {u′

j} ⊂
W 1,p(Ω;Rd) and {v′j} ⊂ Lq(Ω;Rm) such that u′

j → u in Lp(B0,R
d), v′j ⇀ v in

Lq(B0;R
m) and

lim
j→∞

∫

B0

fεj(x,∇u′
j (x) , v

′
j (x)) dx = H−

{εj}
(u, v;B0). (28)

For every u ∈ Lp
(
Ω;Rd

)
and v ∈ Lq (Ω;Rm) consider the functional

G(u, v;A) :=

∫

A

(1 + |∇u (x)|p + |v (x)|q) dx.

By virtue of the coercivity condition (24), up to a subsequence, there exists a non-
negative Radon measure ν such that νjk := G(ujk , vjk ; ·) + G(u′

jk
, v′jk ; ·) restricted to

B0\C converges weakly star in the sense of measures to ν.

We claim that

H−
{εk}

(u, v;A) ≤ H−
{εk}

(u, v;B) +H−
{εk}

(
u, v;A\C

)

for all A,B,C ∈ A (Ω) such that C ⊂⊂ B ⊂⊂ A, for every u ∈ W 1,p(Ω;Rd) and for
every v ∈ Lq(Ω;Rm).

For every t > 0, let Bt := {x ∈ B0 : dist(x, ∂B0) > t}. For 0 < δ < η′ < η such

that ν (∂Bη′) = 0, define Lδ := Bη′−2δ \ Bη+δ and take a smooth cut-off function
ϕδ ∈ C∞

0 (Bη−δ; [0, 1]) such that ϕδ(x) = 1 on Bη. As the thickness of the strip is of

order δ, we have an upper bound of the type ‖∇ϕδ‖L∞(Bη−δ) ≤ C
δ
.
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Define
uk := u′

kϕδ + (1− ϕδ)uk, vk := v′kϕδ + (1− ϕδ)vk.

Clearly {uk} and {vk} converge strongly to u in Lp(A;Rd) and weakly to v in
Lq(A;Rm), respectively.

By (24) it follows that
∫

A

fεk(x,∇uk (x) , vk (x)) dx

≤
∫

Bη

fεk(x,∇u′
k (x) , v

′
k (x)) dx+

∫

A\Bη−δ

fεk(x,∇uk (x) , vk (x)) dx

+ C(G(u′
k, v

′
k;Lδ) +G(uk, vk;Lδ)) +

C

δp

∫

Lδ

|u′
k (x)− uk (x) |pdx

≤
∫

B0

fεk(x,∇u′
k (x) , v

′
k (x)) dx+

∫

A\C

fεk(x,∇uk (x) , vk (x)) dx

+ C(G(u′
k, v

′
k;Lδ) +G(uk, vk;Lδ)) +

C

δp

∫

Lδ

|u′
k (x)− uk (x) |pdx.

Passing to the limit on k and using (26), (27) and (28), we have

H−
{εk}

(u, v;A) ≤ H−
{εk}

(u, v;B0) +H−
{εk}

(u, v;A \ C) + η + Cν(Lδ)

≤ H−
{εk}

(u, v;B) +H−
{εk}

(u, v;A \ C) + η + Cν(Lδ),

where it has been used the fact that the Γ-liminf of a sequence is below the lim inf
on any subsequence. Letting δ → 0+ we obtain

H−
{εk}

(u, v;A) ≤ H−
{εk}

(u, v;B) +H−
{εk}

(u, v;A \ C) + η + ν(Bη′\Bη).

Letting η→ 0+ and since ν(∂Bη′)= 0 we have proven the subadditivity ofH−
{εk}

(u,v;·).

To establish condition ii) in Lemma 3.4 let A ∈ A (Ω) , ε > 0 and consider Aε ∈ A (Ω)

such that Aε ⊂ A and
∫

A\Aε

(1 + |∇u (x)|p + |v (x)|q) dx <
ε

C
, (29)

where C is the constant given by condition (24).

Due to the growth conditions (24) and (29)

H−
{εk}

(
u, v;A\Aε

)
≤ lim inf

k→∞

∫

A\Aε

fεk (x,∇u (x) , v (x)) dx

≤ C

∫

A\Aε

(1 + |∇u (x)|p + |v (x)|q) dx < ε.

Hence condition ii) holds.

Up to a subsequence, there exists {εk} such that uk ⇀ u in W 1,p(Ω;Rd), vk ⇀ v
in Lq(Ω;Rm) and H−

{εk}
(u, v; Ω) = limk→∞

∫
Ω
fεk(x,∇uk (x) , vk (x)) dx. Let µk :=
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fεk(x,∇uk, vk)LN⌊Ω and let µ be defined, up to a subsequence, as the limit of {µk}
in the sense of measures.

By definition, it follows that

H−
{εk}

(u, v;A) ≤ lim inf
k→∞

∫

A

fεk(x,∇uk (x) , vk (x)) dx ≤ µ(A)

and we attained iv).

Finally, to establish iii), take Ω′ ⊂⊂ Ω. Since {µk} converges weakly star in the
sense of measures to µ then

µ (Ω′) ≤ lim
k→∞

∫

Ω

fεk (x,∇uk (x) , vk (x)) dx = H−
{εk}

(u, v; Ω) .

Therefore
µ (Ω′) ≤ H−

{εk}
(u, v; Ω)

for all Ω′ ⊂⊂ Ω. Hence
µ (Ω) ≤ H−

{εk}
(u, v; Ω) .

As a consequence of Lemma 3.4 we conclude that

H−
{εk}

(u, v;A) = µ (A)

for all A ∈ A (Ω).

Remark 3.6. Following the argument of Proposition 12.2 in [12] and assuming (24)
we may conclude that Hε satisfies the L

p ×Lq− fundamental estimate. Precisely, for
every U, U ′, V ∈ A (Ω) with U ′ ⊂⊂ U and σ > 0 there exist Mσ > 0 and εσ > 0 such

that for all u, u ∈ Lp
(
Ω;Rd

)
, v, v ∈ Lq (Ω;Rm) and ε < εσ there exists a cut-off

function ϕ ∈ C∞
0 (U ; [0, 1]) such that ϕ ≡ 1 on U ′ and there exists r > 0 such that

U ′
r := {x ∈ U : dist (x, U ′) < r} and

Hε

(
ϕu+ (1− ϕ)u, χU ′

r
v +

(
1− χU ′

r

)
v;U ′ ∪ V

)

≤ (1 + σ) (Hε (u, v;U) +Hε (u, v;V )) +Mσ

∫

(U∩V )\U ′

|u (x)− u (x)|p dx+ σ

where χU ′

r
stands for the characteristic function of U ′

r. By Proposition 18.3 in [22] we
conclude that for every A,B,C ∈ A(Ω) such that C ⊂⊂ B ⊂⊂ A

H+
{ε}(u, v;A) ≤ H+

{ε}(u, v;B) +H+
{ε}(u, v;A \ C). (30)

Proof of Theorem 3.2. Since the dual of W 1,p(Ω;Rd)×Lq(Ω;Rm) is separable, by
virtue of the coercivity condition (24), we may apply Theorem 16.9 in [22], which
ensures that every sequence of increasing functionals {Hεn} admits a subsequence

{εnj
} ≡ {εj}, Γ-converging to a functional H, namely the inner regular envelope of

H−
{εj}

and H+
{εj}

coincide with H for every A ∈ A(Ω). On the other hand, by virtue of

Lemma 3.5, we have that H−
{εj}

is a measure hence coinciding with its inner regular
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envelope. Moreover, arguing as in the proof of Proposition 18.6 in [22], by virtue
of (30) and the growth condition (24) we may conclude that H coincides also with
H+

{εj}
, thus concluding the existence of the Γ- limit.

To prove that H{εj} admits an integral representation we will verify that the hypothe-
ses of Theorem 3.1 hold.

Hypotheses i) and v) are consequence of the definition of the Γ−limit. Hypothesis iii)
comes from (24) and iv) is easily attained. Condition ii) follows from Lemma 3.5.

Next we prove, using the same techniques as in [8], that H−
{ε} is independent of

the boundary data for v constant. This result will be useful in order to achieve
Theorem 1.1.

Lemma 3.7. Let H∗
ε : W

1,p
(
Ω;Rd

)
× Lq (Ω;Rm)×A (Ω) → [0,∞) be defined by

H∗
{ε} (u, v;A)

:= inf

{
lim inf
ε→0+

Hε (uε, vε;A) : uε → u in Lp
(
A;Rd

)
, vε ⇀ v in Lq (A;Rm)

uε = u on a neighborhood of ∂A,

∫

A

vε (x) dx =

∫

A

v (x) dx

}
.

Then, under the growth condition (24) ,

H−
{ε} (u, vb;A) = H∗

{ε} (u, vb;A)

for every A ∈ A (Ω), u ∈ W 1,p
(
Ω;Rd

)
, b ∈ Rm where vb ≡ b.

Contrary to the case where there is no dependence on v, we emphasize that in general
one cannot expect to have H−

{ε} (u, v;A) = H∗
{ε} (u, v;A) for every v. However, to the

achievement of the lemma it will be enough to prove Theorem 1.1, since in the proof
it will be sufficient to apply the fundamental theorem of Γ - convergence just on
constant functions v.

Proof. ClearlyH−
{ε} (u, v;A)≤H∗

{ε} (u, v;A) for every u∈W 1,p
(
A;Rd

)
, v ∈Lq (A;Rm)

and A ∈ A (Ω) . To prove the reverse inequality, let

Gp,q (u, v, r;A) :=

∫

A

(1 + |∇u (x)|p + (|v (x)|+ r)q) dx

be defined for every u ∈ W 1,p
(
A;Rd

)
, v ∈ Lq (A;Rm), r ∈ R+ and A ∈ A (Ω) . Given

ρ > 0 consider uε ∈ W 1,p
(
A;Rd

)
, vε ∈ Lq (A;Rm) such that uε → u in Lp

(
A;Rd

)
,

vε ⇀ v in Lq (A;Rm) and

H−
{ε} (u, vb;A) + ρ > lim inf

ε→0+
Hε (uε, vε;A) .

Due to the coercivity of Hε, we may extract subsequences {uεk} and {vεk} such that

lim inf
ε→0+

Hε (uε, vε;A) = lim
k→∞

Hεk (uεk , vεk ;A)
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and the sequence of measures νk := Gp,q (uεk , vεk , 0; ·) + Gp,q (u, vb, 1; ·) converges
weakly star in the sense of measures to some Radon measure ν.

For every t > 0, let At := {x ∈ A : dist (x, ∂A) > t} , fix η > 0 and for every 0 < 2δ <

η′ < η such that ν (∂Aη′) = 0 we define Lδ := Aη−2δ\Aη+δ. Consider a smooth cut-off

function ϕδ ∈ C∞
0 (Aη−δ; [0, 1]) such that ϕδ ≡ 1 on Aη and ‖∇ϕδ‖L∞(A) ≤ C

δ
.

Define
uεk := uεkϕδ + u (1− ϕδ) , vεk := vεkχAη

+ cεk
(
1− χAη

)

where

cεk :=

∫
A

(
vb (x)− vεk (x)χAη

(x)
)
dx∫

A

(
1− χAη

(x)
)
dx

.

Clearly, uεk → u in Lp
(
A;Rd

)
and uεk = u on a neighborhood of ∂A. Moreover,

cεk → b, vεk ⇀ vb in Lq (A;Rm) and
∫

A

vεk (x) dx =

∫

A

vb(x) dx.

Thus

Hεk (uεk , vεk ;A) ≤ Hεk (uεk , vεk ;Aη) +Hεk

(
uεk , vεk ;A\Aη−δ

)
+Hεk (uεk , vεk , Lδ)

≤ Hεk (uεk , vεk ;Aη) +Hεk

(
u, cεk ;A\Aη−δ

)

+ C

∫

Lδ

(1 + |∇uεk(x)|
p + |vεk(x)|

q) dx

≤ Hεk (uεk , vεk ;Aη) + C

∫

A\Aη−δ

(1 + |∇u(x)|p + (|vb(x)|+ 1)q) dx

+ C

∫

Lδ

(1 + |∇uεk (x)|
p + |vεk (x)|

q) dx.

Since
∫

Lδ

|∇uεk (x)|
p dx ≤ C

∫

Lδ

|∇u (x)|p + |∇uεk (x)|
p + |∇ϕδ (x)⊗ (uεk (x)− u (x))|p dx

≤ C

∫

Lδ

|∇u (x)|p + |∇uεk (x)|
p +

1

δp
|uεk (x)− u (x)|p dx

and
∫

Lδ

|vεk (x)|
q dx =

∫

Lδ∩Aη

|vεk (x)|
q dx+

∫

Lδ\Aη

|cεk |
q dx

≤
∫

Lδ

|vεk (x)|
q dx+

∫

Lδ

(|vb(x)|+ 1)q dx

we have

Hεk (uεk , vεk ;A)

≤ Hεk (uεk , vεk ;Aη) + Cνk
(
A\Aη−δ

)
+ Cνk (Lδ) +

C

δp

∫

Lδ

|uεk (x)− u (x)|p dx.
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Letting k → ∞ and δ → 0+ in this order one obtains

lim inf
k→∞

Hεk (uεk , vεk ;A) ≤ H−
{ε} (u, vb;A) + ρ+ Cν

(
A\Aη

)
+ Cν (∂Aη′) .

Since ν (∂Aη′) = 0 letting η → 0+ one obtains

H∗
{ε} (u, vb;A) ≤ lim inf

k→∞
Hεk (uεk , vεk ;A) ≤ H−

{ε} (u, vb;A) + ρ.

Letting ρ go to zero we attain the claim.

4. Applications

In this section we apply the integral representation results and the compactness the-
orem for the Γ-convergence of a family of general integral functionals obtained in the
previous section to provide an explicit integral representation result for the Γ-limit
of (2).

4.1. Relaxation in W 1,p × Lq
w

Let f be a Carathéodory function as in the statement of Theorem 1.2 and define
F : W 1,p

(
Ω;Rd

)
× Lq (Ω;Rm)×A (Ω) → R by

F (u, v;A) :=

∫

A

f (x,∇u (x) , v (x)) dx.

Considering the relaxed functional defined as in (4), our goal is to find an integral
representation for F . The proof is based on blow-up techniques developed in [34].
We refer also to [32]. We also emphasize that the relaxation theorem below holds for
p ≥ 1 and q > 1 (see Remark 1.3). Moreover, the presence of two fields will require in
the proof below the use of the decomposition lemma (see [35] and [13]) in two times,
first for the gradients and then for the unconstrained fields.

Proof of Theorem 1.2. We start showing that, for every u ∈ W 1,p
(
A;Rd

)
, v ∈

Lq (A;Rm) and A ∈ A (Ω) we have

F (u, v;A) ≥
∫

A

QCf (x,∇u (x) , v (x)) dx

for p ≥ 1 and q > 1. Let un ⇀ u in W 1,p(A;Rd), vn ⇀ v in Lq(A;Rm), and assume,
without loss of generality, that

lim inf
n→∞

∫

A

f (x,∇un (x) , vn (x)) dx = lim
n→∞

∫

A

f (x,∇un (x) , vn (x)) dx < ∞.

By the growth condition on f , up to a subsequence, there exists a nonnegative Radon
measure µ such that

f (x,∇un (x) , vn (x))LN⌊A ⋆
⇀ µ

as n → ∞, weakly star in the sense of measures.
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We claim that
dµ

dLN
(x0) ≥ QCf (x0,∇u (x0) , v (x0)) (31)

for a.e. x0 ∈ A.

If (31) holds then the desired inequality follows immediately. Indeed, by Proposition
1.203 i) in [31] we have

lim inf
n→∞

∫

A

f (x,∇un (x) , vn (x)) dx ≥ µ (A)

≥
∫

A

dµ

dLN
(x) dx ≥

∫

A

QCf (x,∇u (x) , v (x)) dx.

To show (31) we apply Lusin’s theorem (see Theorem 1.94 in [31]) to obtain a compact
set Kj ⊂ A with |A\Kj| ≤ 1

j
such that f |Kj

: Kj × Rd×N × Rm → R is continuous.

Let K∗
j ⊂ A be the set of Lebesgue points of χKj

and set ω :=
⋃∞

j=1

(
Kj ∩K∗

j

)
. Then

|A\ω| ≤ |A\Kj| ≤
1

j
→ 0 as j → ∞.

Fix x0 ∈ ω a Lebesgue point of u such that

dµ

dLN
(x0) = lim

ε→0+

µ (Q (x0, ε))

εN
< ∞,

lim
ε→0+

1

εN+1

∫

Q(x0,ε)

|u (x)− u (x0)−∇u (x0) (x− x0)| dx = 0, (32)

lim
ε→0+

1

εN

∫

Q(x0,ε)

|v (x)− v (x0)|q dx = 0.

Choosing εk → 0+ such that µ (∂Q (x0, εk)) = 0 and applying Proposition 1.203 iii)
in [31] one has

dµ

dLN
(x0) = lim

k→∞

µ (Q (x0, εk))

εNk

= lim
k→∞

lim
n→∞

1

εNk

∫

Q(x0,εk)

f (x,∇un (x) , vn (x)) dx

= lim
k→∞

lim
n→∞

∫

Q

f (x0 + εky,∇wn,k (y) , vn,k (y)) dy

where

wn,k (y) :=
un (x0 + εky)− u (x0)

εk
, vn,k (y) := vn (x0 + εky) .

Clearly wn,k ∈ W 1,p
(
Q;Rd

)
and, by (32), limk→∞ limn→∞ ‖wn,k − w0‖L1(Q;Rd) = 0

where w0 (y) := ∇u (x0) y. Let {ϕR} be a countable dense set of functions in
Lq′ (Q;Rm) . Then by (32)3

lim
k→∞

lim
n→∞

∫

Q

(vn,k (y)− v (x0))ϕR (y) dy = 0.
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By a standard diagonalization argument, we may extract subsequences wk := wnk,k

and ṽk := vnk,k such that {wk} converges to w0 in L1
(
Q;Rd

)
, supk∈N

∫
Q
|∇wk (y)|p dy

< ∞, {ṽk} converges weakly to v (x0) in Lq (Q;Rm) and

dµ

dLN
(x0) ≥ lim

k→∞

∫

Q

f (x0 + εky,∇wk (y) , ṽk (y)) dy.

Notice that if p = 1 the sequence {∇wk} is already p−equi-integrable. If p > 1 by
the decomposition lemma (see Lemma 1.2 in [35]), and up to a subsequence, we may

find {wk} ⊂ W 1,p
(
Q;Rd

)
such that {|∇wk|p} is equi-integrable, wk = w0 on ∂Q,

wk ⇀ w0 in W 1,p
(
Q;Rd

)
and

|{y ∈ Q : wk (y) 6= wk (y) or ∇wk (y) 6= ∇wk (y)}| → 0.

Then, applying the decomposition lemma to {ṽk} in Lq (see Proposition 2.3 in [13])
we may find, up to a subsequence, {vk} ⊂ Lq (Q;Rm) q−equi-integrable in Q such
that

|{y ∈ Q : ṽk (y) 6= vk (y)}| → 0 as k → ∞,
∫

Q

vk (y) dy = v (x0) , for every k ∈ N

and vk ⇀ v (x0) in Lq (Q;Rm).

Hence

dµ

dLN
(x0) ≥ lim inf

k→∞

∫

{vk=vk and wk=wk}

f (x0 + εky,∇wk (y) , vk (y)) dy

where we have used the fact that f ≥ 0. Since x0 ∈ ω there exists j0 ∈ N such that
x0 ∈ Kj0 ∩K∗

j0
and using the continuity of f there exists 0 < ρj < 1 such that

f (x0, ξ, b) ≤ f (x, ξ, b) +
1

j

for all (x, ξ, b) ∈ Kj0 ×Bd×N
j (0)×Bm

j (0) with |x− x0| , |u (x)− u (x0)| ≤ ρj.

Set

Ek,j := {y ∈ Q : wk (y) = wk (y) , |εkwk (y)| ≤ ρj,

|∇wk (y)| ≤ j, ṽk (y) = vk (y) , |vk (y)| ≤ j} .

The sequence {wk} is bounded in W 1,p
(
Q;Rd

)
, {vk} is bounded in Lq (Q;Rm) and

limj→∞ limk→∞ |Q\Ek,j| = 0.

Thus

dµ

dLN
(x0) ≥ lim inf

j→∞
lim inf
k→∞

∫

Ek,j

f (x0 + εky,∇wk (y) , vk (y)) dy

= lim inf
j→∞

lim inf
k→∞

1

εNk

∫

Dk,j

f

(
x,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx
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where Dk,j := x0 + εkEk,j.

Hence

dµ

dLN
(x0)≥ lim inf

j→∞
lim inf
k→∞

1

εNk

∫

Dk,j∩Kj0

f

(
x,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

≥ lim inf
j→∞

lim inf
k→∞

1

εNk

∫

Dk,j∩Kj0

f

(
x0,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
− 1

j
dx.

Using the fact that |∇wk| ≤ j and |vk| ≤ j in Ek,j and, by the growth conditions on
f , we have that

1

εNk

∫

Dk,j\Kj0

f

(
x0,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

≤ Ca (x0, u (x0)) (1 + jp + jq)
|Q (x0, εk) \Kj0|

εNk
→ 0

as k → ∞, because x0 is a Lebesgue point of χKj0
.

Consequently

dµ

dLN
(x0) ≥ lim inf

j→∞
lim inf
k→∞

1

εNk

∫

Dk,j

f

(
x0,∇wk

(
x− x0

εk

)
, vk

(
x− x0

εk

))
dx

= lim inf
j→∞

lim inf
k→∞

∫

Ek,j

f (x0,∇wk (y) , vk (y)) dy

= lim inf
k→∞

∫

Q

f (x0,∇wk (y) , vk (y)) dy,

where we have used the growth conditions on f , the equi-integrability of {|∇wk|p}
and {|vk|q} and the fact that |Q\Ek,j| → 0.

Since wk = w0 on ∂Q,
∫
Q
vk (x) dx = v (x0) and using (7) it follows that

dµ

dLN
(x0) ≥ QCf (x0,∇u (x0) , v (x0)) .

To prove the reverse inequality, that is

F (u, v;A) ≤
∫

A

QCf (x,∇u (x) , v (x)) dx,

we assume without loss of generality that f ≥ 0. Arguing as in the proof of Theorem
3.2 it is easily seen that (4) fullfills all the assumptions of Theorem 3.1 thus

F (u, v;A) =

∫

A

g (x,∇u (x) , v (x)) dx

for some Carathéodory function g, for every u ∈W 1,p
(
Ω;Rd

)
and every v ∈ Lq (Ω;Rm)

and A ∈ A (Ω).
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By Scorza-Dragoni theorem (see Theorem 6.35 in [31]) since f is Carathéodory, for
each j ∈ N, there exists a compact set Kj ⊂ A, with |A\Kj| < 1

j
such that the

restriction of f to Kj ×Rd×N ×Rm is continuous. Let K∗
j ⊂ A be the set of Lebesgue

points of χKj
and set ω := ∪∞

j=1

(
Kj ∩K∗

j

)
. Then

|A\ω| ≤ |A\Kj| <
1

j
→ 0 as j → ∞.

Moreover, since for a.e. x0 ∈ A

g (x0, ξ0, b0) = lim
ε→0+

F (uξ0 , vb0 , Q (x0, ε))

εN
(33)

where uξ0 (x) := ξ0x and v0 ≡ b0, it is enough to prove that

g (x0, ξ0, b0) 6 QCf (x0, ξ0, b0)

for any x0 ∈ ω satisfying (33), any ξ0 ∈ Rd×N and any b0 ∈ Rm.

Let (x0, ξ0, b0) be such triple. Fix δ > 0 and let w ∈ W 1,∞
0

(
Q;Rd

)
and η ∈

L∞ (Q;Rm) with
∫
Q
η (x) dx = 0 be such that

∫

Q

f (x0, ξ0 +∇w (x) , b0 + η (x)) dx 6 QCf (x0, ξ0, b0) + δ.

Still denoting by w and η the extension of these functions to RN by Q−periodicity,
let

wn,ε (x) :=
ε

n
w

(
n
x− x0

ε

)
and ηn,ε (x) := η

(
n
x− x0

ε

)
.

Clearly, up to a subsequence, wn,ε ⇀ 0 in W 1,p
(
Q (x0, ε) ;R

d
)
as n → ∞ and by

Riemann-Lebesgue lemma (see Lemma 2.85 in [31]) ηn,ε ⇀ 0 in Lq (Q (x0, ε) ;R
m) as

n → ∞.

Therefore, by (33) and the definition of F ,

g (x0, ξ0, b0) 6 lim inf
ε→0+

lim inf
n→∞

1

εN

∫

Q(x0,ε)

f (x, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx.

Let L := 1+ |ξ0|+‖∇w‖L∞+ |b0|+‖η‖L∞ . Since x0 ∈ ω, there exists j0 ∈ N such that

x0 ∈ Kj0 ∩K∗
j0

and by the uniform continuity of f on Kj0 × Bd×N
L (0)× Bm

L (0), one

has the existence of ρ > 0 such that if (x, ξ, b) ,
(
x, ξ, b

)
∈ Kj0 × Bd×N

L (0)× Bm
L (0)

such that if
∣∣(x, ξ, b)−

(
x, ξ, b

)∣∣ < ρ then
∣∣f (x, ξ, b)− f

(
x, ξ, b

)∣∣ < δ. Therefore for
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ε sufficiently small (ε < ρ), and applying the growth condition assumed on f ,

g (x0, ξ0, b0)

6 lim inf
ε→0+

lim inf
n→∞

(
1

εN

∫

Q(x0,ε)∩Kj0

f (x, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx

+
C

εN

∫

Q(x0,ε)\Kj0

1 + (|ξ0|+ ‖∇w‖L∞)p + (|b0|+ ‖η‖L∞)q dx

)

6 lim inf
ε→0+

lim inf
n→∞

(
1

εN

∫

Q(x0,ε)∩Kj0

f (x0, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx+ δ

+ C
|Q (x0, ε) \Kj0|

εN

)

6 lim inf
ε→0+

lim inf
n→∞

(
1

εN

∫

Q(x0,ε)

f (x0, ξ0 +∇wn,ε (x) , b0 + ηn,ε (x)) dx+ δ

+C
|Q (x0, ε) \Kj0|

εN

)

=

∫

Q

f (x0, ξ0 +∇w (z) , b0 + η (z)) dz + δ + lim
ε→0+

C
|Q (x0, ε) \Kj0|

εN

6 QCf (x0, ξ0, b0) + 2δ,

where we have used the periodicity of f and the fact that x0 is a Lebesgue point of

χKj0
to get

|Q(x0,ε)\Kj0|
εN

→ 0 as ε → 0+.

Letting δ → 0+ we obtain the desired inequality.

4.2. Homogenization

In this section we prove Theorem 1.1.

Let Fε : L
p
(
Ω;Rd

)
× Lq (Ω;Rm)×A (Ω) → R be given by

Fε (u, v;A) :=





∫

A

f
(
x
ε
,∇u (x) , v (x)

)
dx if (u, v) ∈ W 1,p

(
A;Rd

)
× Lq (A;Rm) ,

+∞ otherwise.

(34)
Our goal is to show that the Γ−limit of {Fε} admits an integral representation.
Precisely,

F{ε} (u, v;A) =

∫

A

fhom (∇u (x) , v (x)) dx (35)

for all u ∈ W 1,p
(
A;Rd

)
, v ∈ Lq (A;Rm) and A ∈ A (Ω), where F{ε} is the Γ−limit

of {Fε} and fhom is given by (3).

We start by showing that the limit in (3) is well defined. The proof is an adaptation
of Proposition 14.4 in [12] and we present it here for convenience of the reader, since
it contains more and accurate details.
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Proposition 4.1. Let f : RN ×Rd×N ×Rm → R be a Borel function satisfying (H1)
and (H2) such that supx∈RN f (x, ξ, b) < ∞ for every (ξ, b) ∈ Rd×N ×Rm. Then fhom
is well defined and satisfies (H2).

Proof. Let (ξ, b) ∈ Rd×N × Rm be fixed and for t > 0 define

gt :=
1

tN
inf

{∫

(0,t)N
f(x, ξ +∇ϕ (x) , b+ η (x)) dx :

ϕ ∈ W 1,p
0 ((0, t)N ;Rd), η ∈ Lq((0, t)N ;Rm),

∫

(0,t)N
η (x) dx = 0

}
.

Let ϕt ∈ W 1,p
0 ((0, t)N ;Rd), ηt ∈ Lq((0, t)N ;Rm) be such that

gt +
1

t
≥ 1

tN

∫

(0,t)N
f (x, ξ +∇ϕt (x) , b+ ηt (x)) dx.

Let s > t and I :=
{
i = (i1, . . . , iN) ∈ NN

0 : 0 < ([t] + 1) (ij + 1) ≤ s
}
where we de-

note by [t] the integer part of t.

Let Qs := ∪i∈Ii ([t] + 1) + (0, [t] + 1]N and define on Qs the maps ϕs and ηs as
the extension by ([t] + 1)−periodicity of ϕt and ηt, respectively. Then extend by

zero these functions to (0, s)N still denoting them by ϕs and ηs, respectively. More

precisely, on (0, s)N define

ϕs (x) :=

{
ϕt (x− i ([t] + 1)) if x− i ([t] + 1) ∈ (0, [t] + 1]N , i ∈ I,

0 elsewhere,

ηs (x) :=

{
ηt (x− i ([t] + 1)) if x− i ([t] + 1) ∈ (0, [t] + 1]N , i ∈ I,

0 elsewhere.

Notice that ϕs ∈ W 1,p
0 ((0, s)N ;Rd), ηs ∈ Lq((0, s)N ;Rm) and

∫
(0,s)N

ηs(x) dx = 0.

Let Rs := (0, s)N \Qs, then

|Rs| ≤ sN −
(

s

t+ 1
− 1

)N

tN .

Moreover, denoting by ♯I the number of elements of I,

♯I =

[
s

[t] + 1

]N
≤
(

s

[t] + 1
+ 1

)N

≤
(s
t
+ 1
)N

. (36)
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Using the periodicity of f , (36) and the growth conditions (H2) we have

gs ≤
1

sN

∫

(0,s)N
f (x, ξ +∇ϕs (x) , b+ ηs (x)) dx

=
1

sN

(
∑

i∈I

∫

i([t]+1)+(0,[t]+1]N
f (x, ξ +∇ϕs (x) , b+ ηs (x)) dx+

∫

Rs

f (x, ξ, b) dx

)

≤ 1

sN

((s
t
+ 1
)N ∫

(0,t)N
f (x, ξ +∇ϕt (x) , b+ ηt (x)) dx

+
(s
t
+ 1
)N ∫

(t,[t]+1]N
f (x, ξ, b) dx+ C |Rs|

)

≤ tN

sN

(s
t
+ 1
)N (

gt +
1

t

)
+ C

(
1

t
+

1

s

)N

+ C

(
1−

(
t

t+ 1
− t

s

)N
)
.

Taking the upper limit on s and then the lower limit on t we get

lim sup
s→∞

gs ≤ lim sup
t→∞

gt

and thus the desired result.

It is easy to see that fhom satisfies (H2). Indeed, by taking ϕ ≡ 0 and η ≡ 0 one has

fhom (ξ, b) ≤ lim sup
T→∞

1

TN

∫

(0,T )N
f (x, ξ, b) dx ≤ C (1 + |ξ|p + |b|q) . (37)

On the other hand, since |·|p, |·|q are convex and using Jensen’s inequality

1

TN

∫

(0,T )N
f (x, ξ +∇ϕ (x) , b+ η (x)) dx

≥ 1

TN

∫

(0,T )N

(
1

C
(|ξ +∇ϕ (x)|p + |b+ η (x)|q)− C

)
dx

≥ 1

C

∣∣∣∣
1

TN

∫

(0,T )N
(ξ +∇ϕ (x)) dx

∣∣∣∣
p

+
1

C

∣∣∣∣
1

TN

∫

(0,T )N
(b+ η (x)) dx

∣∣∣∣
q

− C,

where we have used the coercivity of f . By taking the infimum over all ϕ ∈
W 1,p

0

(
(0, T )N ;Rd

)
and over all η ∈ Lq

(
(0, T )N ;Rm

)
such that

∫
(0,T )N

η (x) dx = 0,

one obtains

fhom (ξ, b) ≥ 1

C
(|ξ|p + |b|q)− C. (38)

From (37) and (38) one concludes that fhom satisfies (H2).

Lemma 4.2. Let y, z ∈ Ω, and ρ > 0 such that Bρ (y) ∪ Bρ (z) ⊂ Ω. Then, for
any sequence {ε} there is a subsequence {εj} such that, under assumptions (H1) and
(H2),

F−
{εj}

(uξ, vb;Bρ (y)) = F−
{εj}

(uξ, vb;Bρ (z)) (39)

holds, where uξ (x) := ξx and vb ≡ b with (ξ, b) ∈ Rd×N × Rm.
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Proof. Fix ρ > 0, (ξ, b) ∈ Rd×N×Rm. By Proposition 11.7 in [12] there exist {uk} ⊂
W 1,p

0

(
Bρ (y) ;R

d
)
, {vk} ⊂ Lq (Bρ (y) ;R

m) such that uk → 0 in Lp
(
Bρ (y) ;R

d
)
and

vk ⇀ 0 in Lq (Bρ (y) ;R
m) and

lim
k→∞

Fεjk
(uξ + uk, vb + vk;Bρ (y)) = F−

{εj}
(uξ, vb;Bρ (y)) .

Following the argument of Proposition 14.3 in [12], we extend uk and vk by 0 outside
Bρ (y). Let r > 1, let τk ∈ RN be given by

(τk)i := εjk

[
zi − yi
εjk

]

and let

uk (x) := uk (x− τk) , vk (x) := vk (x− τk) .

Note that τk → z−y and τk is a period for x 7−→ f
(

x
εjk

, ξ, b
)
for all (ξ, b) ∈ Rd×N×Rm.

Thus

Fεjk
(uξ + uk, vb + vk, τk +Bρ (y))

=

∫

τk+Bρ(y)

f

(
x

εjk
, ξ +∇uk (x) , b+ vk (x)

)
dx

=

∫

τk+Bρ(y)

f

(
x

εjk
, ξ +∇uk (x− τk) , b+ vk (x− τk)

)
dx

=

∫

Bρ(y)

f

(
t+ τk
εjk

, ξ +∇uk (t) , b+ vk (t)

)
dt

=

∫

Bρ(y)

f

(
t

εjk
, ξ +∇uk (t) , b+ vk (t)

)
dt

= Fεjk
(uξ + uk, vb + vk;Bρ (y))

where we have used the fact that t+τk
εjk

= t
εjk

+
[
zi−yi
εjk

]
and the periodicity of f (·, ξ, b).

Moreover, uk → 0 in Lp
(
Bρr (z) ,R

d
)
and vk ⇀ 0 in Lq (Bρr (z) ;R

m). In fact,

∫

Bρr(z)

|uk (x)|p dx =

∫

Bρr(z)

|uk (x− τk)|p dx

=

∫

Bρ(z)+τk

|uk (t)|p dt ≤
∫

Bρ(y)

|uk (t)|p dt → 0.

And, for any measurable set E ⊂ Bρr (z),

∫

Bρr(z)

vk (x)χE (x) dx =

∫

RN

vk (x)χE (x) dx =

∫

RN

vk (x− τk)χE (x) dx

=

∫

RN

vk (t)χτk+E (t) dt →
∫

RN

0χz−y+E (t) dt = 0.
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Since χE are dense in Lq′ we obtain the weak convergence in Lq. Hence, assuming
that without loss of generality f ≥ 0 and using the growth condition (H2)

F−

{εjk}
(ξx, b;Bρ (z))

≤ F−

{εjk}
(uξ, vb;Bρr (z))

≤ lim inf
k→∞

Fεjk
(uξ + uk, vb + vk;Bρr (z))

≤ lim inf
k→∞

Fεjk
(uξ + uk, vb + vk;Bρ (y)) + C |Bρr (y) \Bρ (y)| (1 + |ξ|p + |b|q)

= F−

{εjk}
(uξ, vb;Bρ (y)) + C |Bρr (y) \Bρ (y)| (1 + |ξ|p + |b|q) .

Letting r → 1 then |Bρr (y) \Bρ (y)| → 0. Thus we obtain (39) .

Proof of Theorem 1.1. To prove that the Γ−limit expressed in the theorem exists,
we will prove that for any sequence {εn} ց 0 there is a subsequence

{
εnj

}
≡ {εj}

for which the Γ−limit is the functional Fhom. Therefore, since the Γ−limit for the
subsequence {εj} is characterized, we get the existence of the Γ−limit for the sequence
{εn} and we achieve the result. Let then εn ց 0 and apply Theorem 3.2 to get, for

some subsequence
{
εnj

}
≡ {εj},

F{εj} (u, v;A) =

∫

A

g{εj} (x,∇u (x) , v (x)) dx

for some Carathéodory function g{εj} : Ω × Rd×N × Rm → R and for every u ∈
W 1,p

(
Ω;Rd

)
and v ∈ Lq (Ω;Rm). Moreover, by Lemma 3.5, Lemma 4.2 and by

Theorem 3.1, g{εj} is independent of x and it is quasiconvex-convex.

We claim that

g{εj} = fhom.

By (7) and Remark 2.10 ii)

g{εj} (ξ, b) = min

{∫

Q

g{εj} (ξ +∇ϕ (x) , b+ η (x)) dx :

ϕ ∈ W 1,p
0

(
Q;Rd

)
, η ∈ Lq (Q;Rm) ,

∫

Q

η (x) dx = 0

}

= min

{
F{εj} (u, v,Q) : u = uξ + ϕ, v = vb + η,

ϕ ∈ W 1,p
0

(
Q;Rd

)
, η ∈ Lq (Q;Rm) ,

∫

Q

η (x) dx = 0

}
,

where uξ (x) := ξx and vb ≡ b, for every (ξ, b) ∈ Rd×N × Rm.
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Thus by the fundamental theorem of Γ−convergence (see Theorem 2.7) we have

g{εj} (ξ, b) = lim
j→∞

inf

{
Fεj (u, v,Q) : u = uξ + ϕ, v = vb + η,

ϕ ∈ W 1,p
0

(
Q;Rd

)
, η ∈ Lq (Q;Rm) ,

∫

Q

η (x) dx = 0

}

= lim
j→∞

inf

{∫

Q

f

(
y

εj
,∇u (y) , v (y)

)
dy : u = uξ + ϕ, v = vb + η,

ϕ ∈ W 1,p
0

(
Q;Rd

)
, η ∈ Lq (Q;Rm) ,

∫

Q

η (x) dx = 0

}
,

where we have used Lemma 3.7.

Changing variables one obtains the desired identity.
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