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Criteria for midpoint locally uniform rotundity of Musielak-Orlicz-Bochner function spaces
equipped with the Luxemburg norm are given. We also prove that, in Musielak-Orlicz-Bochner
function spaces generated by midpoint locally uniformly rotund Banach space, midpoint locally
uniform rotundity and rotundity are equivalent. The topic of this paper is related to the topic of
[1-6] and [9-16].
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1. Introduction

A lot of rotundity concepts of Banach spaces are known. Among them rotundity (R
for short), midpoint locally uniform rotundity are important notions. One of the
reasons is that (see [7]) a Banach X space is midpoint locally uniformly rotund if
and only if every closed ball in X is an approximative compact Chebyshev set. The
criteria for midpoint locally uniform rotundity in the classical Orlicz function spaces
have been given in [3, 4] already. However, because of the complicated structure
of Musielak-Orlicz-Bochner function spaces, at present the criteria for midpoint
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locally uniform rotundity have not been discussed yet. In the paper, we will discuss
criteria for midpoint locally uniform rotundity in Musielak-Orlicz-Bochner function
spaces endowed with the Luxemburg norm.

Let (X, ||-]|) be a real Banach space. S(X) and B(X) denote the unit sphere and the
unit ball, respectively. Let us recall some geometrical notions concerning rotundity.
A Banach space X is be said to be rotund if for any z,y € S(X) and ||z + y|| = 2
we have z = y. A point x € S(X) is said to be a strongly extreme point if for any
{2 }o2 1 {yn}s2, € X with ||z,|] — 1, [jya]| — 1 and @ = $(z,, + yy), there holds
|zn, — ynl|l — 0(n — o0). If the set of all strongly extreme points of B(X) is equal
to S(X), then X is said to be midpoint locally uniformly rotund.

Let (T, %, i) be a nonatomic finite measurable space. Suppose that that a function
M : T x [0,00) — [0, 00| statisfies the following conditions:

(1) for p—ae.,t €T, M(t,0) =0, lim,_oo M(t,u) = co and M(t,u’) < oo for
some u’ > 0.

(2) for p—a.e.,t €T, M(t,u)is a convex function on [0, 00) with respect to u.

(3) for each u € [0,00), M(t,u) is a p-measurable function of ¢ on 7.

Moreover, given any Banach space (X, ||-||), we denote by X the set of all strongly
p-measurable function from 7" to X, and for each u € X7, we define the modular
of u by

par(s) = / M, fu(t) .

Put
Ly(X) ={u € Xr: py(Au) < oo for some A > 0}.

Then the Musielak-Orlicz-Bochner space Ly (X) equipped with Luxemburg norm

Huusz{bo:/TM(t,w) dtgl} (u € Ly(X))

is a Banach space. Set
e(t) =sup{u>0: M(t,u) =0} and FE(t)=sup{u>0:M(t,u) < oo}

Definition 1.1 (see [1]). We say that M (t, u) satisfies condition A (M € A for
short) if there exist K > 1 and a measureable nonnegative function §(¢) on 7" such
that [, M(t,0(t))dt < oo and M(t,2u) < KM(t,u) for almost all ¢ € T" and all
u > 0o(t).

For fixed t € T and v > 0, if there exists € € (0, 1) such that

1 1
M(t,v) :§M(t,v+e)+§M(z€,v—5) < 0o

then we call v a nonstrictly convex point of M with respect to t. The set of all
nonstrictly convex point of M with respect to t is denoted by K;.

If Ky =¢for p—a.e. t €T, then we call that M (¢, u) is strictly convex with respect
u.

First let us recall a result that will be used in the further part of the paper.
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Lemma 1.2 (see [1]). Suppose M € A and e(t) =0 p-a.e. onT. Then
prr(un) = 0 Jlunl — 0 and  py(up) — 1 & [luy| — 1(n — oo).

It is easy to see that if M (t,w) is strictly convex with respect u for almost all t € T,
then e(t) = 0 for almost all t € T'.

2. Main results
Theorem 2.1 (see [1]). Ly (X) is rotund if and only if

(a) Mel;
(b) X is rotund;
(¢) M(t,u) is strictly conver with respect u for almost allt € T

Theorem 2.2. Ly(X) is midpoint locally uniformly rotund if and only if

(a) Mel;
(b) X is midpoint locally uniformly rotund;
(¢) M(t,u) is strictly convex with respect u for almost allt € T.

In order to prove the theorem, we first give a lemma.

Lemma 2.3. Let ﬁ be a strongly extreme point. Then for any ¢ > 0, we have

(@ 8= inf {maxlell = a0 Il = el s o =21 2 &, = = 5+ | >0
(b) if z, — 2z, then 6(z,) — §(2).

Proof. (a) Suppose that 6(z) = 0. Then there exists {z,}32, C X, {y,}3°, € X

such that ||z, — z|| > &, 2 = 32, + s, but ||z, || — [|z]] < 2, lyall — [|z]| < £, hence
| R E— | <1+ + = 25—
Edl n =]’ ' &l nllzl” =l =l =

Since ﬁ is a strongly extreme point, we have

Tn Yn

121 =

a contradiction.

= 0= [lzn =yl = 0= |lzn — 2] = 0(n — o0),

(b) Suppose that there exist a > 0 and a sequence {z,}>°, such that z, — z and
d(zn) — 0(z) > a. By the definition of §(z), there exist xy and yo such that

1 1
0(2) + ga > max({|lzoll = lIll [lyoll = 21, llzo — 2l > €, 2= 5 (20 +50). (1)
By z, — z, there exists n; such that ||z,, —z|| < ga. It is obvious that the following

Ry = 5[(1'0 —Z+ Zm) + (yO —zZ+ Zn1)]7 on —z+ Zny — anH 2 €.
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hold. By (1), we get the following inequality

1 1
lwo = 2 + 2n || = [l2m, || < llzo]| + ga = {ll2]l - ga

8
1
= laoll = 12l + +a
1 1
< (5(2) + ga + Z—la.

Similarly, we have |lyo — 2 + zu, || = |20, || < 6(2) + §a + 7a. Hence 6(2,,) < 0(2) +
sa+ ta < 6(z) + 3a, a contradiction. Similarly, §(z) — d(z,) > b > 0 is impossible.
Hence (b) is true. This completes the proof. O

Proof of Theorem 2.2. Necessity. By Theorem 2.1, the necessity of (a) and (c)
is obvious. We next will prove that (b) is true. Pick h(t) € S(Lp (X)), then
there exists d > 0 such that uE > 0, where E = {t € T : ||h(t)|| > d}. Put
hi(t) = d-xzo- xg(t), where xo € S(X). It is easy to see that hy(t) € Ly (X). Hence
there exists k > 0 such that k- hy(t) € S(Lp(X)). By Lemma 1.2, we have

= / M, [k - B (D))t = /E Mt [k - d - 2ot

Let a = k-d. Then [, M(t,a)dt = 1. The necessity of (b) follows from the fact
that X is isometrically embedded into L, (X). Namely, defining the operator I :
X — Ly (X) by

I(z)=a-z-xgp(t), ze€X.

Hence, for any x € X\{0}, we have

o (4) - Do L) - e

By Lemma 1.2, we have H Tall ‘ =1, whence [[I(2)]|,,x) = [z

I(x)

La(X)

Sufficiency. Let u € S(Lpy (X)) and {u,}5°,,{vn}o2, C Ly (X) with ||u,| —

I(n — o), |lva]| — 1(n — o0) and u = 1(u, + v,). By Lemma 1.2, we have

pr(un) — 1(n — oo) and pp(v,) — 1(n — o0). We next will prove that for any
o > 0 and € > 0 there exists N such that

p{t € T fun(t) —u(®)]| = 0} <

whenever n > N. Otherwise, without loss of generality, we may assume that there
exists €9 > 0 and oy > 0 such that for each n € N we can find the set E/, C T such
that pFE! > ey, where

E, ={t €T :|lun(t) —u(®)]| = oo}.

We define the function

a(t) = inf {max<||x|| o) gl = o))+ llz = (o) 2 o0, wlt) = 5 +y>}
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for t € T. By Lemma 2.3, we have n(t) > 0 for t € {t € T : u(t) # 0}. Moreover, it
is easy to see that n(t) = og for t € {t € T': u(t) = 0}. Hence we have n(t) > 0 for
t€T. Let h,(t) — u(t) p-a.e. on T where h,, are simple functions. Hence

N (t)
nf {maX(llﬂfll — PO [yl = A O] |2 = halE) ]| = 00, ha(t) = %(w + y)}

is p-measurable. By Lemma 2.3, we have 7, (t) — n(t) p-a.e. on {t € T': u(t) # 0}.
Moreover, we know that n(t) = o for t € {t € T : u(t) = 0}. Hence n(t) is

p-measurable. Using

T> UE, D U{te UE;:+<n(t)§f}
n=1 i=1 n=1 1+ 1 1

E,:mg <n(t) <1} < 3.

Hence there exists i € N such that Y, u{t € Uz,
By U, {t € Uyl E), - H% <nt) <y ={te U, E,:0<n(t) < %}, we have

te UE 0<nt) < —p = Uldte UE :——<n(t) <=

Let ng = %min{%, 0o}. Then pH < %50, where

H:{te OL_le;L:0<n(t)§no}:{te OL_le;L:n(t)gno}.

Notice that E! ={t € T : ||u,(t) —u(t)|| > oo} = {t € T : |Ju,(t) — v, (t)]| > 200}

/s / / /
and decompose F, into £),, I, and E] 5, where

Mo
B ={t € By llun®ll = loa®)ll = 2}

By = {t € Bt [lun(®)]l = [on®lll < 2. u(t) =0},
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By = {t € B lun(®)]l = lon @l < 2, u(e) £ 0}

If t € B3, we have ||u,(t) —u(t)|| > oo, |[|[un(t)]] = lva(®)[]] < % and wu(t) # 0.
Since X is midpoint locally uniformly rotund, by Lemma 2.3, without loss of
generality, we may assume that ||u,(t)|| — ||u(t)|| > n(t). Let £y = E/;\H. Then
we have [[un(8)[] — [[u(t)]] = no, whenever t € Ejs. By [[lun(£)]| — lloa(D)[I| < %, we
have

Mo 3
ln @I 2 lun@®l] = 77 = llu®)] + 7n0.
Hence we get the following inequality

1 1

5 lun @11+ 5 loa @1 = [lu(®)]

1 1 1 3 7

> 5 u®l + 5m0+ 5 u®ll + Zno = [[u(®)l = 0.

Let E, = E,, UE/, U (El3\H). Then pE, > fe,. We define the sets
16 16
A, =qteT: M(t, ||u.(t)) > - and B, =qteT:M(t,|lv.(t)]) > - [
0 0

Then 16
. / M, un(B)])dt > / Mt un(®) )t > 22 pA,
T An €o

whence for all n € N, uA, < %50. Similarly, we have uB,, < %50 for all n € N. For
p-a.e. t € T, we define a bound closed set

16 16 1
Cy = {(u,v) € R*: M(tiu) < —, M(t,v) < —, |u—v|> —7;0}

€0 €0 4
in the space R?. Since C; is compact, then for u-a.e. t € T there exists (us,v;) € C;
such that
2M (¢, 5 (uy + vy))
M(t, ut) + M(t, Ut)

for any (u,v) € C;. We define a function

2M (¢, 3 (us + vr))
O )+ e ) ?

OM(t, L (u + v))
M(t,u) + M(t,0)

1> >

(2)

which is p-measurable. In fact, pick a dense set {r;}32; in [0,00). We define a
function

2M (t, 1 (r; + 1))

1 1
M(t,r;) < 16 and M(t,r;) < 16

1= 6y, (1) = 4 M7+ M(Er;) B o _1650
0, M(t,r;) > — or M(t,r;) > — .
o o

By the definition of M (t,u), it is easy to see that 1 — 4, ,,(t) is y-measurable and

1
1—46(t) > sup{l — Oy, () 2 | — 15| > 1770}.



Shang, Cui, Fu / Midpoint locally uniform rotundity of Musielak-Orlicz-... 219

On the other hand, since {r;}72, is dense in [0, 00) then {(r;,r;)}<; ;—; is dense in
[0,00) x [0,00). By the definition of function 1 — §(t), for u-a.e. t € T, e > 0, there
exists (r4,7;) € {(u,v) € R*: M(t,u) < %,M(t, v) < i_(?’ lu—v| > Ino} such that

1
1—-96(t)—e<1— (5ri,rj(t) < sup {1 — 5”,@(75) S =yl > 1770}

p-a.e. on T'. Since € was arbitrary, we have
1
1—4(t) <sup {1 — Oy, () 2 |1 — 15| > 1770}

pra.e. on T. Therefore 1 — §(t) = sup{l — 0,,,,(t) : |r; —r;| > im0} p-a.e. on T
This implies that 6(¢) is p-measurable. By (2) and (3), we have

1 1
M (130 0)) < 3= SO0 + M(t0), wv e,
for p-a.e- t € T. Hence, for p-a.e. t € E! | \ (A, U B,), we have

M (t, %(Hun(t)ll + H%(ﬂl\)) < %(1 = O(ENIM (L, [Jun(O]]) + M2, [on(®)]]]

We know that

and
1 1 .
{tGT:, <o(t) < = ﬂ{tET —<(5(t)§—}:¢, 1 7,
1 1 Jj+1 J
so we get
00 1
oo>,uT>u('L_J{t€T - <5(t)§;})

Hence there exists i; € N such that »°, pu{t € T': 14%1 <i(t) <

get the following inequality
1 00 1
= teT: <do(t) <
} M(U{e i+1 ()_'})

u{tGT:O<5(t)§f u
20 1=10

o0

1 1
E u{te i+1<6(t>_i}<880

i=io
Let 6 = i Then pGy < zeo, where Gy = {t € T : 0 < §(t) < do}. By d(t) > 0

p-a.e. t € T, we have uG = uGy < %80, where
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Moreover, we have

1
T> U{tGT:.

< M(t,K) <
=1 1+ 1 ( )_

S|

|

and

1 1 1 1
teT: <Mt K)< - telT: —— <Mt K = , #£ ]
{rer: <mem < ifn{rer: g <mur) < T =0 iz

where K = min{oy, %770}. Similarly, there exists a > 0 such that uC; < %50, where
Cr={teT:0< M(t,K) <a}. Since M(t,u) is strictly convex with respect u
for almost all t € T', we have uC' = uCh < %50, where

C={teT: MtK)<al.

Let H, = E,\ (GUCUA,UB,), H,; = E/,\(GUCUA, UB) H,.o = EL\(G
CUA,UB,), Hy;3=E'\(GUCUA,UB,). Then uH, 2850, and so

1 1 1

o) + pou(on) = pur (5l -+,)

5 [, el 5 [ arce oo [ o (65 0+ o] d

/ M, Jun (1))t + - / M(t, [[oa(t)]))dt
1

I\/

| \/

M (13 )+ w0 a5 [ o)

Hn2

+%Lmemwmﬁ_LmMGéwmw+m@Dw
%/H M(t, Hun(t)||)dt+%/Hn3M(ta [[on (8)]])dt
= [ (13 )+ w0

1 1

2

B (t, lun ()]]) + =M (2, la (1)) — M (t,— Hun(t>+vn<t)|l)] dt
%/ Mt un()|])dt + = / M(t, [lon(®)])dt
+Lﬁh<w%mw@MuMMM=MQ§mm+mwﬂ
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> [ [§M<t,||un<t>||>+§M<t, ||vn<t>||>} i

# [ Mol + 00 )|
o [ (15 Dl + 5 I01) = (1.5 D)+ 0] )
> [ MG o) + 50 a0 d
o [ [ (15 T+ 5 0] = ) + o)
= [ G + %M(t, o ()]

+/Hn3 [M <t, ()] + 5 (0} - Hu(t)m Y

1
2
1 1 7
> [ afu (t,—uun<t>u+—nvn< )] aes [ ar (e gm ) a
Hn1UHpo 2 Hys 8
1
7
/ (50M(t,0'0)dt+/ M (t, —770) dt
H,1UH> Hps 8

2/ <MWuMﬁ+/ M(t, K)dt
Hp1UH 2 Hnps
2/ (50adt—|-/ adt

H,UH o Hns

Z / (506Ldt + / (50 adt
H,1UH o Hp3

3
= dpa - pH, > (50a-§€0 > 0.

v

This implies that 3 [[u,|| + 3 [[vall = lun + vall = 5 lluall + 2 lvall = I2u] - 0, a
contradiction. Hence for any ¢ > 0 and € > 0 there exists N such that

plt € T - Jun(t) —u(®)]| = 0} < ¢

whenever n > N. By the Riesz theorem, there exists subsequence {u,, }32, of
{u,}52, such that u,, (t) — u(t)(n — oo) p-a.e. on T'. By the convexity of M, we
have

M () + 300 (@) = 31 (1,5 g0 = )] 2 0
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for p-a.e. t € T'. Therefore, by the Fatou Lemma, we obtain the following
P (u)

= [ jm BM@, (O] + 5 M8 ()] = M (’*%““nk“) ‘““)”)] "

k—o0

k—o0

. 1
= pu(u) — hrnsup/ PM <§(unk — u)) ,
k—oo T

which implies that pu(3(un, — u)) — 0 as k — oco. By Lemma 1.2, we have
|tun, —u|| — 0 as k — oo. Then |ju, —ul| — 0 as n — oo, ie, [|u, —v,|| — 0 as
n — oo. Hence Lj;(X) is midpoint locally uniformly rotund. O

< timint [ | 28000l () + 33RO = 31 (1.5 huo ) = o] )

Corollary 2.4. Let Ly (X) be Musielak-Orlicz-Bochner function spaces endowed
with the Luzemburg norm, Then the following statements are equivalent.

(1)  Lpy(X) is midpoint locally uniformly rotund if and only if Ly (X) is rotund;
(2) X is midpoint locally uniformly rotund.
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