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1. Introduction

The purpose of this work is to survey the class of epigraphical cones and to derive new
results concerning the geometric structure of these mathematical objects. A convex
cone in the Euclidean space R

n+1 is an epigraphical cone if it can be represented as
epigraph

epi f = {(x, t) ∈ R
n+1 : f(x) ≤ t}

of a nonnegative sublinear function f : R
n → R. Sublinearity is understood as

combination of subadditivity and positive homogeneity. If K is an epigraphical cone
in R

n+1, then its associated nonnegative sublinear function is given by

fK(x) = min{t ∈ R : (x, t) ∈ K}.
An epigraphical cone is necessarily closed and nontrivial, i.e., different from the whole
space and different from the zero cone. It is also solid in the sense that it has a
nonempty topological interior. Conversely, up to orthogonal transformation, every
nontrivial solid closed convex cone is an epigraphical cone (cf. [23, Proposition 2.8]).

Epigraphical cones are important enough to justify a preferential and exhaustive
treatment. A few striking examples are appropriate to illustrate this point. In the
sequel 〈·, ·〉 indicates the usual inner product of Rd, regardless of the dimension d.

Example 1.1. The most prominent example of epigraphical cone is

E(Q) := {(x, t) ∈ R
n+1 :

√
〈x,Qx〉 ≤ t}

with Q standing for a positive definite symmetric matrix of order n. One refers to
E(Q) as the elliptic cone associated to Q. Elliptic cones have been studied under
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different angles in a number of references, including our own works [28, 30, 31] and
those of Stern and Wolkowicz [44, 45]. See [5] for an application of elliptic cones in
control theory. Elliptic cones can be defined also in Hilbert spaces (cf. [9]), but we
stick to finite dimensionality.

Example 1.2. Another interesting example of epigraphical cone is the ℓp - cone

Kp := {(x, t) ∈ R
n+1 : ‖x‖p ≤ t}.

Here p ∈ [1,∞] and ‖ · ‖p denotes the ℓp - norm in R
n. Basic information on ℓp - cones

can be found in [4, 8, 18, 36].

Example 1.3. Finally, consider an epigraphical cone that is polyhedral. Such a cone
has the particular structure

PC :=

{
(x, t) ∈ R

n+1 : max
1≤i≤m

〈ci, x〉 ≤ t

}
,

where C = {c1, . . . , cm} is a finite subset of Rn such that 0n ∈ co(C). The symbol 0n
stands for the zero vector of Rn and “co� refers to the convex hull operation. Note
that K1 and K∞ fit into this category of cones.

The above list of examples gives already a good idea on the kind of convex cones we
are interested in. The class of epigraphical cones is wider than the class of top-heavy
cones introduced by Fiedler and Haynsworth [12]. Recall that a top-heavy cone is
understood as an epigraphical cone associated to a norm. Our definition of epigraph-
ical cone slightly deviates from that of [23]. Indeed, for the sake of simplicity in
the overall exposition we have decided not to work with extended-real-valued sub-
linear functions. The use of extended-real-valued sublinear functions would allow
to consider, for instance, the class of Lp-cones in the sense of Glineur [15, 16]. The
organization of the paper is as follows:

- Section 2 develops the basic algebra of epigraphical cones.

- Section 3 provides some rules for computing the inradius of an epigraphical cone.
The inradius is a coefficient that serves to measure the degree of solidity of the
cone.

- Section 4 is about measuring the degree of pointedness of an epigraphical cone.

- Section 5 analyzes the angular structure of an epigraphical cone.

Other aspects concerning the theory of epigraphical cones are treated in the compan-
ion paper [42]. The emphasis in [42] is put in the study of properties that are valid
up to orthogonal characterizations, which allows to consider a class of convex cones
larger than the class of epigraphical cones. The notation that we use in both parts is
standard or self-explanatory: int(Ω), bd(Ω), cl(Ω) indicate respectively the interior,
boundary, and closure of a set Ω. The unit sphere and the closed unit ball of Rd are
denoted by Sd and Bd, respectively.
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2. The basic algebra of epigraphical cones

2.1. Representation of epi f in terms of a convex base

Sometimes it is useful to write a sublinear function f : Rn → R as support function

x ∈ R
n 7→ f(x) = Ψ∗

C(x) := max
y∈C

〈y, x〉

of a convex compact set C in R
n. Hörmander’s theorem asserts that C is unique and

given by
C = {y ∈ R

n : 〈y, x〉 ≤ f(x) for all x ∈ R
n} .

In the parlance of convex analysis, this set corresponds to the subdifferential of f at
0n. For this reason one writes f = Ψ∗

∂f(0n)
. If the sublinear function f is nonnegative,

then ∂f(0n) contains 0n and admits the polar representation ∂f(0n) = B◦
f with

Bf := {x ∈ R
n : f(x) ≤ 1}

B◦ := {y ∈ R
n : 〈y, x〉 ≤ 1 for all x ∈ B}.

As shown in the next proposition, an epigraphical cone in R
n+1 is the closed positive

hull of a Cartesian product of the form B × {1} with B standing for a closed convex
set in R

n. Recall that a closed convex cone is pointed if it does not contain a line.

Proposition 2.1. Let f : Rn → R be a nonnegative sublinear function. Then

epi f = cl

[
⋃

t≥0

t (Bf × {1})
]
. (1)

Furthermore,

(a) The “upward� canonical vector en+1 = (0n, 1) belongs to int (epi f).

(b) If f vanishes only at 0n, then the closure operation in (1) is superfluous and
epi f is pointed.

(c) epi f is polyhedral if and only if Bf is polyhedral (possibly the whole space R
n).

Proof. The representation formula (1) is stated already in [23]. Such equality yields
in particular

int(Bf )× {1} ⊂ int(epi f).

This proves (a) because 0n ∈ int(Bf ). That f vanishes only at 0n is equivalent to
saying that Bf is compact, in which case also Bf × {1} is compact and the closure
operation in (1) is superfluous. The pointedness of epi f follows by a simple inspec-
tion. The part (c) can be obtained by combining Corollaries 19.2.1 and 19.2.2 of
Rockafellar’s book [40].

Remark. The minimal hypothesis that warrants the pointedness of (1) is the sharp-
ness of f . A nonnegative sublinear function f : Rn → R is called sharp if f(x) = 0
and f(−x) = 0 imply x = 0n. This property is weaker than saying that f vanishes
only at 0n.
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Recall that a generator (or extreme vector) of a pointed closed convex cone K is a
nonzero vector e ∈ K such that z ∈ K and e− z ∈ K imply that z ∈ R+e. In such a
case one refers to R+e as an extreme ray of K. The following intuitive result is part of
the folklore on convex cones. It can be obtained as a consequence of Proposition 2.1
and [1, Theorem 1. 48].

Corollary 2.2. Let f : Rn → R be a nonnegative sublinear function vanishing only
at 0n. Then (x, 1) is a generator of epi f if and only if x is an extreme point of Bf .

2.2. Combining two epigraphical cones

Epigraphical cones can be combined in various ways in order to produce new epigraph-
ical cones. For instance, the intersection and the Minkowski sum of two epigraphical
cones are again epigraphical cones. More precisely,

epi f1 ∩ epi f2 = epi(f1 ∨ f2) (2)

epi f1 + epi f2 = epi(f1 � f2) (3)

with ∨ and � standing, respectively, for the pointwise maximum and the infimal
convolution operation. The formula (2) for the intersection is obvious. The formula
(3) for the Minkowski sum follows from the infimal convolution theory as developed
by Moreau [37] and Rockafellar [40].

Example 2.3. For each x ∈ R
n, the function p ∈ [1,∞] 7→ ‖x‖p is nonincreasing.

One gets

‖ · ‖p1 ∨ ‖ · ‖p2 = ‖ · ‖min{p1,p2}

‖ · ‖p1 � ‖ · ‖p2 = ‖ · ‖max{p1,p2}

for all p1, p2 ∈ [1,∞]. Hence, Kp1 ∩ Kp2 = Kmin{p1,p2} and Kp1 +Kp2 = Kmax{p1,p2}.

The intersection of two elliptic cones is not necessarily an elliptic cone. However, one
gets an epigraphical cone that has a special structure. The same remark applies to
the Minkowski sum of two elliptic cones. The next proposition explains the details.
In the sequel the symbol

EQ :=
{
y ∈ R

n : 〈y, x〉 ≤
√

〈x,Qx〉 for all x ∈ R
n
}

(4)

denotes the ellipsoid associated to a positive definite symmetric matrix Q. Clearly
one has

E(Q) = epi(Ψ∗
EQ

).

According to the references [35, 41], two alternative characterizations for the ellipsoid
(4) are

EQ = Q1/2(Bn) =
{
y ∈ R

n : 〈y,Q−1y〉 ≤ 1
}
,

where Q1/2 denotes the symmetric square root of Q.



A. Seeger / Epigraphical Cones I 1175

Proposition 2.4. Let Q1, Q2 be positive definite symmetric matrices of order n.
Then

E(Q1) ∩ E(Q2) = epi(f)

E(Q1) + E(Q2) = epi(g)

with f = Ψ∗
co(EQ1

∪EQ2
) and g = Ψ∗

EQ1
∩EQ2

.

Proof. This result is a direct consequence of the formulas (2)–(3). Note that

Ψ∗
co(EQ1

∪EQ2
) = Ψ∗

EQ1

∨Ψ∗
EQ2

Ψ∗
EQ1

∩EQ2

= Ψ∗
EQ1

�Ψ∗
EQ2

and that x ∈ R
n 7→ Ψ∗

EQk
(x) =

√
〈x,Qkx〉 corresponds to the nonnegative sublinear

function associated to the elliptic cone E(Qk).

There are also other ways of combining sets in a product space. For instance, if
M1,M2 are sets in R

n+1, then one can define their vertical sum and their horizontal
sum respectively by

M1 ⊕v M2 :=
{
(x, t) ∈ R

n+1 : ∃ r ∈ R s.t. (x, r) ∈M1 and (x, t− r) ∈M2

}
,

M1 ⊕h M2 :=
{
(x, t) ∈ R

n+1 : ∃u ∈ R
n s.t. (u, t) ∈M1 and (x− u, t) ∈M2

}
.

These operations are mentioned in [40, Section 3], though under a different terminol-
ogy. The next proposition shows that the vertical sum and the horizontal sum of two
epigraphical cones are again epigraphical cones. Recall that

C1△C2 := ∪r∈[0,1](1− r)C1 ∩ rC2

is the inverse sum of two sets C1, C2 in R
n and that

x ∈ R
n 7→ (f1△f2)(x) := min

u∈Rn
max{f1(x− u), f2(u)}

is the inverse sum of two nonnegative sublinear functions f1, f2 : Rn → R. General
information about inverse addition can be found in [41, 43].

Proposition 2.5. Let f1, f2 : R
n → R be nonnegative sublinear functions. Then the

usual sum f1 + f2 : Rn → R and the inverse sum f1△f2 : Rn → R are nonnegative
sublinear functions. Furthermore,

epi f1 ⊕v epi f2 = epi(f1 + f2)

epi f1 ⊕h epi f2 = epi(f1△f2).

Proof. From the definition of the vertical sum, one sees that

(x, t) ∈ epi f1 ⊕v epi f2 ⇐⇒ f1(x) + f2(x) ≤ t

⇐⇒ (x, t) ∈ epi(f1 + f2).
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Similarly, the definition of the horizontal sum shows that

(x, t) ∈ epi f1 ⊕h epi f2 ⇐⇒ ∃u ∈ R
n s.t. max{f1(x− u), f2(u)} ≤ t

⇐⇒ (x, t) ∈ epi(f1△f2).

It is clear that f1 + f2 and f1△f2 are nonnegative sublinear functions. In fact,

f1 + f2 = Ψ∗
∂f1(0n)

+Ψ∗
∂f2(0n)

= Ψ∗
∂f1(0n)+∂f2(0n)

,

f1△ f2 = Ψ∗
∂f1(0n)

△Ψ∗
∂f2(0n)

= Ψ∗
∂f1(0n)△ ∂f2(0n)

,

the last equality being a particular case of [41, Theorem 5.2].

Remark. A word of caution is in order. The vertical sum

Kp1 ⊕v Kp2 = {(x, t) ∈ R
n+1 : ‖x‖p1 + ‖x‖p2 ≤ t}

of two ℓp-cones is not necessarily an ℓp-cone, and the vertical sum

E(Q1)⊕v E(Q2) = {(x, t) ∈ R
n+1 :

√
〈x,Q1x〉+

√
〈x,Q2x〉 ≤ t}

of two elliptic cones is not necessarily an elliptic cone. The same remark applies to
horizontal sums.

Summarizing, if K1 and K2 are epigraphical cones, then so are their Minkowski sum,
their intersection, their vertical sum, and their horizontal sum. Furthermore,

fK1+K2
= fK1

�fK2

fK1∩K2
= fK1

∨ fK2

fK1⊕vK2
= fK1

+ fK2

fK1⊕hK2
= fK1

△fK2
.

In the same vein one can derive composition rules for yet more elaborated operations
like direct and inverse addition of order p ∈]1,∞[ (in the sense of [41, Definition 3.1]).

2.3. The dual of an epigraphical cone

Duality plays a conspicuous role throughout this work. Recall that the dual cone of
a closed convex cone K in R

d is defined by

K+ = {v ∈ R
d : 〈v, z〉 ≥ 0 for all z ∈ K}.

The first question that comes to mind is this: is the dual of an epigraphical cone yet
another epigraphical cone? Before answering this question, we recall the concept of
polarity for positive sublinear functions. That a sublinear function is positive means
that it is nonnegative and vanishes only at the origin. Lyubich [36] refers to a positive
sublinear function as a subnorm and to the epigraph of a subnorm as an hyperbolic
cone. We do not adhere to this terminology because subnorms and hyperbolic cones
are often used with a different meaning in the literature.
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Recall that the polar f ◦ : Rn → R of a positive sublinear function f : Rn → R is
given by

f ◦(y) = max
x 6=0n

〈y, x〉
f(x)

.

The skewed polar of f is the function y ∈ R
n 7→ f�(y) = f ◦(−y). The definition of

polarity is classical and can be found in many books. Skewed polarity is less standard,
but it appears already in [36]. Of course, if f is even, then f ◦ is also even and there is
no distinction between polarity and skewed polarity. The next theorem is a particular
case of [23, Lemma 2.10], see also [40, Theorem 14.4] or [36, Proposition 3.1].

Theorem 2.6. Let f : Rn → R be a positive sublinear function. Then f� : Rn → R

is a positive sublinear function and (epi f)+ = epi f�.

So, under the hypotheses of the above theorem, the dual of epi f is again an epi-
graphical cone. In practice, computing the dual of an epigraphical cone amounts to
computing the polar of a positive sublinear function.

Example 2.7. Elliptic cones and ℓp - cones can both be embedded in the wider class
of epigraphical cones of the form

Γp,H := {(x, t) ∈ R
n+1 : ‖Hx‖p ≤ t} (5)

with p ∈ [1,∞] and H denoting a nonsingular matrix of order n. The model (5)
is quite flexible and encompasses a large variety of cones arising in applications.
Note that f(x) = ‖Hx‖p defines a positive sublinear function. Its polar is given by
f ◦(y) = ‖Gy‖q with p−1+q−1 = 1 and G = (H−1)T . One gets in this way the formula
(Γp,H)

+ = Γq,G.

3. Degree of solidity of an epigraphical cone

The inradius of a nontrivial closed convex cone K in R
d is defined as the number

ρ(K) := max
x∈K∩Sd

dist[x, bd(K)] (6)

with dist[x,C] denoting the distance from x to a set C. The concept of inradius has
been discussed in detail in [22, 23] and also in earlier references like [6, 7, 11, 13,
14, 28, 32]. Note that ρ(K) corresponds to the optimal value of the maximization
problem

maximize r (7)

‖x‖ = 1

r ∈ [0, 1]

x+ rBd ⊂ K.

Geometrically speaking, the optimization problem (7) is about finding a ball of largest
radius centered at a unit vector and contained in K. This observation explains why
the term (6) measures to which extent the cone K is solid. In fact, the function
K 7→ ρ(K) is a solidity index in the axiomatic sense of [28].
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The following lemma by Henrion and Seeger [23] tells how to compute the inradius
of an epigraphical cone. This result is not absolutely general because the associated
nonnegative sublinear function is required to be even.

Lemma 3.1. If the nonnegative sublinear function f : Rn → R is even, then

ρ(epi f) = [1 + β2
f ]

−1/2

with
βf := max

y∈∂f(0n)
‖y‖ = max

‖x‖=1
f(x).

With this lemma at hand one can derive a number of new results. For instance, one
can obtain a rule for computing the inradius of an epigraphical cone whose associated
nonnegative sublinear function has the decomposable structure

f(x) = N (ϕ(x1, . . . , xm), ψ(xm+1, . . . , xn)) (8)

with N standing for a norm in R
2 that is monotonic in the sense that

|a1| ≤ |c1| and |a2| ≤ |c2| imply N (a1, a2) ≤ N (c1, c2).

The next theorem involves the expression

N⊗(b1, b2) := max
a2
1
+a2

2
=1

N (a1b1, a2b2),

which is yet another monotonic norm on R
2, not to be confused with the dual norm

of N .

Theorem 3.2. Let N be a monotonic norm in R
2 and let 2 ≤ m ≤ n− 1. Suppose

that the nonnegative sublinear functions ϕ : Rm → R and ψ : Rn−m → R are even.
Then the inradius of the epigraphical cone

KN
ϕ,ψ := {(x, t) ∈ R

n+1 : N (ϕ(x1, . . . , xm), ψ(xm+1, . . . , xn)) ≤ t}

is given by

ρ(KN
ϕ,ψ) =

[
1 +

(
N⊗(βϕ, βψ)

)2]−1/2

.

Proof. The function f given by (8) satisfies the hypotheses of Lemma 3.1. By
splitting

x = (x1, . . . , xm︸ ︷︷ ︸
u

, xm+1, . . . , xn︸ ︷︷ ︸
v

) (9)

into two group of variables, one obtains

βf = max
‖u‖2+‖v‖2=1

N (ϕ(u), ψ(v))

= max
a2
1
+a2

2
=1

a1≥0,a2≥0

max
‖u‖=a1
‖v‖=a2

N (ϕ(u), ψ(v)) . (10)



A. Seeger / Epigraphical Cones I 1179

But

max
‖u‖=a1
‖v‖=a2

N (ϕ(u), ψ(v)) = N
(

max
‖u‖=a1

ϕ(u), max
‖v‖=a2

ψ(v)

)
= N (a1βϕ, a2βψ) ,

where the first equality is due to the monotonicity of N . That N is monotonic has
further consequences: it implies that N (c1, c2) = N (|c1|, |c2|) for all (c1, c2) ∈ R

2.
Hence, the constraints a1 ≥ 0, a2 ≥ 0 in (10) are superfluous. This shows that
βf = N⊗(βϕ, βψ) and completes the proof of the theorem.

The example below illustrates how Theorem 3.2 works in practice.

Example 3.3. Consider the convex cone

K =

{
(x, t) ∈ R

n+1 : max
1≤k≤m

|xk| +
n∑

k=m+1

|xk| ≤ t

}
.

Here ϕ is the ℓ∞-norm on R
m, ψ is the ℓ1-norm on R

n−m, and N (c1, c2) = |c1|+ |c2|.
Hence,

N⊗(b1, b2) = [b21 + b22]
1/2, βϕ = 1, βψ =

√
n−m.

One gets in this way ρ(K) = [2 + n−m]−1/2.

The monotonicity of N is an essential assumption in Theorem 3.2. For instance, a
norm like N (c1, c2) = |c1| + |c2 − c1| would not be acceptable. On the other hand,
Theorem 3.2 admits a more general formulation in which the vector x ∈ R

n is split
into several portions, and not just into two portions as in (9).

The next proposition provides a rule for computing the inradius of an intersection of
epigraphical cones.

Proposition 3.4. If the nonnegative sublinear functions f1, f2 : Rn → R are even,
then

ρ(epi f1 ∩ epi f2) = min{ρ(epi f1), ρ(epi f2)}.

Proof. It is enough to combine (2), Lemma 3.1, and the fact that βf1∨f2 =
max{βf1 , βf2}.

The next example illustrates the usefulness of Proposition 3.4. It concerns the inter-
section of two elliptic cones.

Example 3.5. The inradius of an elliptic cone E(Q) is related to the maximal eigen-
value of the corresponding matrix Q. Indeed, if one sets f(x) =

√
〈x,Qx〉, then

βf = max
‖x‖=1

√
〈x,Qx〉 =

√
λmax(Q) ,

and Lemma 3.1 yields
ρ(E(Q)) = [1 + λmax(Q)]

−1/2. (11)

If Q1, Q2 are two positive definite symmetric matrices of order n, then one gets

ρ(E(Q1) ∩ E(Q2)) = [1 + max{λmax(Q1), λmax(Q2)}]−1/2 .
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Next we state a rule for computing the inradius of a Minkowski sum of epigraphical
cones.

Proposition 3.6. If the nonnegative sublinear functions f1, f2 : Rn → R are even,
then

ρ(epi f1 + epi f2) = [1 + β2]−1/2

with β being the optimal value of the nonconvex optimization problem

maximize {‖y‖ : y ∈ ∂f1(0n) ∩ ∂f2(0n)}. (12)

If f1 and f2 are norms, then (12) can be reformulated in the simpler form

maximize ‖y‖
f ◦
1 (y) ≤ 1

f ◦
2 (y) ≤ 1.

Proof. The combination of (3) and Lemma 3.1 yields

ρ(epi f1 + epi f2) = [1 + ‖C‖2]−1/2,

where ‖C‖ := maxy∈C ‖y‖ and

C = ∂(f1�f2)(0n) = ∂f1(0n) ∩ ∂f2(0n).

Suppose now that f1 and f2 are norms. In such a case, f ◦
1 and f ◦

2 are norms as well,
and

∂fk(0n) = {fk ≤ 1}◦ = {f ◦
k ≤ 1}

for k ∈ {1, 2}.
Example 3.7. Let Q1, Q2 be positive definite symmetric matrices of order n. Then

ρ(E(Q1) + E(Q2)) = [1 + χ]−1/2

with χ standing for optimal value of the nonconvex quadratic optimization problem

maximize ‖y‖2 (13)

〈y,Q−1
1 y〉 ≤ 1

〈y,Q−1
2 y〉 ≤ 1.

This follows from Proposition 3.6 and the fact that f ◦
k (y) =

[
〈y,Q−1

k y〉
]1/2

. The
geometric interpretation of (13) is clear: one searches for a vector of largest norm
that lies in the intersection of two ellipsoids. The optimization problem (13) is very
interesting in itself and has been studied by a number of authors, see [3, 20, 21, 38, 39]
and references therein.

Proposition 3.8. If the nonnegative sublinear functions f1, f2 : Rn → R are even,
then

ρ(epi f1 ⊕v epi f2) = [1 + β2
v]

−1/2

ρ(epi f1 ⊕h epi f2) = [1 + β2
h]

−1/2
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with

βv = max{‖y‖ : y ∈ ∂f1(0n) + ∂f2(0n)}
βh = max{‖y‖ : y ∈ ∂f1(0n)△ ∂f2(0n)}.

Proof. It is a matter of combining Proposition 2.5 and Lemma 3.1.

Remark. If f1, f2 are norms, then βv is the optimal value of the nonconvex opti-
mization problem

maximize ‖u+ v‖
f ◦
1 (u) ≤ 1

f ◦
2 (v) ≤ 1.

3.1. Intermezzo: a tale of multispectra

As mentioned before, the inradius of an elliptic cone E(Q) is related to the maximal
eigenvalue of the corresponding matrix Q. We now explain how the formula (11) can
be extended to the context of a vertical sum

KQ := E(Q1)⊕v . . .⊕v E(QN)

=

{
(x, t) ∈ R

n+1 :
N∑

k=1

√
〈x,Qkx〉 ≤ t

}

of finitely many elliptic cones. Here Q = {Q1, . . . , QN} is a collection of positive
definite symmetric matrices of order n.

The next proposition provides a formula for computing ρ(KQ). Before stating such
result in a proper manner, we need first to open a parenthesis and recall some facts
on multispectra. The so-called Multivariate Eigenvalue Problem (MEP) consists in
finding real numbers λ1, . . . , λN such that the linear system





A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N
...

...
. . .

...
AN,1 AN,2 . . . AN,N









ξ1
ξ2
...
ξN




=





λ1ξ1
λ2ξ2
...

λNξN




(14)

admits a solution (ξ1, . . . , ξN) ∈ (Rn)N satisfying the N -fold normalization condition

‖ξ1‖ = 1, . . . , ‖ξN‖ = 1. (15)

The multispectrum of the block structured matrix

A = [Ai,j]i,j∈{1,...,N} (16)

is denoted by msp(A) and is defined as the set of N -tuples (λ1, . . . , λN) for which the
system (14)–(15) is solvable.
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A concrete MEP for a symmetric block structured matrix (16) was introduced for
the first time by Hotelling [27]. The specific problem treated by Hotelling concerns
the determination of canonical correlation coefficients for multivariate statistics. An
iterative method for solving MEP’s was proposed by Horst [25]. For additional in-
formation on theoretical aspects and algorithms for solving MEP’s, the reader is
conveyed to the references [2, 10, 19, 26]. The only thing one needs to know here
about multispectra is the next lemma. Its proof is a simple matter of applying the
technique of Lagrange multipliers and proceeding as in [2, Proposition 2.2].

Lemma 3.9 (Variational Principle for Multispectra). If the block structured
matrix (16) is symmetric, then msp(A) is nonempty and the maximal value of the
quadratic form

qA(ξ) =

〈


ξ1
...
ξN



 , A




ξ1
...
ξN





〉

on the multisphere (Sn)
N is equal to

max

{
N∑

k=1

λk : (λ1, . . . , λN) ∈ msp(A)

}
.

We now are ready to state:

Proposition 3.10. Let Q = {Q1, . . . , QN} be a finite collection of positive definite
symmetric matrices of order n. Then

ρ(KQ) = [1 + χQ]
−1/2 (17)

with

χQ = max

{
N∑

k=1

λk : (λ1, . . . , λN) ∈ msp(AQ)

}
(18)

and AQ denoting the symmetric block structured matrix whose (i, j)-block is given by

Q
1/2
i Q

1/2
j .

Proof. Proposition 3.8 extends to the vertical sum of N elliptic cones and yields
(17) with χQ denoting the optimal value of

χQ = max






∥∥∥∥∥

N∑

k=1

ηk

∥∥∥∥∥

2

: 〈ηk, Q−1
k ηk〉 ≤ 1 for all k ∈ {1, . . . , N}




 . (19)

The inequality constraints in (19) are all active at a solution. This fact and the

change of variables ξk = Q
−1/2
k ηk lead to the equivalent formulation

χQ = max






∥∥∥∥∥

N∑

k=1

Q
1/2
k ξk

∥∥∥∥∥

2

: ‖ξ1‖ = 1, . . . , ‖ξN‖ = 1




 . (20)
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Note that

∥∥∥∥∥

N∑

k=1

Q
1/2
k ξk

∥∥∥∥∥

2

=
N∑

i=1

N∑

j=1

〈ξi, Q1/2
i Q

1/2
j ξj〉 =

〈


ξ1
...
ξN



 , AQ




ξ1
...
ξN





〉

is the quadratic form associated to AQ. Finally, passing from (20) to (18) is a matter
of applying Lemma 3.9.

4. Degree of pointedness of an epigraphical cone

As explained in [28, 30], there are many ways of measuring the degree of pointedness
of a nontrivial closed convex cone K in R

d. One can use for instance the coefficient

µ(K) := min
z∈co(K∩ Sd)

‖z‖ (21)

whose geometric meaning is clear: the minimization problem (21) is about finding
the least norm element of the convex set co(K ∩ Sd). One refers to the number
µ(K) as the basic pointedness coefficient of K. General information on the function
K 7→ µ(K) can be found scattered in a number of references [22, 23, 28, 32].

By definition, the basic pointedness coefficient of epi f is given by

µ(epi f) = min
{√

‖x‖2 + t2 : (x, t) ∈ co [epi f ∩ Sn+1]
}
. (22)

Some simplification is achieved in (22) if the nonnegative sublinear function f is even.
Indeed, under such assumption one obtains the simpler expression

µ(epi f) = min {t : (0n, t) ∈ co [epi f ∩ Sn+1]} . (23)

Obtaining an explicit characterization of the convex hull of epi f ∩ Sn+1 is however a
hard task. The next result tells how to compute the minimal value (23) in practice.
One can see Lemma 4.1 as a sort of dual version of Lemma 3.1.

Lemma 4.1. If the nonnegative sublinear function f : Rn → R is even, then

µ(epi f) =
αf√
1 + α2

f

(24)

with
αf := min

‖x‖=1
f(x). (25)

Proof. Consider first the case αf = 0, that is, f(x̄) = 0 for some x̄ ∈ Sn. Since
f is even, one also has f(−x̄) = 0. Hence, epi f is not pointed because it contains
the line R (x̄, 0). In short, both sides of (24) are equal to zero. Consider now the
case αf 6= 0, that is, f vanishes only at 0n. By Proposition 2.1 one knows already
that epi f is pointed. Recall that f is also even. Thus, f and f ◦ are norms. On the
other hand, according to a duality result stated in [28, Proposition 6.3], one can write
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µ(K) = ρ(K+) for any nontrivial closed convex cone K in R
d. Hence, by combining

Theorem 2.6 and Lemma 3.1 one gets

µ(epi f) = ρ((epi f)+) = [1 + γ2f ]
−1/2

with γf = max‖y‖=1 f
◦(y). The rest of the proof consists in showing that γf = 1/αf ,

but this equality is known or ought to be known. In fact, it follows from the general
identity

min
x 6=0

g(x)

h(x)
= min

y 6=0

h◦(y)

g◦(y)
(26)

that applies to any pair g, h of norms on R
n.

The next two corollaries are given only with a sketch of proof because everything is
more or less the same as in Section 3.

Corollary 4.2. If the nonnegative sublinear functions f1, f2 : R
n → R are even, then

µ(epi f1 + epi f2) = min{µ(epi f1), µ(epi f2)}. (27)

Proof. If αf1 or αf2 is equal to 0, then epi f1 or epi f2 is not pointed. In such a case
the Minkowski sum epi f1+epi f2 is not pointed either. Hence, both sides of (27) are
equal to 0. Suppose now that αf1 and αf2 are both different from 0. In such a case,
f1 and f2 are norms. One gets

µ(epi f1 + epi f2) = ρ
(
(epi f1 + epi f2)

+
)

= ρ (epi f ◦
1 ∩ epi f ◦

2 )

= min {ρ (epi f ◦
1 ) , ρ (epi f

◦
2 )}

= min {µ (epi f1) , µ (epi f2)} .

We have omitted some easy intermediate steps.

Corollary 4.3. If the nonnegative sublinear functions f1, f2 : R
n → R are even, then

µ(epi f1 ∩ epi f2) =
α√

1 + α2

with α = minx∈Sn max{f1(x), f2(x)}. If f1 and f2 are norms, then one can also write

µ(epi f1 ∩ epi f2) = [1 + β2]−1/2

with β standing for the optimal value of the nonconvex optimization problem

maximize ‖x‖
f1(x) ≤ 1

f2(x) ≤ 1.
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Proof. The first formula is obtained by applying Lemma 4.1 to f1∨f2. Unfortunately,
the number α is not always easy to evaluate. If f1 and f2 are norms, then one can
proceed a bit further by using duality arguments. More precisely, one can write

µ(epi f1 ∩ epi f2) = ρ
(
(epi f1 ∩ epi f2)

+
)

= ρ (epi f ◦
1 + epi f ◦

2 )

and then one can apply Proposition 3.6 to the pair f ◦
1 , f

◦
2 .

Example 4.4. Let Q1, Q2 be positive definite symmetric matrices of order n. Then

µ(E(Q1) ∩ E(Q2)) = [1 + χ]−1/2

with χ standing for optimal value of the nonconvex quadratic optimization problem

maximize ‖x‖2
〈x,Q1x〉 ≤ 1

〈x,Q2x〉 ≤ 1.

5. Angular structure of an epigraphical cone

5.1. Maximal angle

The maximal angle of a nontrivial closed convex cone K in R
d is defined as the

number
θmax(K) := max

z,v∈K∩ Sd

arccos 〈z, v〉. (28)

One of the reasons why the maximal angle of a convex cone is a mathematical tool
of interest is that the coefficients

γ(K) := 1− θmax(K)

π

ν(K) := cos

(
θmax(K)

2

)

also serve to measure the degree of pointedness of K. Both of them qualify as
pointedness index in the axiomatic sense of [28]. The maximal angle function K 7→
θmax(K) has however many other uses.

One says that (y, z) is an antipodal pair ofK if y and z are unit vectors inK achieving
the maximal angle of the cone, i.e.,

y, z ∈ K ∩ Sd and arccos 〈z, v〉 = θmax(K).

Antipodality in convex cones has been extensively theorized in [29, 33, 34]. The value
(28) has been computed in [17, 24, 31] for several particular convex cones arising in
applications. The case of an epigraphical cone is discussed next.

Suppose for a moment that f : Rn → R is a positive sublinear function, so that Bf

is compact. If one looks at the formula (1), then the first idea that comes to mind is
that finding an antipodal pair of epi f is somewhat related to the problem of finding
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two points in Bf that are at maximal distance. Unfortunately, solving the diameter
maximization problem

diam(Bf ) = max
u,v∈Bf

‖u− v‖ (29)

is of no use, and, what is worse, it may lead to wrong conclusions. Since

(epi f) ∩ Sn+1 =

{
(x, 1)√
1 + ‖x‖2

: x ∈ Bf

}
,

what we have to compute is

cos [θmax(epi f)] = min
u,v∈Bf

〈u, v〉+ 1√
1 + ‖u‖2

√
1 + ‖v‖2

.

This can be reformulated as

√
2
√

1− cos [θmax(epi f)] = max
u,v∈Bf

d̂ (u, v) (30)

with

d̂ (u, v) :=

∥∥∥∥∥
(u, 1)√
1 + ‖u‖2

− (v, 1)√
1 + ‖v‖2

∥∥∥∥∥ .

One has to evaluate the “diameter� of Bf after all, but with respect to the metric

d̂ and not with respect to the usual metric of Rn. The next example shows that a
solution to (29) is not necessarily a solution to (30).

Example 5.1. Let f : R2 → R be the positive sublinear function whose set Bf is
the triangle of vertices a = (100, 0), b = (0,−100), and c = (−40, 1). The diameter of
Bf is 100

√
2 and this value is achieved with the pair (a, b). However, this pair does

not solve the maximization problem (30) because

d̂ (a, c) =

∥∥∥∥
(100, 0, 1)√
1 + 1002

− (−40, 1, 1)√
1 + 402 + 1

∥∥∥∥ ≈ 2.0

is greater than

d̂ (a, b) =

∥∥∥∥
(100, 0, 1)√
1 + 1002

− (0, 100, 1)√
1 + 1002

∥∥∥∥ ≈ 1.4.

Example 5.1 concerns a function f that is not even. The next theorem tells how to
compute the maximal angle of epi f when f is even.

Theorem 5.2. Suppose that the nonnegative sublinear function f : Rn → R is even.
Then

θmax(epi f) = 2 arccos



 αf√
1 + α2

f



 = arccos

(
α2
f − 1

α2
f + 1

)
. (31)
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The maximal angle of epi f is formed with the unit vectors

1√
1 + α2

f

(x, αf ) and
1√

1 + α2
f

(−x, αf ) , (32)

where x ∈ Sn is any solution to the minimization problem (25).

Proof. The second equality in (31) follows from a general trigonometric identity,
namely, the formula for the cosine of the half-angle. If αf = 0, then the three terms
in (31) are equal to π and this angle is attained with the vectors (x, 0) and (−x, 0).
Suppose then that αf 6= 0, in which case f is a norm. Let ϑf denote the maximal
angle that a unit vector of epi f forms with respect to the canonical vector en+1.
Hence, cosϑf is equal to the optimal value of the minimization problem

minimize 〈0n, u〉+ 1t

(u, t) ∈ epi f

‖u‖2 + t2 = 1.

Since this minimum is attained on the boundary of epi f , the constraint (u, t) ∈ epi f
can be converted into f(u) = t. By getting rid of the variable t, one obtains

cosϑf = min {f(u) : ‖u‖2 + [f(u)]2 = 1}.

A positive homogeneity argument leads to

cosϑf = min
u6=0n

f(u)√
‖u‖2 + [f(u)]2

= min
u6=0n

[
1 +

( ‖u‖
f(u)

)2
]−1/2

=

[
1 +

(
min
u6=0n

f(u)

‖u‖

)−2
]−1/2

.

We have shown in this way that

cosϑf =
(
1 + α−2

f

)−1/2
= αf/

(
1 + α2

f

)1/2
.

The evenness of f has not been used yet. This property is needed for proving the
following claim:

θmax(epi f) = 2ϑf . (33)

From the very definition of ϑf one sees that epi f is contained in the revolution cone

rev(ϑf ) =
{
(u, t) ∈ R

n+1 : (cosϑf )
√

‖u‖2 + t2 ≤ t
}

= {(x, t) ∈ R
n+1 : (tanϑ)−1‖x‖ ≤ t}
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whose axis is generated by en+1 and whose half-aperture angle is equal to ϑf . Hence,

θmax(epi f) ≤ θmax(rev(ϑf )) = 2ϑf .

On the other hand, both vectors in (32) have unit length and belong to epi f . There-
fore

θmax(epi f) ≥ arccos

(
〈x,−x〉+ α2

f

1 + α2
f

)
= arccos

(
α2
f − 1

α2
f + 1

)
= 2θf .

This confirms the claim (33) and completes the proof.

Remark. If f is not even, then the second vector in (32) does not belong necessarily
to epi f . It is still possible to write

θmax(epi f) ≤ 2 arccos



 αf√
1 + α2

f



 ,

but this inequality may be very coarse. To see this one must construct an epigraphical
cone whose associated sublinear function is not even, but highly skewed.

By combining Lemma 3.1 and Theorem 5.2 one gets the following by-product.

Corollary 5.3. If the nonnegative sublinear function f : R
n → R is even, then

ν(epi f) = µ(epi f).

5.2. Minimal angle

The maximal angle of a convex cone is one side of the story. The other side is the
minimal angle. In fact, between the maximal and the minimal one there is a full
collection of intermediate critical angles.

Definition 5.4. LetK be a closed convex cone of Rd and let z, v be unit vectors inK.

i) That (z, v) is a critical pair of K means that v−〈z, v〉z ∈ K+ and z−〈z, v〉v ∈
K+.

ii) The angle θ(z, v) = arccos 〈z, v〉 formed by a critical pair is called a critical
angle. A critical pair (u, v) and the corresponding critical angle θ(u, v) are said
to be proper if u and v are not collinear.

iii) The angular spectrum of K, indicated with the symbol asp(K), is the set of
all proper critical angles of K. The smallest element of this set is denoted by
θmin(K) and called the minimal angle of K.

The criticality conditions formulated in i) can be seen as first order optimality con-
ditions for the angle maximization problem (28). General information concerning
the theory of critical angles in convex cones can be found in the standard references
[29, 33, 34].

The next proposition provides a formula for computing the minimal angle of an
epigraphical cone associated to a norm.
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Proposition 5.5. Let f be a norm on R
n. Then

θmin(epi f) = 2 arcsin



 1√
1 + β2

f



 = arcsin

(
2βf

1 + β2
f

)
. (34)

Proof. In the present context the cone epi f is solid and pointed. In view of a duality
result for extremal angles established in [34, Theorem 3], one can write

θmin(epi f) = π − θmax((epi f)
+). (35)

By exploiting (35) and Theorems 2.6 and 5.2, one obtains

θmin(epi f) = π − θmax(epi f
◦) = π − 2 arccos



 δf√
1 + δ2f



 (36)

with δf = min‖y‖=1 f
◦(y). But the identity (26) shows that δf = 1/βf . By plugging

this value in (36) and simplifying one arrives at the first equality in (34). The second
equality in (34) is a general trigonometric identity.

We state without proof two immediate corollaries.

Corollary 5.6. If f is a norm on R
n, then

ρ(epi f) = sin

(
θmin(epi f)

2

)
.

Corollary 5.7. Let N be a monotonic norm in R
2 and let 2 ≤ m ≤ n − 1. Let

ϕ and ψ be norms on R
m and R

n−m, respectively. Then the minimal angle of the
epigraphical cone KN

ϕ,ψ is given by

ρ(KN
ϕ,ψ) = 2 arcsin

([
1 +

(
N⊗(βϕ, βψ)

)2]−1/2
)
.

Example 5.8. Consider the ℓp-cone Kp with p ∈ [1,∞]. In this case f = ‖ · ‖p
and the computation of αf and βf offers no difficulty. By applying Theorem 5.2 and
Proposition 5.5 one gets

cos

(
θmax(Kp)

2

)
=






(
1 + n1− 2

p

)−1/2

if p ∈ [2,∞]

2−1/2 if p ∈ [1, 2]

and

sin

(
θmin(Kp)

2

)
=






(
1 + n

2

p
−1
)−1/2

if p ∈ [1, 2]

2−1/2 if p ∈ [2,∞].

In particular,

θmax(K∞) = 2 arccos
(
1/
√
1 + n

)
, θmin(K∞) = π/2,

θmin(K1) = 2 arcsin
(
1/
√
1 + n

)
, θmax(K1) = π/2.
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5.3. Critical angles

Identifying the critical angles of a convex cone is in general a difficult task. The next
theorem tells how to construct critical pairs in an epigraphical cone associated to a
norm. The key ingredient of the discussion is the concept of umbilical point for a
positive sublinear function f : Rn → R. From the very definition of polar function it
follows that

f ◦(y)f(x) ≥ 〈y, x〉 for all x, y ∈ R
n.

An umbilical point of f is a nonzero vector u ∈ R
n such that f ◦(u)f(u) = ‖u‖2.

Of course, any positive multiple of an umbilical point is an umbilical point. The
umbilical spectrum of f is the set

usp(f) :=

{
f(u)

‖u‖ : u is an umbilical point of f

}
.

Each element of this set is called an umbilical value of f .

Example 5.9. Let Q be a positive definite symmetric matrix of order n. As pointed
out in [34, Lemma 1], a nonzero vector u ∈ R

n satisfies the relation

〈u,Q−1u〉〈u,Qu〉 = ‖u‖4

if and only if u is an eigenvector of Q. Hence, the umbilical points of the norm
f = Ψ∗

E(Q) are the eigenvectors of Q, and

usp(Ψ∗
E(Q)) =

{√
〈u,Qu〉
‖u‖ : u is an eigenvector of Q

}

=
{√

λ : λ is an eigenvalue of Q
}
.

This norm admits at most n umbilical values.

The next proposition shows that the umbilical points of a positive sublinear function
f are exactly the eigenvectors of the subdifferential map ∂f . A nonzero vector u ∈ R

n

is called an eigenvector of a multivalued map A : Rn ⇉ R
n if there exists a scalar

λ ∈ R such that λu ∈ A(u). In such a case one refers to λ as an eigenvalue of A
associated to the eigenvector u.

Proposition 5.10. Let f : Rn → R be a positive sublinear function. Then u is an
umbilical point of f if and only if u is an eigenvector of ∂f .

Proof. We suppose that u 6= 0n, otherwise there is nothing to prove. That u is an
umbilical point of f amounts to saying that u solves the maximization problem

f ◦(u) = max
x 6=0n

〈u, x〉
f(x)

.

Equivalently, u solves the convex optimization problem

f ◦(u) = max
f(x)≤f(u)

〈u, x〉
f(u)

. (37)
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The so-called Slater qualification hypothesis holds for (37). Hence, for u to solve (37)
it is necessary and sufficient that

u

f(u)
∈ η ∂f(u) (38)

for some Karush-Kuhn-Tucker multiplier η ≥ 0. Since the left-hand side of (38) is a
nonzero vector, the multiplier η must be positive. Thus, (38) can be written in the
form λu ∈ ∂f(u) with λ = [ηf(u)]−1. This proves the proposition.

We now are ready to state:

Theorem 5.11. Let f be a norm on R
n. The vectors (x, t) and (y, s) form a proper

critical pair of epi f if and only if the following three conditions hold:

(a) y = −x.
(b) s = t =

√
1− ‖x‖2 = f(x).

(c) x is an umbilical point of f .

Proof. We start with the “if� part. Suppose that the system (a)–(c) is in force. We
must prove that the vectors

(x, t) = (x, f(x)) (39)

(y, s) = (−x, f(x)) (40)

form a proper critical pair of epi f . These vectors have unit length because

[f(x)]2 + ‖x‖2 = 1. (41)

Clearly, (39) belongs to epi f . The vector (40) also belongs to epi f because f is even.
Since (39) and (40) are not collinear, their inner product

λ = 〈(x, f(x)), (−x, f(x))〉 = [f(x)]2 − ‖x‖2 = 1− 2‖x‖2

belongs to the open interval ]− 1, 1[. It remains to show that

(x, f(x))− λ (−x, f(x)) ∈ (epi f)+ (42)

(−x, f(x))− λ (x, f(x)) ∈ (epi f)+. (43)

Thanks to Theorem 2.6 and the fact that f is even, the system (42)–(43) reduces to

(1 + λ)f ◦(x) ≤ (1− λ)f(x). (44)

Since x is an umbilical point of f , there exists a positive scalar γ such that

f(x) = γ‖x‖ and f ◦(x) = (1/γ)‖x‖. (45)

In fact, γ is the umbilical value of f associated to x. Hence, the inequality (44)
becomes

(1 + λ) ≤ γ2(1− λ). (46)
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By combining (41) and (45) one gets ‖x‖2 = (1 + γ2)−1. Hence,

1 + λ = 2(1− ‖x‖2) = 2γ2/(1 + γ2)

γ2(1− λ) = 2γ2‖x‖2 = 2γ2/(1 + γ2).

This proves that (46) holds in fact as an equality. We now prove the “only if� part.
We assume that (x, t) and (y, s) form a critical pair of epi f . By criticality, we have

(x, t)− λ(y, s) ∈ (epi f)+ (47)

(y, s)− λ(x, t) ∈ (epi f)+ (48)

with λ = 〈x, y〉 + ts. Since f is even, both (−x, t) and (−y, s) also belong to epi f .
Multiplying the left hand side of (47) by (−x, t), one gets

0 ≤
〈
(−x, t), (x, t)− λ(y, s)

〉
= −‖x‖2 + t2 − λ(ts− 〈x, y〉).

By plugging the value of λ and rearranging, one obtains

0 ≤ t2(1− s2)− ‖x‖2 + 〈x, y〉2. (49)

Recall that (x, t) and (y, s) are vectors of unit length, i.e.,

‖x‖2 + t2 = 1, ‖y‖2 + s2 = 1. (50)

The combination of (49) and (50) produces

0 ≤ (1− ‖x‖2)‖y‖2 − ‖x‖2 + 〈x, y〉2,

and therefore
‖x‖2 − ‖y‖2 ≤ 〈x, y〉2 − ‖x‖2‖y‖2 ≤ 0. (51)

By the same token, multiplying the left hand side of (48) by (−y, s) leads to

‖y‖2 − ‖x‖2 ≤ 〈x, y〉2 − ‖x‖2‖y‖2 ≤ 0. (52)

By combining (51) and (52) one gets

0 = ‖x‖2 − ‖y‖2 = 〈x, y〉2 − ‖x‖2‖y‖2.

Hence, y = ±x and t = s. The case y = x must be ruled out because we are assuming
properness of the critical pair {(x, t), (y, s)}. We conclude that y = −x, establishing
(a). The first equality in (b) has also been proved. The second one is contained in
(50), and the third one follows from the fact that (x, t) is necessarily in the boundary
of epi f . Next we prove (c). By using (47) and the parts (a) and (b), one gets the
inequality (44) and

1 + λ = 2[f(x)]2,

1− λ = 2‖x‖2.

These three relations together yield

2[f(x)]2f ◦(x) ≤ 2‖x‖2f(x),

that is, f(x)f ◦(x) ≤ ‖x‖2. This proves that x is an umbilical point of f .
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The proof of Theorem 5.11 is very much in the spirit of [34, Theorem 5], but the
novelty of our approach is the introduction and use of the concept of umbilicity. As
a complement to Theorem 5.11 we provide below a full description of the angular
spectrum of epi f .

Theorem 5.12. If f is a norm on R
n, then

asp(epi f) =

{
arccos

(
γ2 − 1

γ2 + 1

)
: γ ∈ usp(f)

}
. (53)

Proof. Let γ be an umbilical value of f . Then γ = f(u)/‖u‖ for some umbilical
point u of f . The “if� part of Theorem 5.11 shows that the vectors

(x, t) =
1√

[f(u)]2 + ‖u‖2
(u, f(u)) (54)

(y, s) =
1√

[f(u)]2 + ‖u‖2
(−u, f(u)) (55)

form a proper critical pair of epi f . Hence, the corresponding angle

θ = arccos

(
[f(u)]2 − ‖u‖2
[f(u)]2 + ‖u‖2

)
= arccos

(
γ2 − 1

γ2 + 1

)
(56)

is a proper critical angle of epi f . This proves the “⊃� part of the equality (53).
Conversely, let θ be a proper critical angle of epi f . Suppose that θ is formed with
the proper critical pair {(x, t), (y, s)}. Due to the “only if� part of Theorem 5.11,
one must have (54)–(55) for some umbilical point u of f . Hence, θ has the form (56)
with γ = f(u)/‖u‖. This completes the proof of (53).

Remark. If f is a norm on R
n, then the angular spectrum of epi f can also be

represented as

asp(epi f) =

{
arccos

(
f(u)− f ◦(u)

f(u) + f ◦(u)

)
: u umbilical point of f

}
.

Since (f ◦)◦ = f , the norms f and f ◦ have the same umbilical points and

asp(epi f ◦) =

{
arccos

(
f ◦(u)− f(u)

f ◦(u) + f(u)

)
: u umbilical point of f

}
.

Note that θ is a proper critical angle of epi f ◦ if and only if π − θ is a proper critical
angle of epi f .

It is worthwhile to mention that (53) can be inverted so as to get a characterization
for the umbilical spectrum of a norm:

usp(f) =

{√
1 + cos θ

1− cos θ
: θ ∈ asp(epi f)

}
. (57)

In practice, the relation (57) is less interesting than (53) because asp(epi f) is usually
hard to compute. However, (57) has some theoretical relevance. For instance, since
a polyhedral cone is known to have finitely many critical angles, one gets:
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Corollary 5.13. A polyhedral norm on R
n has finitely many umbilical values.

6. By way of conclusion

This completes the first part of our work on epigraphical cones. The companion
paper [42] presents additional material on this topic: smoothness and rotundity in
epigraphical cones, facial analysis, etc. Applications of epigraphical cones in opti-
mization theory are also considered. In particular, [42] provides rules for constructing
barrier functions for epigraphical cones.
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