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The paper has a double aim. On the one hand, it studies some monotone extensions to the
bidual of monotone operators which are not of type (D), paying particular attention to the issue
of representability of these extensions by means of convex functions. On the other hand, it derives
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for subdifferentials of lower semicontinuous convex functions.
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1. Introduction

A deep study of maximal monotone operators defined on nonreflexive Banach spaces
can be traced back to the pioneering work of J.-P. Gossez [4, 5, 6, 7] in the seventies
of the twentieth century. In particular, he defined a well-behaved class of operators,
called of type (D), which admit a unique maximal monotone extension to the bidual
(though, as he showed, they are not the only ones satisfying this property). More
classes were defined in the nineties by S. Simons [20, 21], S. Fitzpatrick and R. R.
Phelps [3] and A. Verona and M. E. Verona [23].

Marques Alves and Svaiter [10] recently obtained a characterization of maximal
monotone operators that admit a unique maximal monotone extension to the bidual
(see Theorem 2.13 below, where we follow the formulation given in [11]) and in [11]
proved that the class of maximal monotone operators of type (NI), introduced by S.
Simons, coincides with Gossez’s class of maximal monotone operators of type (D).

In the present paper we provide some contributions to a general study of monotone
extensions of monotone operators to the bidual, employing some of the main re-
sults of [11]. Indeed, the literature concerning extensions to the bidual has mostly
focused on maximal monotone extensions, especially in the cases when they are
unique. Here, on the other hand, we consider some remarkable monotone exten-
sions to the bidual that are neither necessarily maximal nor premaximal monotone,
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namely those that can be somehow studied by means of convex representations
of the given operator. Anyway, this study also yields a new characterization of
maximal monotone operators of type (D).

The paper is organized as follows. Section 2 sets notation and gathers basic defi-
nitions and some facts that we are using in the following. Section 3 contains the
main results concerning monotone extensions of monotone operators to the bidual,
focusing in particular on the problem of representability of these extensions, on
their reciprocal relations and on how they are affected by different properties of
the operators under consideration. Finally, Section 4 considers the implications of
asking for two of these properties (strict Brønsted-Rockafellar property and being
of type (D)) to be satisfied by Gossez’s extension of an operator, rather than simply
by the operator itself.

2. Notation and Preliminary Facts

Given a nonreflexive real Banach space X, we will denote by X∗ and X∗∗ its topo-
logical dual and bidual, respectively. In order to keep the notation as simple as
possible, we will not distinguish explicitly between the elements of X and their
image through the natural injection in X∗∗. Analogously, we will denote by ‖ ·‖ the
norm on X, as well as the norm on X∗, or X∗∗, and by π, or 〈·, ·〉, both the duality
product on X∗∗ ×X∗∗∗ and its restrictions to X∗∗ ×X∗ or X ×X∗.

In the following, given two Banach spaces X, Y and a set A ⊆ X × Y , we will use
the notation A⊤ to denote the set

A⊤ = {(y, x) ∈ Y ×X : (x, y) ∈ A}.

Similarly, given a function f : X × Y → R ∪ {+∞}, the function

f⊤ : Y ×X → R ∪ {+∞}

will be such that f⊤(y, x) = f(x, y) for all (y, x) ∈ Y ×X.

The remaining notation is fairly standard in Convex Analysis. We will only state
explicitly the definition and the main properties of monotone operators.

Recall that a point-to-set operator T : X ⇉ X∗ can be univocally described by
means of its graph

G(T ) = {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)},

the projections of which on X and X∗ are the domain D(T ) and the range R(T ),
respectively. The inverse operator T−1 : X∗

⇉ X is defined by G(T−1) = G(T )⊤.
We say that a point (x, x∗) ∈ X×X∗ is monotonically related to a set A ⊆ X×X∗

if
∀(y, y∗) ∈ A : 〈x− y, x∗ − y∗〉 ≥ 0.

An operator T : X ⇉ X∗ is called monotone if any point (x, x∗) ∈ G(T ) is mono-
tonically related to G(T ) (in principle, the operator with empty graph is monotone,
but in the following we will implicitly neglect this particular case). If, moreover,
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for any point (x, x∗) ∈ X × X∗ that is monotonically related to G(T ), one has
(x, x∗) ∈ G(T ), then T is called maximal monotone. As in [15], we call T premax-
imal monotone if it admits a unique maximal monotone extension, i.e. a unique
maximal monotone operator S : X ⇉ X∗ such that G(T ) ⊆ G(S).
To any monotone operator T : X ⇉ X∗ one can associate the so-called Fitzpatrick
family of T , i.e. the set

HT = {h : X ×X∗ → R ∪ {+∞} : h is lower semicontinuous

and convex, h ≥ π and h(x, x∗) = 〈x, x∗〉 ∀(x, x∗) ∈ G(T )}.

If T is maximal monotone, this set admits a minimum, the Fitzpatrick function

ϕT (x, x
∗) = 〈x, x∗〉− inf

(y,y∗)∈G(T )
〈x−y, x∗−y∗〉 = sup

(y,y∗)∈G(T )

{〈x, y∗〉+ 〈y, x∗〉−〈y, y∗〉}

and a maximum, given by the function

σT (x, x
∗) = cl conv (π + δG(T ))(x, x

∗)

for all (x, x∗) ∈ X ×X∗. As pointed out in [10], if we consider the inverse of T as
taking values in X∗∗, i.e. T−1 : X∗

⇉ X∗∗, we have

ϕT−1(x∗, x∗∗) = sup
(y∗,y∗∗)∈G(T−1)

{〈x∗∗, y∗〉+ 〈y∗∗, x∗〉 − 〈y∗∗, y∗〉}

= sup
(y,y∗)∈G(T )

{〈x∗∗, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉}

= sup
(y,y∗)∈X×X∗

{〈x∗∗, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉 − δG(T )(y, y
∗)}

= σ∗
T (x

∗, x∗∗)

(1)

for all (x∗, x∗∗) ∈ X∗ ×X∗∗.

Note that ϕT and σT can also be defined in the case when T is a monotone operator
that is not maximal. Anyway, in general, while σT ∈ HT , ϕT will not majorize the
duality product on X × X∗ and consequently ϕT /∈ HT . Moreover, in principle,
none of the two functions will characterize the operator (while this is the case when
T is maximal monotone), since they can be equal to the duality product also at
points which do not belong to G(T ).
This fact gives rise to another useful definition. If T : X ⇉ X∗ is a monotone
operator, according to [15] we say that it is representable if there exists a lower
semicontinuous convex function h : X×X∗ → R∪{+∞} such that h ≥ π onX×X∗

and h = π exactly on G(T ), i.e. h(x, x∗) = 〈x, x∗〉 if and only if (x, x∗) ∈ G(T ).
Remark 2.1. As a consequence of [15, Theorem 5], given a lower semicontinuous
convex function f : X ×X∗ → R ∪ {+∞} such that f ≥ π on X ×X∗, the set

{(x, x∗) ∈ X ×X∗ : f(x, x∗) = 〈x, x∗〉}

is the graph of a representable monotone operator (with f as a convex representation
of it).
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At the end of Section 3, we will also consider a family of convex functions associated
to a monotone operator which is bigger than the Fitzpatrick family (but coincides
with it when the operator is maximal monotone), namely

KT = {h : X ×X∗ → R ∪ {+∞} : h is lower

semicontinuous, convex and ϕT ≤ h ≤ σT}.
Remark 2.2. Note that, given a monotone operator T : X ⇉ X∗, the inclusion
HT ⊆ KT holds, since, for any h ∈ HT , one has ϕT ≤ h ≤ σT (the second inequality
is trivial, while the first inequality follows for instance from [14, Theorem 7]).
Furthermore, for all h ∈ KT and (x, x∗) ∈ G(T ), one has h(x, x∗) = 〈x, x∗〉, given
that ϕT = σT = π on G(T ).

In this paper we will be interested in considering extensions of a (maximal) mono-
tone operator T : X ⇉ X∗ to the bidual, i.e. operators S : X∗∗

⇉ X∗ such that
G(T ) ⊆ G(S) (via the natural inclusion of X in its bidual). Properly speaking,
according to our definition, we would not be allowed to say that any of these exten-
sions is (maximal) monotone, unless we considered it as if its range were defined in
X∗∗∗; anyway, since we are only interested in extending the domain of T , therefore,
when, with a slight abuse of terminology, we call S (maximal) monotone, we will
mean that S−1 : X∗

⇉ X∗∗ is (maximal) monotone.

In particular, we will study properties of the following two extensions, whose origin
can be traced back to the papers of Gossez.

Definition 2.3. Let T : X ⇉ X∗ be a monotone operator.

(a) T : X∗∗
⇉ X∗ is the operator such that, for all (x∗∗, x∗) ∈ X∗∗×X∗, (x∗∗, x∗) ∈

G(T ) if and only if there exists a bounded net (xα, x
∗
α) in G(T ) that converges

to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ ×X∗.

(b) T̃ : X∗∗
⇉ X∗ is the operator with graph

G(T̃ ) = {(x∗∗, x∗) ∈ X∗∗ ×X∗ : ∀(y, y∗) ∈ G(T ) 〈x∗∗ − y, x∗ − y∗〉 ≥ 0}.

Proposition 2.4. Let T : X ⇉ X∗ be a monotone operator.

(a) T and T̃ are extensions of T .

(b) T is a monotone operator and G(T ) is contained in the graph of any maximal
monotone extension of T to the bidual.

(c) G(T̃ ) contains the graph of any monotone extension of T to the bidual. There-

fore, in particular, G(T ) ⊆ G(T̃ ).

Proof. (a) Given an arbitrary point (x, x∗) ∈ G(T ), taking (xα, x
∗
α) = (x, x∗) for

any α in an ordered set A, we trivially obtain that (x, x∗) ∈ G(T ).
On the other hand, the monotonicity of T implies that 〈x− y, x∗ − y∗〉 ≥ 0 for all

(y, y∗) ∈ G(T ). Thus (x, x∗) ∈ G(T̃ ).
(b) Notice that, for any (x∗∗, x∗) ∈ X∗∗ × X∗ and any bounded net (xα, x

∗
α) con-

verging to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ ×X∗, one has

lim
α
〈xα, x

∗〉 = 〈x∗∗, x∗〉
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and

0 ≤ lim
α

|〈xα, x
∗
α − x∗〉| ≤ lim

α
‖xα‖‖x∗

α − x∗‖ = 0,

as a consequence of the hypotheses on the net (xα, x
∗
α). Hence

lim
α
〈xα, x

∗
α〉 = lim

α
(〈xα, x

∗〉+ 〈xα, x
∗
α − x∗〉) = 〈x∗∗, x∗〉. (2)

To show that T is monotone, consider first an arbitrary (u∗∗, u∗) ∈ G(T ). Given
a bounded net (uβ, u

∗
β) in G(T ) converging to (u∗∗, u∗) in the σ(X∗∗, X∗) ⊗ norm

topology of X∗∗ ×X∗, for all (v, v∗) ∈ G(T ), taking (2) into account, one has

〈u∗∗ − v, u∗ − v∗〉 = lim
β
〈uβ − v, u∗

β − v∗〉 ≥ 0,

since any point (uβ, u
∗
β) belongs to G(T ) and T is a monotone operator.

Therefore, given any (x∗∗, x∗), (y∗∗, y∗) ∈ G(T ) and a bounded net (xα, x
∗
α) in G(T )

converging to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ × X∗, one also
obtains

〈x∗∗ − y∗∗, x∗ − y∗〉 = lim
α
〈xα − y∗∗, x∗

α − y∗〉 ≥ 0,

so that T is monotone.

Finally, let S : X∗∗
⇉ X∗ be a maximal monotone extension of T to the bidual.

Then, for all (y∗∗, y∗) ∈ G(S) and (x∗∗, x∗) ∈ G(T ), given a bounded net (xα, x
∗
α)

in the graph of T converging to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of
X∗∗ ×X∗, one has

〈x∗∗ − y∗∗, x∗ − y∗〉 = lim
α
〈xα − y∗∗, x∗

α − y∗〉 ≥ 0,

since S is monotone and, being S an extension of T , (xα, x
∗
α) ∈ G(S) for all α. From

the previous inequality, because of the maximality of S, it follows (x∗∗, x∗) ∈ G(S).
(c) Let S : X∗∗

⇉ X∗ be a monotone extension of T to the bidual. Then, for all
(x∗∗, x∗) ∈ G(S) and for all (y, y∗) ∈ G(T ), it holds 〈x∗∗ − y, x∗ − y∗〉 ≥ 0, since

G(T ) ⊆ G(S) and S is monotone. Then, by definition of T̃ , G(S) ⊆ G(T̃ ).
The fact that G(T ) ⊆ G(T̃ ) follows from (b).

Remark 2.5. T̃ is not necessarily monotone, even in the case in which T is maxi-
mal monotone. Indeed, there exist maximal monotone operators that have several
maximal monotone extensions to the bidual [7]. Given two different extensions of T ,
say T1, T2 : X∗∗

⇉ X∗, there exist (x∗∗, x∗) ∈ G(T1) and (y∗∗, y∗) ∈ G(T2) that are
not monotonically related, since T1 and T2 are maximal monotone and do not coin-

cide. On the other hand, Proposition 2.4(c) implies that (x∗∗, x∗), (y∗∗, y∗) ∈ G(T̃ ).
Thus T̃ is not monotone.

The following definition restates, in terms of the extensions that we have just pre-
sented, the definition of the class of monotone operators of type (D) due to Gossez
[6] (see [17] for a detailed account).
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Definition 2.6. Let T : X ⇉ X∗ be a monotone operator. We say that T is of

type (D) if T = T̃ .

Theorem 2.7 ([10, Theorem 1.1]). Let X be a Banach space and T : X ⇉ X∗

a maximal monotone operator of type (D), which is equivalent to

(σT )
∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗.

Then

(a) T̃ : X∗∗
⇉ X∗ is the unique maximal monotone extension of T to the bidual;

(b) (σT )
∗ = ϕ

T̃−1;

(c) for all h ∈ HT ,

h∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉, ∀(x∗, x∗∗) ∈ X∗ ×X∗∗,

h∗ ∈ H
T̃−1 ;

(d) T satisfies the strict Brønsted-Rockafellar property.

Recall that the strict Brønsted-Rockafellar property was introduced in [8] and can
be defined as follows.

Definition 2.8. Let X be a Banach space and T : X ⇉ X∗ be a monotone oper-
ator. We say that T satisfies the strict Brønsted-Rockafellar property when, for all
η, ε such that 0 < ε < η and for all (x, x∗) ∈ X ×X∗, if

inf
(y,y∗)∈G(T )

〈x− y, x∗ − y∗〉 ≥ −ε,

then, for any λ > 0, there exists (xλ, x
∗
λ) ∈ G(T ) such that

‖x− xλ‖ < λ, ‖x∗ − x∗
λ‖ <

η

λ
.

We will use the following terminology, introduced by Simons [22, Definition 36.13]
for maximal monotone operators. Anyway, we will not require maximality, in prin-
ciple.

Definition 2.9. Let X be a Banach space and T : X ⇉ X∗ be a monotone opera-
tor. We call T of type (BR), if it satisfies the strict Brønsted-Rockafellar property.

Thus, according to Theorem 2.7, any maximal monotone operator of type (D) is of
type (BR).

In the following we will employ the main results of the recent relevant paper of
Marques Alves and Svaiter [11].

Theorem 2.10 ([11, Lemma 4.1]). Let X be a Banach space and f : X×X∗ →
R be a lower semicontinuous proper convex function. Then

f ∗∗(x∗∗, x∗) = lim inf
(y,y∗)→(x∗∗,x∗)

f(y, y∗), ∀(x∗∗, x∗) ∈ X∗∗ ×X∗,

where the lim inf is taken over all nets in X × X∗ converging to (x∗∗, x∗) in the
σ(X∗∗, X∗) ⊗ norm topology of X∗∗ ×X∗.
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Theorem 2.11 ([11, Theorem 4.2]). Let X be a Banach space and f : X ×
X∗ → R be a lower semicontinuous proper convex function. Then, for any (x∗∗, x∗)∈
X∗∗ × X∗ there exists a bounded net {(zi, z∗i )}i∈I in X × X∗ which converges to
(x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ ×X∗ and

f ∗∗(x∗∗, x∗) = lim
i∈I

f(zi, z
∗
i ).

The third result we will refer to is not stated explicitly, but is embedded in the
proof of [11, Theorem 4.4].

Theorem 2.12 ([11, Proof of Theorem 4.4]). Let X be a Banach space and
T : X ⇉ X∗ be a monotone operator of type (BR). For any h ∈ HT and (x∗∗, x∗) ∈
X∗∗ × X∗, if h∗∗(x∗∗, x∗) = 〈x∗∗, x∗〉, then there exists a bounded net (xα, x

∗
α) in

G(T ) converging to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ ×X∗.

We will also need the following property, originally proved in [10], where δG(T ) stands
for the indicator function of G(T ).
Theorem 2.13 ([11, Theorem 4.5]). Let X be a Banach space. If T : X ⇉ X∗

is maximal monotone and has a unique maximal monotone extension to the bidual,
then one of the following conditions holds:

(a) T is of type (D);

(b) T is affine and non-enlargeable, that is ϕT = π + δG(T ) and HT = {ϕT}.

Finally, in the last section, we will use the following result from [18]. To this end,
we introduce the following notation. Given two vector spaces A and B, for i = 1, 2
define the reflection ̺i : A×B → A×B,

(a, b) 7→ ̺i(a, b) =

{
(−a, b), if i = 1

(a,−b), if i = 2

and the projections p1 : A × B → A, (a, b) 7→ a, and p2 : A × B → B, (a, b) 7→ b.
Moreover, given a convex function f : X ×X∗ → R ∪ {+∞}, we set

(T(w,w∗)f)(x, x
∗) = f(x+ w, x∗ + w∗)− (〈x,w∗〉+ 〈w, x∗〉+ 〈w,w∗〉)

for all (w,w∗), (x, x∗) ∈ X ×X∗.

Theorem 2.14 ([18, Theorem 4.6]). Let X be a Banach space, S, T : X ⇉ X∗

be maximal monotone operators of type (D) and u, v ∈ X. If, for all u∗ ∈ X∗, there
exist h ∈ HS and k ∈ HT such that

⋃

λ>0

λ[dom h− ̺2(dom k)− (u− v, u∗)] is a closed subspace of X ×X∗

and ⋃

λ>0

λ[p1dom T(u,u∗)h− p1dom T(v,0X∗ )k] is a closed subspace of X,

then cl (R(S( ·+u) + T ( ·+v))) = X∗.
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3. Monotone Extensions to the Bidual

For any monotone operator T : X ⇉ X∗, along with T and T̃ , we will consider a
family of extensions of T to the bidual which is generated by the Fitzpatrick family
of T .

Definition 3.1. Let X be a Banach space, T : X ⇉ X∗ be a monotone operator

and h ∈ HT . Then we denote by T̂h : X∗∗
⇉ X∗ the operator with graph

G(T̂h) := {(x∗∗, x∗) ∈ X∗∗ ×X∗ : h∗∗(x∗∗, x∗) = 〈x∗∗, x∗〉}.

The following theorem states that T̂h is a representable monotone extension of T

to the bidual and considers the relations holding between T , T̂h and T̃ , both in the
sense of graph inclusion and with respect to the Fitzpatrick functions (as T and

T̂σT
are concerned).

Theorem 3.2. Let X be a Banach space, T : X ⇉ X∗ be a monotone operator
and h ∈ HT . Then:

(a) for all (x∗∗, x∗) ∈ X∗∗ ×X∗, one has h∗∗(x∗∗, x∗) ≥ 〈x∗∗, x∗〉;
(b) T̂−1

h : X∗
⇉ X∗∗ is a representable monotone operator, with

(
h∗∗⊤

)
|X∗×X∗∗

as a convex representation and such that G(T ) ⊆ G(T̂h) ⊆ G(T̃ );
(c) ϕ

T
−1 = ϕ

T̂−1
σT

= σ∗
T .

Proof. (a) Let (x∗∗, x∗) ∈ X∗∗ × X∗. Given a bounded net (xα, x
∗
α) in X × X∗

converging to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology and such that h(xα, x
∗
α)

converges to h∗∗(x∗∗, x∗) (the existence of such a net is guaranteed by Theorem
2.11), one has

h∗∗(x∗∗, x∗) = lim
α

h(xα, x
∗
α) ≥ lim

α
〈xα, x

∗
α〉 = 〈x∗∗, x∗〉,

where the inequality follows from h ≥ π (being h ∈ HT ), while the latter equality
is given by (2).

(b) Since (h∗∗⊤)|X∗×X∗∗ is a lower semicontinuous convex function and, by (a),

(h∗∗⊤)|X∗×X∗∗ ≥ π, then, according to Remark 2.1, T̂−1
h is a representable monotone

operator, with the function (h∗∗⊤)|X∗×X∗∗ as a convex representation.

Moreover, since h∗∗ = h on X × X∗ and h ∈ HT , then, for any (x, x∗) ∈ G(T ),
h∗∗(x, x∗) = 〈x, x∗〉, i.e. (x, x∗) ∈ T̂h. Thus T̂h is an extension of T to the bidual.

The inclusion G(T̂h) ⊆ G(T̃ ) is obvious, given that T̃ contains the graph of any
monotone extension of T to the bidual (Proposition 2.4(c)).

On the other hand, for any (x∗∗, x∗) ∈ G(T ), given a bounded net (xα, x
∗
α) in G(T )

converging to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ ×X∗, we have

〈x∗∗, x∗〉 = lim
α
〈xα, x

∗
α〉 = lim

α
h(xα, x

∗
α) = lim

α
h∗∗(xα, x

∗
α) ≥ h∗∗(x∗∗, x∗) ≥ 〈x∗∗, x∗〉,

where the first inequality is a consequence of Theorem 2.10, while the second one

follows from item (a). Thus h∗∗(x∗∗, x∗) = 〈x∗∗, x∗〉 and G(T ) ⊆ G(T̂h).
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(c) Taking (1) into account, since T is an extension of T and given that, by (b)

(recalling that σT ∈ HT ), G(T ) ⊆ G(T̂σT
), then, for all (x∗, x∗∗) ∈ X∗ ×X∗∗,

σ∗
T (x

∗, x∗∗) = sup
(y,y∗)∈G(T )

{〈x∗∗, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉}

≤ sup
(y∗∗,y∗)∈G(T )

{〈x∗∗, y∗〉+ 〈y∗∗, x∗〉 − 〈y∗∗, y∗〉}

= sup
(y∗∗,y∗)∈G(T )

{〈x∗∗, y∗〉+ 〈y∗∗, x∗〉 − σ∗∗
T (y∗∗, y∗)}

≤ σ∗∗∗
T (x∗, x∗∗) = σ∗

T (x
∗, x∗∗).

Thus, as

sup
(y∗∗,y∗)∈G(T )

{〈x∗∗, y∗〉+ 〈y∗∗, x∗〉 − 〈y∗∗, y∗〉} = ϕ
T

−1(x∗, x∗∗),

we obtain ϕ
T

−1 = σ∗
T .

Substituting G(T̂σT
) for G(T ) in the previous inequalities, one proves that ϕ

T̂−1
σT

= σ∗
T

as well.

With respect to item (c) of the previous theorem, we can draw the following con-
sequence. In principle, one could conceive a generalization of the class of maximal
monotone operators of type (D) given by the family of maximal monotone opera-
tors T : X ⇉ X∗ such that T is maximal monotone, though not necessarily equal

to T̃ . Anyway, this actually turns out not to be a broader class, according to the
following corollary.

Corollary 3.3. Let X be a Banach space and T : X ⇉ X∗ be a maximal monotone
operator. Then T is maximal monotone if and only if T is of type (D).

Proof. If T is of type (D), then T coincides with T̃ , by definition. Therefore, as a
consequence of Proposition 2.4, T is maximal monotone.

Vice versa, if T is a maximal monotone operator, i.e. if T
−1

is maximal monotone,
then the Fitzpatrick function ϕ

T
−1 = σ∗

T (Theorem 3.2(c)) majorizes the duality
product on X∗×X∗∗, implying that T is of type (D), according to Theorem 2.7.

With respect to item (b) of Theorem 3.2, a natural question is to determine when the
inclusions considered either hold as equalities, or are strict. The following corollary
provides a partial answer to this question.

Corollary 3.4. Let X be a Banach space and T : X ⇉ X∗ be a monotone operator

of type (BR). Then, for all h ∈ HT , T = T̂h. Thus T
−1

is a representable monotone
operator and {(h∗∗⊤)|X∗×X∗∗ : h ∈ HT} is a collection of convex representations of

T
−1
.

Proof. It is an immediate consequence of Theorem 2.12 and item (b) of Theorem
3.2.
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As a consequence of the preceding corollary, we have the following characterization
of the property of being of type (D) for maximal monotone operators.

Proposition 3.5. Let X be a Banach space and T : X ⇉ X∗ be a maximal mono-
tone operator. Then the following statements are equivalent:

(a) T is of type (D);

(b) for all h ∈ HT , G(T̂h) = G(T̃ );
(c) there exists h ∈ HT such that G(T̂h) = G(T̃ ).

Proof. (a) =⇒ (b) It is a consequence of Theorem 3.2 and of the definition of type
(D).

(b) =⇒ (c) Obvious.

(c) =⇒ (a) Let h ∈ HT be such that G(T̂h) = G(T̃ ). As a consequence of Theorem

3.2(b), T̃ is monotone, hence maximal monotone, by Proposition 2.4(c). Thus T
has a unique maximal monotone extension to the bidual and, by Theorem 2.13, it
is either of type (D) or non enlargeable. In both cases, T is of type (BR). Indeed,
maximal monotone operators of type (D) are of type (BR) according to Theorem
2.7, while non enlargeable operators are trivially of type (BR), since, for any ε > 0,

inf
(y,y∗)∈G(T )

〈x−y, x∗−y∗〉 ≥ −ε ⇔ ϕT (x, x
∗) ≤ 〈x, x∗〉+ε ⇔ (x, x∗) ∈ G(T ).

Then, by Corollary 3.4, G(T ) = G(T̂h), implying G(T ) = G(T̃ ), i.e. T is of type
(D).

Notice that we need maximality of T only to prove the implication (c) =⇒ (a).

Remark 3.6. Corollary 3.4 and Proposition 3.5 imply that, for any maximal mono-
tone operator T and any h ∈ HT :

(a) if T admits a unique maximal monotone extension to the bidual but it is not

of type (D), then G(T ) = G(T̂h)  G(T̃ );
(b) the relations G(T )  G(T̂h) and G(T̂h) = G(T̃ ) cannot hold simultaneously.

When T is a monotone operator that is not of type (BR), we don’t know if the

inclusion G(T ) ⊆ G(T̂h) is proper or not. If the former case is true, we cannot

approximate arbitrary points of G(T̂h) by means of bounded nets in G(T ) converg-
ing in the σ(X∗∗, X∗) ⊗ norm topology. Anyway, there is a family of monotone
extensions to the bidual for which we can recover a weaker approximation result by
means of Proposition 3.8 below, as a consequence of Theorem 2.11, based on a proof
similar to that of Theorem 2.12 with the strict Brønsted-Rockafellar property re-
placed by the usual Brønsted-Rockafellar property of subdifferentials. Specifically,
Proposition 3.8 will give an approximation result for the set

fix∂h∗ := {(x∗, x∗∗) ∈ X∗ ×X∗∗ : h∗(x∗, x∗∗) + h∗∗(x∗∗, x∗) = 2〈x∗∗, x∗〉}

by means of G(∂h)⊤, for all h ∈ KT .
The interest of this set of fixed points can be motivated if we refer to the case
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of maximal monotone operators defined on reflexive Banach spaces, since, in this
particular setting, KT = HT and fix∂h∗ = fix∂h = G(T ), where

fix∂h := {(x, x∗) ∈ X ×X∗ : h(x, x∗) + h∗(x∗, x) = 2〈x, x∗〉}

and the equality fix∂h = G(T ) follows from the fact that, in this case, h, h∗ ≥ π and
G(T ) = {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x, x∗〉} = {(x, x∗) ∈ X ×X∗ : h∗(x∗, x) =
〈x, x∗〉} (see for instance [1]).
Consider first the following properties of the operator Fh : X∗∗

⇉ X∗, defined by

G(Fh) = (fix∂h∗)⊤.

Proposition 3.7. Let X be a Banach space and T : X ⇉ X∗ be a monotone
operator. Then, for all h ∈ KT , Fh is an extension of T to the bidual and F−1

h is a
representable monotone operator.

Proof. Let h ∈ KT . Since ϕT ≤ h ≤ σT , one has

σ∗
T ≤ h∗ ≤ ϕ∗

T .

Notice that, for any (x, x∗) ∈ G(T ),

ϕ∗
T (x

∗, x) = sup
(y,y∗)∈X×X∗

{〈x, y∗〉+ 〈y, x∗〉 − ϕT (y, y
∗)}

= sup
(y,y∗)∈X×X∗

{
〈x, y∗〉+ 〈y, x∗〉 − sup

(z,z∗)∈G(T )

{〈y, z∗〉+ 〈z, y∗〉 − 〈z, z∗〉}
}

= sup
(y,y∗)∈X×X∗

{
〈x, y∗〉+ 〈y, x∗〉+ inf

(z,z∗)∈G(T )
{−〈y, z∗〉 − 〈z, y∗〉+ 〈z, z∗〉}

}

≤ sup
(y,y∗)∈X×X∗

{〈x, y∗〉+ 〈y, x∗〉 − 〈y, x∗〉 − 〈x, y∗〉+ 〈x, x∗〉}

= 〈x, x∗〉.

Thus

〈x, x∗〉 = (ϕT )
⊤(x∗, x) = σ∗

T (x
∗, x) ≤ h∗(x∗, x) ≤ ϕ∗

T (x
∗, x) ≤ 〈x, x∗〉,

implying h∗(x∗, x) = 〈x, x∗〉. Since, moreover, h∗∗(x, x∗) = h(x, x∗) = 〈x, x∗〉, then
Fh is an extension of T to the bidual.

Finally, by Fenchel inequality, the lower semicontinuous convex function

h∗ +
(
h∗∗⊤

)
|X∗×X∗∗

2

majorizes the duality product. Therefore, according to Remark 2.1, F−1
h is a rep-

resentable monotone operator.

As a consequence, for all h ∈ KT ,

G(T ) ⊆ G(Fh) ⊆ G(T̃ ).
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When h = σT , the first inclusion can be refined, yielding

G(T ) ⊆ G(FσT
) ⊆ G(T̃ ),

since, for all (x∗∗, x∗) ∈ G(T ), one has σ∗
T (x

∗, x∗∗) = ϕ
T

−1(x∗, x∗∗) = 〈x∗∗, x∗〉 and
σ∗∗
T (x∗∗, x∗) = 〈x∗∗, x∗〉, by items (c) and (b), respectively, of Theorem 3.2.

Proposition 3.8. Let X be a Banach space, T : X ⇉ X∗ be a monotone operator
and h∈KT . For any (x

∗∗, x∗)∈ G(Fh), there exists a bounded net ((xα, x
∗
α), (y

∗
α, y

∗∗
α ))

in G(∂h) such that (xα, x
∗
α) converges to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology

of X∗∗ ×X∗ and (y∗α, y
∗∗
α ) converges to (x∗, x∗∗) in the norm topology of X∗ ×X∗∗.

Proof. By Theorem 2.11, there exists a bounded net (zα, z
∗
α) in X ×X∗ converg-

ing to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm topology of X∗∗ × X∗ and such that
limα h(zα, z

∗
α) = h∗∗(x∗∗, x∗). Since h∗∗(x∗∗, x∗) is finite, we can choose (zα, z

∗
α) such

that the net (h(zα, z
∗
α)) is bounded.

Therefore, taking Fenchel inequality into account, one can define

ε2α := h(zα, z
∗
α) + h∗(x∗, x∗∗)− 〈zα, x∗〉 − 〈x∗∗, z∗α〉 ≥ 0,

where εα is bounded and, since (x∗∗, x∗) ∈ G(Fh) = (fix∂h∗)⊤, limα ε
2
α = 0.

By the Brønsted-Rockafellar property of subdifferentials, for any α there exists
((xα, x

∗
α), (y

∗
α, y

∗∗
α )) ∈ G(∂h) such that

‖(xα, x
∗
α)− (zα, z

∗
α)‖ ≤ εα and ‖(y∗α, y∗∗α )− (x∗, x∗∗)‖ ≤ εα,

implying
‖xα − zα‖ ≤ εα, ‖x∗

α − z∗α‖ ≤ εα.

Thus (xα, x
∗
α) is bounded and converges to (x∗∗, x∗) in the σ(X∗∗, X∗) ⊗ norm

topology of X∗∗ ×X∗, while (y∗α, y
∗∗
α ) is bounded and converges to (x∗, x∗∗) in the

norm topology of X∗ ×X∗∗.

4. Adding Properties to the Extensions

Until now, we have only considered properties of T . Now we are going to study
what happens when we require T to satisfy some particular property as well. While
the properties of T considered in the previous section were typically weaker than
(or equivalent to) that of being of type (D), endowing T with the property of being
of type (BR) will imply that T is of type (D).

Lemma 4.1. Let X be a Banach space and T : X ⇉ X∗ be a monotone operator
of type (BR). Then T is premaximal monotone and the graph of its unique maximal
monotone extension is equal to cl G(T ), the closure of G(T ) in the norm topology of
X ×X∗.

Proof. Let (x0, x
∗
0) ∈ X × X∗ be monotonically related to G(T ). Then, for all

n ∈ N\{0},
inf

(y,y∗)∈G(T )
〈x0 − y, x∗

0 − y∗〉 ≥ 0 > − 1

n+ 1
.



M. Rocco / A Note on Some Extensions of Monotone Operators to the Bidual 137

Thus, since T is of type (BR), there exists (xn, x
∗
n) ∈ G(T ) such that ‖xn − x0‖ <

1/
√
n and ‖x∗

n − x∗
0‖ < 1/

√
n. Thus (x0, x

∗
0) belongs to the closure of G(T ) in the

norm topology ofX×X∗. Hence, the graph of any monotone extension S : X ⇉ X∗

of T is contained in cl G(T ).
On the other hand, if S is maximal monotone, the opposite inclusion holds as well,
being

G(T ) ⊆ G(S) ⇒ cl G(T ) ⊆ cl G(S)

and cl G(S) = G(S), since any maximal monotone operator has a closed graph.
In particular, then, T admits only one maximal monotone extension (in X ×X∗),
defined by cl G(T ), i.e. it is premaximal monotone.

Remark 4.2. As a consequence of the preceding lemma, any representable mono-
tone operator of type (BR) is maximal monotone, since its graph is closed, according
to [15, Proposition 8].

Definition 4.3. Let X be a Banach space and T : X ⇉ X∗ be a maximal mono-

tone operator. We call T of type (BR∗) if T
−1

: X∗
⇉ X∗∗ is of type (BR).

Proposition 4.4. Let X be a Banach space and T : X ⇉ X∗ be a maximal mono-
tone operator. If T is of type (BR ∗), then T is of type (D).

Proof. If T
−1

is of type (BR), then, by Lemma 4.1, T
−1

is premaximal monotone.
Thus, by Proposition 2.4 (b), T admits a unique maximal monotone extension to the
bidual. As a consequence, by Theorems 2.13 and 2.7, T is of type (BR), implying

that T = T̂h for all h ∈ HT , by Corollary 3.4. Thus T̂−1
h is of type (BR) for all

h ∈ HT . Moreover, by Theorem 3.2, T̂−1
h is a representable monotone operator.

Therefore, according to Remark 4.2, T̂−1
h is maximal monotone, i.e. T

−1
is maximal

monotone. Finally, this fact is equivalent to T being of type (D), as stated in
Corollary 3.3.

In the end, we consider for T
−1

a condition which, in principle, is stronger than
that of being of type (BR), i.e. the condition of being of type (D).

Definition 4.5. Let X be a Banach space and T : X ⇉ X∗ be a maximal mono-

tone operator. We call T of type (D∗) if T
−1

: X∗
⇉ X∗∗ is maximal monotone of

type (D).

Note that any maximal monotone operator of type (D∗) is of type (D) as well,
since, by Corollary 3.3, the maximality of T implies that T is of type (D) (the same
conclusion can also be drawn as an immediate consequence of Proposition 4.4).

Therefore, T = T̃ .

Moreover, the subdifferential of a lower semicontinuous proper convex function f :

X → R∪{+∞} is of type (D∗), given that, as is well known [4], ∂f = ∂̃f = (∂f ∗)−1

and ∂f ∗, being again the subdifferential of a lower semicontinuous proper convex
function, is a maximal monotone operator of type (D).
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Summarizing, for any maximal monotone operator T : X ⇉ X∗, the following
relations hold:

T is a subdifferential =⇒ T is of type (D∗) =⇒ T is of type (BR∗)

=⇒ T is of type (D).

It is an open question whether the converse of any of the preceding implications
holds as well.

Finally, we know from [18, Corollary 3.4] that two maximal monotone operators
S, T : X ⇉ X∗ of type (D), under suitable conditions, satisfy the inclusionX×X∗ ⊆
G(S̃) + G(−T̃ ). Operators of type (D∗), by means of Theorem 2.14, enable us to
extend this property, in terms of a density result, to the whole of X∗∗ ×X∗.

Theorem 4.6. Let X be a Banach space and S, T : X ⇉ X∗ be maximal monotone
operators of type (D∗). For all (w∗∗, w∗) ∈ X∗∗ × X∗, if there exist h ∈ HS and
k ∈ HT such that

⋃

λ>0

λ[dom h∗∗|X∗∗×X∗ − ̺1(dom k∗∗|X∗∗×X∗)− (w∗∗, w∗)]

is a closed subspace of X∗∗ ×X∗,

(3)

and
⋃

λ>0

λ
[
p2

(
dom T(w∗∗,w∗)h

∗∗|X∗∗×X∗

)
− p2 (dom k∗∗|X∗∗×X∗)

]

is a closed subspace of X∗,

(4)

then there exists a sequence (w∗∗
n ) in X∗∗ converging to w∗∗ and such that (w∗∗

n , w∗) ∈
G(S̃) + G(−T̃ ). Therefore, in particular, cl (G(S̃) + G(−T̃ )) = X∗∗ ×X∗.

Proof. Since S and T are maximal monotone operators of type (D), then, for

all h ∈ HS and k ∈ HT , setting h̃ := (h∗∗⊤)|X∗×X∗∗ and k̃ := (k∗∗⊤)|X∗×X∗∗ , as

a consequence of Theorem 3.2 we have h̃ ∈ H
S̃−1 and k̃ ∈ H

T̃−1 . Thus, for any

(w∗, w∗∗) ∈ X∗ ×X∗∗, there exist h̃ ∈ H
S̃−1 and k̃ ∈ H

T̃−1 such that, by (3),

⋃

λ>0

λ[dom h̃− ̺2(dom k̃)− (w∗, w∗∗)]

is a closed subspace of X∗ ×X∗∗ and, by (4),

⋃

λ>0

λ[p1dom T(w∗,w∗∗)h̃− p1dom k̃]

is a closed subspace of X∗.

Therefore, since S and T are of type (D∗), by Theorem 2.14 (with X,X∗, u, u∗, v

replaced by X∗, X∗∗, w∗, w∗∗, 0X∗ and h, k, S, T replaced by h̃, k̃, S̃−1, T̃−1), one has

clR(S̃−1( ·+w∗) + T̃−1) = X∗∗
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for all w∗ ∈ X∗.

Thus, there exist a sequence (x∗∗
n , x∗

n) in X∗∗ × X∗ and a sequence (−y∗∗n ) in X∗∗

such that

(w∗ + x∗
n, w

∗∗ + x∗∗
n ) ∈ G(S̃−1), (x∗

n,−y∗∗n ) ∈ G(T̃−1)

and x∗∗
n − y∗∗n converges to 0X∗∗ in the norm topology of X∗∗. As a consequence,

one has

(w∗∗ + x∗∗
n − y∗∗n , w∗) = (w∗∗ + x∗∗

n , w∗ + x∗
n) + (−y∗∗n ,−x∗

n) ∈ G(S̃) + G(−T̃ )

and w∗∗
n := w∗∗ + x∗∗

n − y∗∗n converges to w∗∗ in the norm topology of X∗∗.

Since (w∗∗, w∗) ∈ X∗∗ × X∗ was chosen arbitrarily and (w∗∗
n , w∗) converges to

(w∗∗, w∗) in the norm topology of X∗∗×X∗, we conclude that cl (G(S̃)+G(−T̃ )) =
X∗∗ ×X∗.

A relevant example illustrating the preceding theorem is given by the case when T
is the duality mapping J , i.e. the subdifferential of the function j : X → R defined
by j(x) = 1/2‖x‖2 for all x ∈ X. As the subdifferential of a lower semicontinuous
proper convex function, J is a maximal monotone operator of type (D∗) and the
function j ⊕ j∗ : X × X∗ → R, defined by (j ⊕ j∗)(x, x∗) = j(x) + j∗(x∗) for all
(x, x∗) ∈ X ×X∗, belongs to HJ . Moreover,

dom (j ⊕ j∗) = X ×X∗ and

dom (j ⊕ j∗)∗∗|X∗∗×X∗ = dom (j∗∗ ⊕ j∗∗∗)|X∗∗×X∗ = X∗∗ ×X∗.

Therefore, for any maximal monotone operator S : X ⇉ X∗ of type (D∗), setting
T = J , the hypotheses of Theorem 4.6 are satisfied for any given h ∈ HS and

k = j⊕j∗. Thus, not only (by [18, Corollary 3.4]) we have X×X∗ ⊆ G(S̃)+G(−J̃),
but also

cl (G(S̃) + G(−J̃)) = X∗∗ ×X∗.
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