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Stationarity of a stochastic process seems connected to the idea of constancy. But ergodicity is
needed for the property that almost surely the observation of a trajectory from time −∞ to 0 makes
possible the identification of the law of the whole process, including the future. When the stationary
process is a Markov chain with a finite number of states it is well known that the set of states divides
into ergodic classes1.

Decomposition of more general stationary processes in ergodic classes goes back to von Neumann.
This result has been improved and/or rediscovered several times, and it received a lot of different
proofs. Its philosophical interpretation as the concept of contingency does not seem given in the
literature. After some preliminaries we will survey a part of the most basic results.

Added in December 2010. This text was written in November 2000; I keep it unchanged except
for small necessary modifications. It is what should be published in place of [65] if there did not
happen a misunderstanding (see [66] for essentially a bibliographical supplement).

1. Introduction

Very often in contemporary papers the authors assume that a stochastic process is
ergodic because under the weaker hypothesis of stationarity their proofs no longer
hold. One aim of this paper is to show that this difficulty may be immaterial.

A specially interesting problem is prediction. Stationarity (of a stochastic process –
for a precise definition see Section 2) seems connected to the idea of constancy. But
ergodicity is needed for the property that (almost surely of course) the observation
of a trajectory from time −∞ to 0 makes possible the identification of the law of
the whole process, including the future: this is made precise in Theorem 3.2 and the
consequence after (Mackey made similar observations: see reference to [43] at the end
of Section 3).

When the stationary process is a Markov chain with a finite number of states the
classical theory, already in Doob’s book [16, Chapter V], shows that the set of states
divides into ergodic classes. And when one observes a trajectory, this trajectory lives
in one ergodic class and it amounts (if only one observation is done which is the only
possibility if the time of the process is the one of our life) to the same thing as if the
process was ergodic.

1My first contact with Markov chains was in [54].
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Decomposition of more general stationary processes in ergodic classes goes back to
von Neumann [48, 1932, Theorem 2 p. 617]. This is a several times rediscovered
result rarely included in text books: Kallenberg [33, 1997, Theorem 9.12 p. 164]
is an exception (see also the more specialized books of Denker, Grillenberger and
Sigmund [15, 1976, pp. 73–74] and Kifer [36, 1986, Prop. 2.1 p. 23 and Th. 1.1 pp.
193–194], the survey of Mackey [43, 1974, pp. 192–193] and the course of Aldous [1,
1983, Theorem 12.10 p. 100]). Hopf [29, p. 31] refers to [48] and [38]. From Chersi
[7], Jacobs [31] (see in German [30, pp. 85–88]) and Mañé [46] treat the question.
All amounts to the following: there is a probability law which I call the contingency
law, λ, on the set of ergodic laws; firstly an ergodic law Q is chosen according to λ
and then the trajectory is chosen according to Q. Mackey says [44, p. 33]: “there is
seldom any loss in generality in restricting attention to those stationary stochastic
processes in which the associated measure preserving action is indeed ergodic� (see
also [43, p. 202]).

After some preliminaries we will review several statements. I tried gathering a rea-
sonable list of references (excluding works relevant to differential geometry or C∗-
algebras). Surely some other papers should be listed. I hope this paper will give
taste for the field to many readers.

As references for proofs see Choquet [8, 1956/57], Kryloff-Bogoliouboff [38, 1937]
way which was made a bit more precise by Oxtoby [53, 1952] and greatly generalized
by Dynkin [18, 1978]. As references for other formulations see Rohlin [58, 1949],
Maharam [45, 1950], Farrell [19, 1962], Varadarajan [67–68, 1963], Schmidt [59, 1978],
Shimomura [60–61, 1978–90], Kerstan-Wakolbinger [34–35, 1980], Chersi [7, 1987],
Zimmermann [69, 1992] and for a generalization to capacities Talagrand [62, 1978].

2. Stationary and ergodic processes

Let (K,K) be a measurable space (for the Choquet and Kryloff-Bogoliouboff points
of view, K will be compact metrizable). A stochastic process with discrete time
taking its values in K is a bilateral sequence (Xn)n∈Z of random variables (in short
r.v.) defined on a probability space (Ξ,S,Π) which take their values in K. The set
Ω = KZ is more fundamental than Ξ. It is still Borel standard when K is Borel
standard and compact metrizable when K is so. Let F = K⊗Z; when K is compact
and K = B(K), F = B(Ω), that is the product of the Borel tribes coincides with the
Borel tribe of the product topology. The law of the process, always denoted by P
in this paper, is the probability measure on (Ω,F) image of Π by ξ 7→ (Xn(ξ))n∈Z.

The “canonical� process (X̃n)n∈Z is defined on Ω by the property that X̃n is the n-th
coordinate function. In the sequel we do not use (Ξ,S,Π) and the canonical process
is simply denoted by (Xn)n∈Z.

A point ω = (xn)n∈Z ∈ Ω is a trajectory. The bijective map T of Ω in itself defined
by T

(
(xn)n∈Z

)
= (xn+1)n∈Z is the Bernoulli shift. It is an homeomorphism when K

is compact. The image of P by T is denoted by T#(P ).

Definition. The process (Xn)n∈Z is stationary if its law is invariant i.e. for any
A ∈ F , P (T−1A) = P (A) (that is T#(P ) = P ).
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Definitions. Let (Xn)n∈Z be a stationary process. The invariant events are the
A ∈ F satisfying T−1A = A (or TA = A). The set they constitute is a tribe denoted
by I. The process of law P is ergodic2 if I is coarse (up to P -negligible sets), that is
if A ∈ I ⇒ P (A) = 0 or 1. One also says that P is an ergodic law.

In ergodic theorems, T j denotes, when j ∈ Z
∗
+ = N

∗, the j-th power of T : T j =
T ◦ · · · ◦ T , T 0 = idΩ and, when j ∈ Z

∗
−, T

j denotes (T−1)|j|.

The notation δx denotes the Dirac measure at x.

3. Identification of the law of an ergodic process from the observation of

its past

Proposition 3.1 is elementary. It will be applied, when K is compact, to Λ = Ω = KZ

as well as to Λ = Kd.

Proposition 3.1. Let Λ be compact metrizable and D a dense subset3 of C(Λ) (usu-
ally D will be countable). Let (Pk)k∈N be a sequence of probability measures on Λ.
It weakly converges (i.e. for the weak topology relative to the duality with C(Λ)) iff
∀f ∈ D, the sequence (

∫
Λ
f dPk)k∈N converges in R.

Proof. The “only if� part is obvious. For the converse assume that ∀f ∈ D, the
sequence (

∫
Λ
f dPk)k∈N converges in R. The space M1

+(Λ) of all probability measures
on Λ is weakly compact metrizable. The sequence (Pk)k∈N has a unique limit point.
Indeed if Q1 and Q2 are two limit points, one has, for i = 1 and 2, ∀f ∈ D,

∫
Λ
f dQi =

limk

∫
Λ
f dPk hence Q1 = Q2.

Theorem 3.2. Assume that K is compact metrizable and that the process (Xn)n∈Z
with values in K is ergodic. Then almost surely, for all d ∈ N

∗, the law P(X−d+1,...,X0)

of (X−d+1, . . . , X0) is the weak limit of

k−1

k−1∑

j=0

δ(x
−(j+d−1),...,x−j)

as k → +∞.

Consequence. Hence P -almost surely, knowing (xn)n≤0 implies the knowledge of
P(X−d+1,...,X0) hence, for p ≤ q in Z, of P(Xp,Xp+1,...,Xq−1,Xq) since stationarity implies
P(Xp,...,Xq) = P(Xp−q,...,X0). Recall now that P is the projective limit of the measures4

P(Xp,...,Xq). So, mathematically, P can be identified; from a numerical point of view,
this is another story: see the numerous concepts defined and studied in Statistical
Theory.

Proof. Let d ∈ N
∗ and Dd be a countable dense subset of C(Kd). For any f ∈ Dd

let f̄ denote the function on Ω associated to f which is defined by: f̄
(
(xn)n∈Z

)
=

2Doob [16, p. 457], and several authors, say “metrically transitive”.
3It is sufficient that the linear subspace of C(Λ) spanned by D is dense.
4More simply, when the P(Xp,...,Xq) are known, the values of P on the algebra of cylindrical sets are
known, and this algebra generates B(Ω).
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f(x−d+1, . . . , x0). By Birkhoff’s theorem (it is in most text books but goes back to
the 1931 famous paper [4]), if (xn)n∈Z does not belong to a P -negligible set Nf ,

∫

Ω

f d

[
k−1

k−1∑

j=0

δ(x
−(j+d−1),...,x−j)

]
= k−1

k−1∑

j=0

f(x−(j+d−1), . . . , x−j)

= k−1

k−1∑

j=0

f̄
[
T−j

(
(xn)n

)]

(k→+∞)
−−−−−→

∫

Ω

f̄ dP

=

∫

Kd

f dP(X−d+1,...,X0).

By Proposition 3.1 this proves the convergence of k−1
∑k−1

j=0 δ(x−(j+d−1),...,x−j) to
P(X−d+1,...,X0) if (xn)n∈Z /∈

⋃
f∈Dd

Nf . So the statement holds for (xn)n∈Z not in
⋃

d∈N∗

[⋃
f∈Dd

Nf

]
.

Comment. The meaning of Theorem 3.2 is that almost surely the mere observation
of the past (from −∞) of an ergodic process allows to identify the law of the whole
process (including the future). From a theoretical point of view this is a perfect
situation for prediction. Indeed when Ω is written Ω = KZ− × KN∗

and ω = (ξ, ζ)
that is ξ = (xn)n≤0 = ω|Z−

and ζ = (xn)n>0 = ω|N∗ , there is a disintegration (see next
Section) of P unique up to equality a.e. which is a family (Lξ)ξ∈KZ

−
of probability

laws on KN∗

.

Then knowing ξ = (xn)n≤0, the future obeys to the conditional law Lξ onKN∗

. I wrote
this before reading of [43]: there another way to reconstruct the process law from
the complete past of one trajectory is exposed; see specially the bottom of page 204
till the end of Section 5 and the top of page 223. (On the subject of prediction of
stationary processes there is the ambitious book of Furstenberg [22, 1960]. It uses
systematically C∗-algebras.)

4. Basic ideas of disintegration

When a sub-tribe G of F is given, there exists under very general topological hypothe-
ses concerning Ω, a disintegration with respect to G, that is a family of probability
measures (Qω)ω∈Ω on (Ω,F) which is G-measurable in ω and which satisfies

∀B ∈ F , ∀A ∈ G, P (A ∩B) =

∫

A

Qω(B) dP (ω).

Let us consider, as it always should be, the conditional expectation EG(1B) as a class
of random variables up to equality a.s. The functions ω 7→ Qω(B) (B running through
F) constitute a “consistent�5 family of versions of the EG(1B).

5The problem if one chose anyhow versions of EG(1B) would lie in the σ-additivity with respect to
B. A classical expression for disintegration is regular conditional probabilities.
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This has a long story in probability theory: von Neumann [48], Kolmogorov [37],
Jirina [32], Hoffmann-Jørgensen [28], Valadier [63–64] for some details6. (For text-
books see Bauer [3], Dudley [17].) But disintegration is unduly considered as a hard
concept reserved to experts and, in my opinion, too rarely used.

Classically for any real integrable r.v. Y (see for example Dudley [17, 10.2.5 p. 272],
Doob [16, Th. 9.1 p. 27], Kolmogorov [37, Ch. V (12) and (14)]):

∫

Ω

Y (ω′) dQω(ω′)
a.s.
= (EGY )(ω).

An important particular case is the following. Suppose Ω is a product7 Ω1 × Ω2,
ω = (ξ, ζ) and G is generated by the projection on Ω1 (possibly ξ is the past, ζ is the
future). Then Qω depends only on ξ and has the form δξ ⊗ Lξ where δξ is the Dirac
mass at ξ and Lξ is the conditional law of ζ given ξ.

5. Decomposition of a stationary process. The contingency law

In the following P always denote a probability measure on Ω = KZ and we will say
equivalently that P is invariant or stationary. This refers to the stationarity of the
“canonical� process defined in Section 2. And P is said ergodic if the process is
ergodic. Although the decomposition theorem admits several non trivial proofs and
some variants in its formulation, it roughly says at least the following:

Theorem 5.1. Any stationary law P on Ω is a mixing of ergodic laws.

Comments. 1) All amounts to the following: there is a probability law which I call
contingency law, λ, on the set of ergodic laws; firstly an ergodic law Q is chosen
according to λ and then the trajectory is chosen according to Q. So, if only one
observation is done, one observes a trajectory of an ergodic process. And in my
opinion (I have rediscovered Mackey’s point of view), the prediction of stationary
processes is not a problem different from the prediction of ergodic ones.

2) For example imagine the set of meteorological phenomena appearing during one
year is the value of a stationary process with time in Z, and imagine that this process
has been always observed. Then it could be treated as an ergodic process: two moons
or another rotational velocity of the planet Earth could have occurred if the world
has been created differently. This is contingency.

3) Any probability is a mixing of Dirac measures: if P ∈ M1
+(R) it is the mixing of

the measures δr according to the image P of P on M1
+(R) by r 7→ δr. This has not

any interest. In the interpretation of Theorem 5.1 the roles of time, past and future
are essential.

6At the time when in France only Bourbaki and Jirina were quoted, I wrote [63] where I gave a result
of Hoffmann-Jørgensen [28] in the framework of a product and where I compared several statements
of this time. In [64, p. 13] I had the idea, being not aware of [23], of introducing the quotient tribe.
7To be more precise (Ω1,F1) is separated and countably generated and Ω2 is a “good” topological
space: Suslin is a quite general hypothesis (see [14]).
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5.1. Choquet’s way

Assume K is compact metrizable. Let M1
+(Ω) denote the set of probability measures

on (Ω,B(Ω)) endowed with the weak topology.

Theorem 5.2. Assume K is compact metrizable.

1) The set Lst of invariant probabilities on Ω is a non empty convex compact subset
of M1

+(Ω).

2) The set ∂Lst of extreme points of Lst coincide with the set of ergodic laws
denoted by Lerg.

3) Let P ∈ Lst. There exists a probability measure λ on ∂Lst = Lerg such that

P =

∫

Lerg

Qdλ(Q). (1)

(In (1) the right-hand side is a weak integral of measures whose meaning is as well

∀ϕ ∈ C(Ω),

∫

Ω

ϕdP =

∫

Lerg

[∫

Ω

ϕdQ

]
dλ(Q)

as

∀B ∈ B(Ω), P (B) =

∫

Lerg

Q(B) dλ(Q).)

Some ideas of the proof. The first assertion has an easy proof. The second is well
known of specialists and a rather old result: see Blum-Hanson [5, 1960] and Choquet
knew it before; I recommend the proof of Denker-Grillenberger-Sigmund [15, (5.6) p.
24]. Then the conclusion follows from the Choquet integral representation theorem
(besides the quoted works of Choquet one can see [6, IV.7.2 Th. 1 p. 219] and Phelps
[56, Section 10 pp. 77–85]).

Remarks. One or two year before Choquet, Hewitt-Savage [27, 1955] used the same
argument with the set of laws on R

I invariant by permutation of coordinates whose
extreme points are the laws of families of i.i.d. random variables (they continued a
famous work of de Finetti [20]; on this subject see Aldous [1]). But in [27] the set
of extreme points is closed which makes the integral representation elementary while

here Lerg is not closed (think of stationary Markov chains with matrices
(

1− 1
n

1
n

1
n

1− 1
n

)
,

for n ∈ N
∗, n → +∞).

5.2. Kryloff-Bogoliouboff’s way

We still assume K compact metrizable and denote by M1
+(Ω) the set of probability

measures on (Ω,B(Ω)) endowed with the weak topology. We will not prove the
next statement: see [38], [53] and [15] (the proofs of [18] and [33] contains very
good arguments but they do not use the peculiar feature that here T (as T−1) is
continuous).

Theorem 5.3. Assume K is compact metrizable.
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1) The subset of Ω

Ωerg :=

{
ω ∈ Ω :

1

n

n−1∑

j=0

δT jω weakly converges to an ergodic law

}
(2)

is Borel and has P -measure 1 for any invariant probability P .

2) Let, for ω ∈ Ωerg, Q
ω := lim 1

n

∑n−1
j=0 δT jω and Γω := {ω′ ∈ Ωerg : Qω′

= Qω}.
The set Γω is Borel (even Fσδ), invariant and Qω is carried by Γω.

3) The family (Qω)ω∈Ωerg disintegrates any invariant probability P relatively to I,
which means: it is I0-measurable (I0 is the tribe induced by I on Ωerg) and

∀B ∈ B(Ω), ∀A ∈ I, P (A ∩B) =

∫

A∩Ωerg

Qω(B) dP (ω) (3)

as well as, for any Y ∈ L1(Ω,F , P ) (or Y ≥ 0 and F-measurable),

(EI
PY )(ω)

P -a.s.

=

∫

Ω

Y dQω.

Remarks. 1) To be more precise Ωerg and Qω must be defined with bilateral limits
as in the following formula

Qω := lim
|n|→+∞

|n|−1
∑

|j|≤|n|−1
sgn j=sgnn

δT j(ω).

2) There are two equivalence relations: firstly

Qω = Qω′

(R1)

which makes sense on8 Ωerg and secondly

∀A ∈ I, 1A(ω) = 1A(ω
′). (R2)

Let us prove the invariance of Γω, the class of ω ∈ Ωerg for (R1). For any f ∈ C(Ω)
changing ω in Tω or in T−1ω does not change the Cesàro limit of the sequence(
f(T jω)

)
j
that is limn

∫
f dQω

n where Qω
n := 1

n

∑n−1
i=0 δT iω. Hence Q

Tω = QT−1ω = Qω,

so Tω and T−1ω both belong to Γω, and since T is bijective, TΓω = Γω.

The class of ω for (R2) is
.

ω = {T jω : j ∈ Z} because this is the smallest Borel
invariant set containing ω.

Thanks to the invariance of Γω relation (R2) is always finer than (R1). But in general
they do not coincide neither on Ωerg nor on Ω\N where N is any negligible set. Let
us give an example: let ̟ be a probability measure on K not reduced to a Dirac mass
and P := ̟⊗Z. Since the Xn are i.i.d. there is a unique class for (R1): the process is

ergodic (see for example [16, Th. 1.2 p. 460]) and Qω P -a.e.
= P . For any P -negligible N ,

8To be more precise Qω makes sense on the larger set Ωqr of “quasi-regular” points.
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Ω\N has the cardinal of R (because P is isomorphic to the Lebesgue measure). The
existence of only one class for (R2) would lead to a contradiction. Indeed, suppose
there is only the class

.

ω = {T jω : j ∈ Z}. For any ω′, ∃j ∈ Z such that ω′ = T jω
and the set Ω\N of trajectories under consideration would be countable.

The set Ω\Ωerg is not the biggest P -negligible set possible. For a discussion of neg-
ligible sets when K = {0, 1} in connection with the notion of random numbers see
Dellacherie [13].

3) Since (R2) is finer than (R1), ω 7→ Qω is constant on each class
.

ω; let Θ
.

ω denotes

its value on
.

ω and
.

Ω the set of all classes. Then as a consequence of (3), P is the

mixing of the ergodic laws Θ
.

ω (
.

ω ∈
.

Ω) according to the image of P on
.

Ω by ω 7→
.

ω.
Thus (3) looks as (1) of Theorem 5.2.

For historical works which attacked disintegrating P with respect to I see Halmos [23]
and Ambrose-Halmos-Kakutani [2]. Disintegration is used by Kallenberg in his proofs
[33, pp. 162–163] but with rather too much symbolical notations (in my opinion he
uses both the idea of using a determining class, as Varadarajan and later Dynkin did,
and a disintegration: he has a random variable ξ with values in (S,S) and the tribe
of invariant sets I; the kernel (s, B) 7→ µ(s, B) he considers disintegrates the image
of P on (S2, I ⊗ S) by ω 7→ (ξ(ω), ξ(ω))). McCutcheon [47, p. 120] discusses quickly
ergodic decomposition: he states a disintegration theorem and says that when the
sub-σ-algebra under consideration is that of invariant sets one get ergodic measures
(see the three lines paragraph after Theorem 4.3.3).

4) Dynkin proves many other results: specially he gets [18, Theorem 3.1] that Lst is
a simplex in the Choquet sense whose extreme points are the ergodic measures.

5.3. The case of measurable spaces

Most processes are unbounded R-valued ones, so the foregoing results do not directly
apply. One can consider R as a subspace of the compact R: this “respects� the
topology and introduces a compact over-space, but the big drawback is that R is not
closed in R.

Several authors obtained an ergodic decomposition under the hypothesis that9 (K,K)
is a Borel standard or Lusin measurable space, that is a measurable space isomorphic
to a Borel subset of a Polish topological space. Any Borel standard space (K,K) is
either countable, either has the cardinality of R. In the first case it is isomorphic to
{1, . . . , n} or to N ∪ {∞} (the tribe being that of all subsets). In the second case it
is isomorphic to ([0, 1],B([0, 1])). As a reference see [14, Appendice au chapitre III,
Th. 80 p. 249] (from many authors all properties of Borel standard spaces are proved
in Kuratowski’s book [39]).

Hence if (K,K) is Borel standard there exists a compact metrizable topology on K
whose Borel tribe coincide withK. The Bernoulli shift is still an homeomorphism ofKZ.
So the conclusion of Theorem 5.3 applies, including existence of the classes Γω, except
that the convergence in (2) is with respect to a possibly non natural topology on K.

9More precisely, when T is not the Bernoulli shift, the hypotheses concern (Ω,F).
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For example R is Borel standard. A direct way to check that R is isomorphic as
a measurable space to [0, 1] or to R is the following: Let ϕ : R → R defined by
ϕ(x) = x on R\N and any bijection from N onto N ∪ {−∞,+∞}. Of course when f
runs through C(R), f ◦ϕ runs through some subset of the set of all bounded borelian
functions on R.

Note that in Ergodic theory maybe three notions of isomorphisms can be used10:
one-to-one map between sets, one-to-one map between subsets of full measure and
isomorphism of the quotient σ-algebras such as F/P (the set A and B in F are
equivalent if P (A∆B) = 0). See Petersen [55, pp. 15–17] and (only for the two first
notions) [15, pp. 3–5].

Among all works treating Borel standard spaces we will mention two of them.

Maybe only Chersi [7] succeeded proving narrow convergence of the sequence (Qω
n)n;

surely this is thanks to the notion he used of Daniell integral.

Dynkin [18], developing his idea of sufficient statistic, covers with a unified approach
several other notions: Gibbs states, symmetric laws (de Finetti-Hewitt-Savage), su-
perharmonic functions... Now we will try giving a flavour of Dynkin’s paper. He
introduced the notion of “B-space� which some times later Ramakrishnan and Rao
in [57] proved it coincides with the notion of Borel standard. Let F̃ denote the set of
all real bounded F -measurable functions on Ω. Dynkin gets the existence of a “deter-
mining� set of measurable bounded real functions he denotes by W . In formula (2)
of Theorem 5.3, the weak convergence Qω

n → Qω holds for the σ(Mb(Ω), C(Ω)) topol-
ogy and ω ∈ Ωqr, the set of quasi-regular points. In Dynkin’s paper there are more
P -negligible sets and equalities P -almost everywhere and he gets only the following
two weak convergences:

(i) on a set Ω′ of P -measure 1 for all P ∈ Lst, ∀f ∈ W ,
∫
Ω
f dQω

n →
∫
Ω
f dQω;

(ii) ∀P ∈ Lst, ∀f ∈ F̃ ,
∫
Ω
f dQω

n
P -a.s.
−−−→

∫
Ω
f dQω, that is ∀f ∈ F̃ , ∀P ∈ Lst,

P ({ω ∈ Ω′ :
∫
Ω
f dQω

n →
∫
Ω
f dQω}) = 1.

Remark. The work of Lauritzen [40] could have some connections with Dynkin (this
author, in a preliminary work, his thesis, does not quote Dynkin’s paper. I did not
see this book).

6. Further comments about stationary processes

When one observes only one trajectory of a process which is assumed to be stationary,
one can only identify the law Qω corresponding to the observed trajectory. For
example if one knows that the process is Markov and one observes a trajectory living

in {1, 2} obeying to the transition matrix
(

1/4 1/2

3/4 1/2

)
then either the whole process is

ergodic and obeys to this transition matrix with probabilities of states equal to
(

2/5

3/5

)

or there exists other ergodic classes about nothing is known.

A remark about a small strange phenomenon: suppose one observes (xn)n∈Z−
where

10Isomorphism with [0, 1] is an essential tool in [58]. See also [45, Th. 6 p. 157].



1136 M. Valadier / Stationary Stochastic Processes are Mixing of Ergodic Ones ...

xn = (−1)n. One possibility is: there is not any random and this is just a periodic
behavior which possibly may continue with xn = (−1)n for n ≥ 1. If we are sure
that there is behind a stationary stochastic process then the observed trajectory
continues in this way and the trajectory (yn)n∈Z =

(
(−1)n+1

)
n∈Z

is another (hidden)
possibility. So, if the process is ergodic, these two trajectories are the only ones
and have probability 1/2. This is the Markov chain with states {−1, 1}, matrix of

transitions
(
0 1
1 0

)
and probabilities of states equal to

(
1/2

1/2

)
.

7. More general results

The problem of relaxing the ergodic hypothesis into the stationarity one comes up in
the theory of stochastic homogenization (for a few references see Dal Maso-Modica
[11–12], Nguyen-Zessin [52] and Licht-Michaille [41–42]). To be more precise a version
of the results of Section 5 with respect to the group R

N in place of Z is needed.

Let us consider manufacturing of concrete. The dimensions and shapes of the stones
are random variables with stochastic characteristics which are the same as long as
the stones come from the same origin. This origin could change when building a
new work. This is again contingency. But as long as the origin of stones remains
unchanged, all amounts as if the ergodic hypothesis was satisfied.

In fact the ergodic decomposition remain valid in the following two extended direc-
tions.

7.1. Non bijective transformations

The pointwise ergodic theorem remains true when one consider a measurable transfor-
mation T . In this line a countable set of measurable transformations which commute
has been considered by Farrell [19], Vadarajan [68] and Dynkin [18, Th. 6.1 p. 717].
More recently Kallenberg [33, Theorem 9.12] proved an ergodic decomposition theo-
rem for a finite number of measurable transformations T1, . . . , Td which commute; he
used a mean spatial ergodic theorem he proved before [33, Theorem 9.9].

7.2. Action of a group

One can consider a locally compact group G. The group is not necessarily com-
mutative but it should admit a countable dense subgroup. In 1962 Farrell [19] and
Varadarajan [67–68] worked simultaneously and independently in this direction (see
also [18, Remark p. 717]). Both use limit theorems about powers of compositions of
conditional expectations.

Note that the case of flows (that is G = R) was already treated by von Neumann and
Kryloff-Bogoliouboff and that Fomin gave in 1950 some results in this line ([21] is in
Russian).
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extrémaux dans les cônes convexes, Sémin. Bourbaki 9(139) (1956/57) 15 p.

[9] G. Choquet: Lectures on Analysis. Vol. II: Representation Theory, W. A. Benjamin,
New York (1969).
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10–18.

[60] H. Shimomura: Ergodic decomposition of quasi-invariant measures, Publ. Res. Inst.
Math. Sci. 14 (1978) 359–381.

[61] H. Shimomura: Remark to the ergodic decomposition of measures, Publ. Res. Inst.
Math. Sci. 26 (1990) 861–865.

[62] M. Talagrand: Capacités invariantes extrémales, Ann. Inst. Fourier 28 (1978) 79–146.
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