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We consider the following classical autonomous variational problem

minimize

{

F (u) =

∫

b

a

f(u(x), u′(x)) dx : u ∈ AC([a, b]), u(a) = α, u(b) = β, u([a, b]) ⊆ I

}

where I is a real interval, α, β ∈ I, and f : I × R → [0,+∞) is possibly neither continuous, nor
coercive, nor convex; in particular f(s, ·) may be not convex at 0. Assuming the solvability of
the relaxed problem, we prove under mild assumptions that the above variational problem has a
solution, too.

Keywords: Non-convex variational problem, non-coercive variational problem, autonomous vari-
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1. Introduction

A classical problem of the Calculus of Variations is

minimize

{

F (u) :=

∫ b

a

f(u(x), u′(x)) dx : u ∈ Ω

}

, (P )

where

Ω := {u ∈ AC([a, b]) : u(a) = α, u(b) = β, u([a, b]) ⊆ I},

I is a real interval, α, β ∈ I, and f : I × R → [0,+∞) is a Borel measurable
function.
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If f is not convex or coercive w.r.t. the second variable, then the direct method of
the Calculus of Variations cannot be applied and the variational problem can have
no solution. The solvability of (P ) has been object of investigation in many papers
and many results have been proved under different sets of hypotheses. Besides the
intrinsic interest of this problem, a further motivation for the study of autonomous,
one-dimensional problems is the minimization of a functional along the different
parametrizations of a given curve in R

n.

A recurrent hypothesis in the literature is that f(s, ·) is convex at 0, i.e.,

f(s, 0) = f ∗∗(s, 0) for every s ∈ I, (1)

where f ∗∗ denotes the convex envelope of f with respect to the second variable. This
assumption is usually coupled with a coercivity condition, see e.g. Marcellini [18]
and Fusco et al. [15]. In particular, [15] deals with the sum case f(s, z) = g(s)+h(z),
and the authors prove that weak regularity properties on g and h suffice to get the
existence of minimizers. Further generalizations have been obtained by Ornelas,
see [20] and [21]. In case of a lack of coercivity, but with f convex, we address to
the papers by Cellina-Ferriero [9] and Clarke [11], see also [2], [3], [4] and [16] for
non-autonomous functionals.

Recently, existence and relaxation results have been obtained by Cupini et al. in
[13] and [14], see also [12], for quite general possibly non-convex, non-coercive and
discontinuous Lagrangians, and, again, assuming the convexity assumption at 0.
Here and in the sequel, by relaxation result we mean a result stating that, under
suitable assumptions, the solvability of (P ∗∗) implies the solvability of (P ); as usual,
(P ∗∗) stands for the variational problem (P ) with f replaced by f ∗∗.

Differently from the papers listed above, in the quite recent article by Celada-
Perrotta [6] a relaxation result is proved without assuming (1). If f is real valued,
as in our setting, the authors assume the continuity both of f and f ∗∗, a growth
condition compatible with either superlinearity or certain cases of linear growth at
infinity, and some more delicate additional assumptions; indeed, if (1) is removed
then alternative assumptions must be considered, otherwise the solvability of (P )
cannot be expected even in presence of coercive and regular energies, as the well
known Bolza’s example shows (see Section 7).

We also mention the result by Cellina [7], where it is proved that inf(P ) = inf(P ∗∗),
with a Lipschitz continuous minimizer of (P ) when the infimum is attained, assum-
ing that f(s, ·) is affinely minorized and satisfies a slightly weaker growth condition
than that one in [6]. Of course this list of papers is far to be exhaustive and we
refer to [5] and [6] for more details and references on this subject.

In this paper we prove a relaxation result without any coercivity condition, in
absence of (1) and under mild regularity assumptions on f . The main advantages
with respect to [6] consist in the weakening of the regularity assumptions on f and
f ∗∗ and mainly in the removal of the growth condition on f(s, ·), which is essentially
replaced by the hypothesis that the convex envelope of {f ∗∗(s, ·) = f(s, ·)} coincides
with R. We refer to Remark 6.4 for a more detailed comparison between our
Theorem 6.1 and [6, Theorem 2.2]. As it is now standard, to prove a relaxation
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result one can reson as follows: if u minimizes (P ∗∗), and the equality f ∗∗(u, u′) =
f(u, u′) holds a.e., then u minimizes (P ), too; otherwise it has to be modified, so
to get a new minimizer v of (P ∗∗) satisfying the equality f ∗∗(v, v′) = f(v, v′). The
basic instrument at our disposal, which is also our starting point, is the a priori
monotonicity properties of minimizers, recently proved in [14]; see Section 3 below.
Notice that a study of the monotonicity properties of minimizers was also carried
out in [15] and [20] for integrands having the sum structure f(s, z) = g(s) + h(z)
with h coercive but non-convex; subsequently, this investigation was extended in
[22] for coercive integrands having general structure. Thanks to this monotonicity
property of u we will not use the procedure of modification used in [6], but two
different approaches, the first one established in [17] and the other one based on
the resolution of two suitable ordinary differential equations (see Sections 4 and 5,
respectively).

Our main relaxation result is Theorem 6.1 in Section 6, see also Theorems 6.2 and
6.3 for existence results in special cases. These results are stated assuming that
α ≤ β, since analogous results hold for α > β, with straightforward changes.

Section 7 conlcudes the paper; there we provide some applications of our main
relaxation result and we analyse the sharpness of our assumptions.

2. Notations

As mentioned in Introduction, we consider the autonomous variational problem
(P ), where f : I × R → [0,+∞) is a Borel-measurable function and

Ω := {u ∈ AC([a, b]) : u(a) = α, u(b) = β, u([a, b]) ⊆ I},

with I interval in R, α, β ∈ I.

From now on, we assume α ≤ β. The case α > β can be treated with straightforward
changes.

In the sequel (P ∗∗) is the variational problem analogous to (P ), with the functional
F , now denoted F ∗∗, having the integrand function f ∗∗ in place of f . Notice that
(P ∗∗) is well defined if s 7→ f ∗∗(s, 0) is a Borel-measurable function, as the following
result states.

Lemma 2.1 (Lemma 2.1 in [14]). Let f : I×R → [0,+∞) be a Borel-measurable
function. If s 7→ f ∗∗(s, 0) is a Borel-measurable function, then the function s 7→
f ∗∗(s,z) is Lebesgue-measurable for every z∈R and the function x 7→ f ∗∗(v(x), v′(x))
is Lebesgue-measurable for every v ∈W 1,1

loc (a, b).

Remark 2.2. In [14, Lemma 2.1] it was assumed f(s, 0) = f ∗∗(s, 0) for all s ∈ I
instead of the Borel measurability of f ∗∗(·, 0). However, the proof works also in the
present setting.

Our approach to study the optimality of problem (P ) is based on the a priori
monotonicity properties of minimizers. In fact, as we will show in Section 3, we can
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reduce the competition set to its following subset:

Ω∗ := {u ∈ Ω : u satisfies property (3) below} (2)

there exist τ1, τ2 ∈ [a, b], τ1 ≤ τ2, such that u is constant in [τ1, τ2],

strictly monotone in [a, τ1] and in [τ2, b] and u
′ 6= 0 a.e. in [a, τ1] ∪ [τ2, b].

(3)

Obviously, Ω∗ = Ω+ ∪ Ω+
+ ∪ Ω+

− ∪ Ω−

+, where

Ω+ := {u ∈ Ω∗ : u′(x) > 0 a.e. in [a, b]},

Ω+
+ := {u ∈ Ω∗ : a ≤ τ1 < τ2 ≤ b, u′(x) > 0 a.e. in [a, τ1],

u′(x) = 0 a.e. in [τ1, τ2], u
′(x) > 0 a.e. in [τ2, b]},

Ω+
− := {u ∈ Ω∗ : a < τ1 ≤ τ2 < b, u′(x) < 0 a.e. in [a, τ1],

u′(x) = 0 a.e. in [τ1, τ2], u
′(x) > 0 a.e. in [τ2, b]},

Ω−

+ := {u ∈ Ω∗ : a < τ1 ≤ τ2 < b, u′(x) > 0 a.e. in [a, τ1],

u′(x) = 0 a.e. in [τ1, τ2], u
′(x) < 0 a.e. in [τ2, b]}.

If u ∈ Ω∗ then su is the value of u in [τ1, τ2]. To allow a unified presentation, in the
sequel if u ∈ Ω+ then τ1 = τ2 = b.

We will use also the following sets

Q+
+ :=

{

s ∈ [α, β] : f ∗∗(s, 0) = min
σ∈[α,β]

f ∗∗(σ, 0)

}

,

Q+
− := {s ∈ I ∩ (−∞, α) : f ∗∗(s, 0) < f∗∗(σ, 0) for all σ ∈ (s, β]}, (4)

Q−

+ := {s ∈ I ∩ (β,+∞) : f ∗∗(s, 0) < f∗∗(σ, 0) for all σ ∈ [α, s)}.

Since we aim at proving the existence of minimizers of (P ) when (P ∗∗) is solvable,
then it will be advantageous to compare the function f with respect to f ∗∗. Thus,
for every s ∈ I, we define

C+
s := {z > 0 : f(s, z) = f ∗∗(s, z)},

C−
s := {z < 0 : f(s, z) = f ∗∗(s, z)},

(5)

A+
s := {z ≥ 0 : f ∗∗(s, ·) is affine in [0, z]},

A−
s := {z ≤ 0 : f ∗∗(s, ·) is affine in [z, 0]}.

(6)

Moreover, we define the set

D0 := {s ∈ I : f(s, 0) > f∗∗(s, 0)}. (7)

We conclude saying that coA stands for the convex envelope of a set A and recalling
the notion of subdifferential in the sense of Convex Analysis, i.e.,

∂f(s, z) := {ξ ∈ R : f(s, w)− f(s, z) ≥ ξ(w − z) for every w ∈ R}.
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3. Monotonicity properties of minimizers

As in [14, Theorem 3.1], under suitable assumptions, including (1), fixed u ∈ Ω it
is possible to find w ∈ Ω∗ such that F (w) ≤ F (u) and F ∗∗(w) ≤ F ∗∗(u). Now, we
give a similar but more precise and complete statement than that one presented in
[14]. First of all since we will use this result only for F ∗∗ we write the assumptions
to get the inequality in this context, then we add the assumptions needed to get
the corresponding inequality for F . Moreover, we classify the value sw of w in the
interval (possibly reduced to a point) [τ1, τ2], where it is constant: if w /∈ Ω+, we
have that sw has to belong to Q+

+, Q
+
− or Q−

+.

Theorem 3.1. Suppose that f : I × R → [0,+∞) is a Borel-measurable function,
f ∗∗(·, 0) is lower semicontinuous and

there exists a Lebesgue-measurable selection g(·) ∈ ∂f ∗∗(·, 0) with g ∈ L∞

loc(I). (8)

We have that

(a) infΩF
∗∗ = infΩ∗F ∗∗,

(b) if (P ∗∗) has a solution then there exists a solution w ∈ Ω∗ such that one of
the following properties holds:
(b1) w ∈ Ω+,
(b2) w ∈ Ω+

+ and sw is any element in Q+
+,

(b3) w ∈ Ω+
− and sw is a suitable element in Q+

−,
(b4) w ∈ Ω−

+ and sw is a suitable element in Q−

+.

Moreover, if f(s, 0) = f ∗∗(s, 0) for every s ∈ I and g in (8) is Borel-measurable
then (a) and (b) hold also for F and (P ).

Proof. We begin noticing that (a) follows if we prove that for every u ∈ Ω there
exists w ∈ Ω∗ such that F ∗∗(w) ≤ F ∗∗(u). We remark also that such w satisfies
w([a, b]) ⊆ u([a, b]).

If u ∈ Ω+ then w = u and we conclude.

Let u ∈ Ω \ Ω+ and define ˜f ∗∗(s, z) = f ∗∗(s, z) − g(s)z. It is easy to verify that
˜f ∗∗(s, 0) ≤ ˜f ∗∗(s, z) for every s ∈ I and every z ∈ R. Moreover, s 7→ ˜f ∗∗(s, 0) is
lower semicontinuous and there exists k ∈ R such that for every v ∈ Ω we get

F ∗∗(v) = F̃ ∗∗(v) + k,

where F̃ ∗∗(v) stands for
∫ b

a
˜f ∗∗(v(x), v′(x)) dx, see [14, Lemma 2.2]. Notice that by

Lemma 2.1 F ∗∗ and F̃ ∗∗ are well defined.

Thus, without loss of generality we can assume that f ∗∗(s, 0) ≤ f ∗∗(s, z) for every
s ∈ I and every z ∈ R.

Suppose that there exists s̄ ∈ [α, β] such that

f ∗∗(s̄, 0) = min
s∈u([a,b])

f ∗∗(s, 0). (9)
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In particular, since [α, β] ⊆ u([a, b]) then s̄ ∈ Q+
+. By the proof of [14, Theorem 3.1]

there exists w ∈ Ω+
+ such that F ∗∗(w) ≤ F ∗∗(u) and w(x) = s̄ in [τ1, τ2]. Defining

sw = s̄, we have that sw satisfies the property stated in (b2).

If s̄ ∈ [α, β] satisfying (9) does not exist, then, by the lower semicontinuity of
f ∗∗(·, 0), u([a, b]) \ [α, β] must contain at least one element, denoted again by s̄,
such that (9) holds and

f ∗∗(s̄, 0) < f∗∗(s, 0) for every s ∈ [α, β]. (10)

Suppose that s̄ < α. We define

s̃ := max{s ∈ [s̄, α] : f ∗∗(s, 0) = f ∗∗(s̄, 0)} < α,

where the inequality follows by the lower semicontinuity of f ∗∗(·, 0), (9) and (10).
Obviously s̃ ∈ Q+

−. Modifying u as explained in the proof of [14, Theorem 3.1], with
s̃ as above, we get w ∈ Ω+

−, strictly decreasing in [a, τ1], w ≡ s̃ in [τ1, τ2], strictly
increasing in [τ2, b] with a < τ1 ≤ τ2 < b, and satisfying F ∗∗(w) ≤ F ∗∗(u). In
particular, w([a, b]) ⊆ u([a, b])∩ (−∞, β]. Defining sw = s̃, we have that sw satisfies
(b3).

If s̄ > β then we proceed in an analogous way, defining

s̃ = min{s ∈ [β, s̄] : f ∗∗(s, 0) = f ∗∗(s̄, 0)} > β,

obtaining in this case that w ∈ Ω−

+, sw = s̃ ∈ Q−

+ and w([a, b]) ⊆ u([a, b])∩ [α+∞).

We now turn to the proof of the last part of the claim. Suppose that f(s, 0) =
f ∗∗(s, 0) for every s ∈ I and g is Borel-measurable. If we define f̃(s, z) = f(s, z)−

g(s)z and F̃ (v) =
∫ b

a
f̃(v(x), v′(x)) dx, then f̃ is Borel-measurable and F̃ is well

defined in Ω, so we can repeat the same proof of [14, Theorem 3.1]. Also in this case,
a function w will be defined, which coincides with w above, because the procedure
used to modify u ∈ Ω into w depends only on u and f ∗∗(·, 0), by assumption equal
to f(·, 0).

4. Modification of the minimizer in [a, τ1] and in [τ2, b]

From the results in the previous section we have that if (P ∗∗) has a minimizer, then
there exists a minimizer belonging to Ω∗, see (2).

We claim that under suitable assumptions a minimizer u ∈ Ω∗ of (P ∗∗) can be
modified so to obtain another minimizer ũ ∈ Ω∗ of (P ∗∗) satisfying

f(ũ(x), ũ′(x)) = f ∗∗(ũ(x), ũ′(x)) (11)

for almost every x ∈ [a, b].

We postpone to the next section the modification of u in the interval [τ1, τ2], where
u is constant. In this section we discuss the modification of the restrictions of u to
intervals [a, τ1] and [τ2, b], where u is strictly monotone. We recall that if u ∈ Ω+

then we set τ1 = τ2 = b.
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Proposition 4.1. Let f : I × R → [0,+∞) be a Borel-measurable function, with
f ∗∗(·, 0) lower semicontinuous. Assume that u ∈ Ω∗; i.e., u is strictly monotone in
[a, τ1] and in [τ2, b] with u

′(x) 6= 0 a.e., and u ≡ su in [τ1, τ2].

Suppose that

C+
u(x) is a not empty, closed set in (0,+∞) and u′(x) ∈ co C+

u(x) (12)

for a.e. x ∈ [a, b] s.t. u′(x) > 0.

Analogously, suppose that

C−

u(x) is a not empty, closed set in (−∞, 0) and u′(x) ∈ co C−

u(x) (13)

for a.e. x ∈ [a, b] s.t. u′(x) < 0.

Then there exists ũ ∈ Ω∗ such that F ∗∗(ũ) = F ∗∗(u), ũ has the same strict mono-
tonicity properties of u in [a, τ1] and [τ2, b],

f(ũ(x), ũ′(x)) = f ∗∗(ũ(x), ũ′(x)) for a.e. x ∈ [a, τ1] ∪ [τ2, b] (14)

and
ũ(x) = u(x) = su for every x ∈ [τ1, τ2]. (15)

Proof. Let u, τ1, τ2 be as in the statement. Let us deal with the interval [a, τ1]
and suppose that u is strictly increasing on this set; the proof in the decreasing case
goes in a similar way.

We reason as in the proof of [14, Theorem 4.2]. For the sake of completeness, we
provide here the proof, apart from the measurability of the functions ξi, ψi (i = 1, 2)
below, for whom we refer to [14].

By (12), the functions

ξ1(x) := sup{z ≤ u′(x) : f(u(x), z) = f ∗∗(u(x), z)},

ξ2(x) := inf{z ≥ u′(x) : f(u(x), z) = f ∗∗(u(x), z)}

are well-defined and positive. Moreover, they are measurable functions.

By (12), since u is a strictly monotone and absolutely continuous function, then C+
s

is a not empty and closed set in (0,+∞) for a.e. s ∈ [α, su]. Therefore,

f(u(x), ξi(x)) = f ∗∗(u(x), ξi(x)) for a.e. x ∈ (a, τ1), (16)

and f ∗∗(u(x), ·) is affine in [ξ1(x), ξ2(x)] (notice that this interval can be degenerate).

Define the measurable functions

ψi(s) :=
1

ξi(u−1(s))
, for s ∈ (α, su), i = 1, 2. (17)

Since ξ1(x) ≤ u′(x) ≤ ξ2(x), we have ψ2(s) ≤
1

u′(u−1(s))
≤ ψ1(s), hence there exists

a measurable weight function λ : (α, su) → [0, 1] such that

1

u′(u−1(s))
= λ(s)ψ1(s) + (1− λ(s))ψ2(s). (18)
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In particular, the map s 7→ λ(s)ψ1(s) + (1− λ(s))ψ2(s) is summable in (α, su).

Let us define f̃ , ˜f ∗∗ : I × (0,+∞) → R as

f̃(s, z) := f

(

s,
1

z

)

z, ˜f ∗∗(s, z) := f ∗∗

(

s,
1

z

)

z.

In [17, Lemma 5] it is proved that ˜f ∗∗(s, ·) is affine in (c, d), c > 0, if and only if
f ∗∗(s, ·) is affine in (1

d
, 1
c
). Therefore, by (16) we deduce that

f̃(s, ψi(s)) = ˜f ∗∗(s, ψi(s)) a.e. in (α, su), i = 1, 2 (19)

and ˜f ∗∗(s, ·) is affine in [ψ2(s), ψ1(s)]. Hence, by (18)

˜f ∗∗

(

s,
1

u′(u−1(s))

)

= λ(s) ˜f ∗∗(s, ψ1(s)) + (1− λ(s)) ˜f ∗∗(s, ψ2(s)) (20)

so, in particular, also the map s 7→ λ(s) ˜f ∗∗(s, ψ1(s)) + (1 − λ(s)) ˜f ∗∗(s, ψ2(s)) is
summable in (α, su), since

∫ su

α

˜f ∗∗

(

s,
1

u′(u−1(s))

)

ds =

∫ τ1

a

f ∗∗(u(x), u′(x)) dx ≤ F ∗∗(u).

Thus, we can apply an extension of Liapunov’s Theorem on the range of vector
measures, see [10, Chap. 16], [8, page 103] or [19, Theorem 2], to the functions
gi(s) := (ψi(s), ˜f ∗∗(s, ψi(s))), i = 1, 2, deducing the existence of a decomposition
of (α, su) into disjoint measurable subsets F1, F2 such that, if we define γ(s) :=
ψ1(s)χF1

(s) + ψ2(s)χF2
(s), then, by (18),

∫ su

α

γ(s) ds =

∫ su

α

1

u′(u−1(s))
ds (21)

and, by (19) and (20),

∫ su

α

f̃(s, γ(s)) ds =

∫

F1

˜f ∗∗(s, ψ1(s)) ds+

∫

F2

˜f ∗∗(s, ψ2(s)) ds

=

∫ su

α

[λ(s) ˜f ∗∗(s, ψ1(s)) + (1− λ(s)) ˜f ∗∗(s, ψ2(s))] ds

=

∫ su

α

˜f ∗∗

(

s,
1

u′(u−1(s))

)

ds. (22)

Consider the absolutely continuous function

U(s) := a+

∫ s

α

γ(σ) dσ.

By (21) and a change of variables (see e.g. [1, Corollary 5.4.4])

U(su) = a+

∫ su

α

γ(s) ds = a+

∫ su

α

1

u′(u−1(s))
ds = a+

∫ τ1

a

1

u′(x)
u′(x) dx = τ1.
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Finally, since U ′(s) > 0 a.e. in [α, su], then also the inverse function ũ(x) := U−1(x),
x ∈ [a, τ1], is absolutely continuous (see e.g. [1, page 389]). Moreover, ũ(a) = α,
ũ(τ1) = su and, by definition of γ, (17) and (19), the equality (14) follows for a.e.
x ∈ [a, τ1].

Finally by a change of variable and (22)

∫ τ1

a

f ∗∗(ũ(x), ũ′(x)) dx =

∫ τ1

a

f(ũ(x), ũ′(x)) dx =

∫ su

α

f(s, ũ′(U(s)))U ′(s) ds

=

∫ su

α

f̃(s, γ(s)) ds =

∫ su

α

˜f ∗∗

(

s,
1

u′(u−1(s))

)

ds =

∫ τ1

a

f ∗∗(u(x), u′(x)) dx.

A similar construction can be done in the interval [τ2, b] so that the modified tra-
jectory ũ (kept equal to su in [τ1, τ2]) satisfies F

∗∗(ũ) = F ∗∗(u).

5. Modification of the minimizer in [τ1, τ2]

In this section, we show how to modify a given u ∈ Ω∗ in the interval [τ1, τ2], where
it is constant, in such a way to obtain v ∈ Ω satisfy

(a) v = u in [a, τ1] ∪ [τ2, b],

(b) f(v(x), v′(x)) = f ∗∗(v(x), v′(x)) for a.e. x ∈ [τ1, τ2].

(c) F ∗∗(v) ≤ F ∗∗(u).

Of course, if the interval [τ1, τ2] is degenerate, in particular this happens if u ∈ Ω+

or if f(su, 0) = f ∗∗(su, 0), then there is nothing to prove. Therefore in this section
we consider the case u ∈ Ω∗ \ Ω+ and f(su, 0) > f∗∗(su, 0).

To face our problem, we introduce two properties, (23∗) and (23∗∗), both depending
on some s̄ ∈ I that will be specified each time. We point out that decreasing and
increasing have to be intended as non-increasing and non-decreasing, respectively,
and that the sets C±

s , A
±
s are defined in (5) and (6).

The first property is the following:

∃ δ > 0 : f ∗∗(·, 0) is increasing in [s̄− δ, s̄] ⊆ I and (∗) holds, (23∗)

where (∗) means that there exist two measurable functions

g+ : [s̄− δ, s̄] → (0,+∞) and g− : [s̄− δ, s̄] → (−∞, 0)

such that

(a∗) g+(s) ∈ C+
s ∩A

+
s and g−(s) ∈ C−

s ∩A
−

s for a.e. s ∈ (s̄−δ, s̄),

(b∗)
1

g+
,
1

g−
∈ L1(s̄−δ, s̄).

Analogously, the second property is the following:

∃ δ > 0 : f ∗∗(·, 0) is decreasing in [s̄, s̄+ δ] ⊆ I and (∗∗) holds, (23∗∗)
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where (∗∗) means that there exist two measurable functions

g+ : [s̄, s̄+ δ] → (0,+∞) and g− : [s̄, s̄+ δ] → (−∞, 0)

such that

(a∗∗) g+(s) ∈ C+
s ∩A

+
s and g−(s) ∈ C−

s ∩A
−

s for a.e. s ∈ (s̄, s̄+δ),

(b∗∗)
1

g+
,
1

g−
∈ L1(s̄, s̄+δ).

Remark 5.1. We claim that if f and f ∗∗ are continuous with superlinear growth
(or satisfy the weaker growth condition (H3) in [6], that includes the superlinearity
growth and some linear growth as well) then (∗) and (∗∗) hold for any s̄ such
that f(s̄, 0) > f∗∗(s̄, 0). In fact, by continuity there exist ǫ, δ > 0 such that:
infC+

s = minC+
s > ǫ and supC−

s = maxC−
s < −ǫ for every s ∈ [s̄ − δ, s̄ + δ].

Moreover, both s 7→ infC+
s and s 7→ supC−

s are bounded, with s 7→ infC+
s lower

semicontinuous and s 7→ supC−
s upper semicontinuous (see [6, Proposition 3.1]).

Thus, defining g+(s) = infC+
s and g−(s) = supC−

s , (∗) and (∗∗) hold true.

Before stating the result we notice that the regularity assumption on f ∗∗(·, 0) is not
the lower semicontinuity as in Proposition 4.1, but only the Borel-measurability.

Proposition 5.2. Let f : I × R → [0,+∞) be a Borel-measurable function, with
f ∗∗(·, 0) Borel-measurable. Let u ∈ Ω∗ \Ω+ satisfying (b2), (b3) or (b4) in Theorem
3.1. In particular, u(x) = su for every x ∈ [τ1, τ2], with τ1 < τ2 as in (3).

Suppose that

f(su, 0) > f∗∗(su, 0) and (23∗) or (23∗∗) holds with s̄ = su. (24)

Then there exists v ∈ Ω such that F ∗∗(v) ≤ F ∗∗(u),

f(v(x), v′(x)) = f ∗∗(v(x), v′(x)) for a.e. x ∈ [τ1, τ2] (25)

and

v(x) = u(x) for every x ∈ [a, τ1] ∪ [τ2, b]. (26)

Moreover, if g± are in L∞(su− δ, su) (if (23∗) holds) or in L∞(su, su+ δ) (if (23∗∗)
holds), then v ∈W 1,∞(τ1, τ2).

Proof. Let us suppose (23∗∗). Then f ∗∗(·, 0) is decreasing in [su, su + δ] ⊆ I and
(∗∗) holds. Define

G±(s) :=

∫ s

su

1

g±(t)
dt, s ∈ [su, su + δ].

It is readily seen that G+ is a strictly increasing, nonnegative, absolutely continuous
function onto [0, G+(su + δ)]; analogously, G− is a strictly decreasing, nonpositive,
absolutely continuous function onto [G−(su + δ), 0]. Moreover, both G+ and G−
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have an absolutely continuous inverse, since (G±)′(s) 6= 0 a.e. (see e.g. [1]). Let now
consider

u+ : [0, G+(su + δ)] → [su, su + δ], u+(x) := (G+)−1(x)

and
u− : [G−(su + δ), 0] → [su, su + δ], u−(x) := (G−)−1(x).

They are absolutely continuous functions satisfying

(u+)′(x) = g+(u+(x)) for a.e. x in [0, G+(su + δ)], u+(0) = su (27)

and

(u−)′(x) = g−(u−(x)) for a.e. x in [G−(su + δ), 0], u−(0) = su. (28)

By (a∗)

f(u+(x), (u+)′(x)) = f ∗∗(u+(x), (u+)′(x))

f(u−(x), (u−)′(x)) = f ∗∗(u−(x), (u−)′(x))

for a.e. x in [0, G+(su + δ)] and in [G−(su + δ), 0], respectively.

For every t ∈ [0, δ] define the periodic and absolutely continuous function ut : R →
[su, su + δ] with period G+(su + t)−G−(su + t),

ut(x) :=

{

u−(x) if x ∈ [G−(su + t), 0],

u+(x) if x ∈ [0, G+(su + t)].

Notice that ut(G
−(su + t)) = ut(G

+(su + t)) = su + t.

We claim that there exists t̄ ∈ (0, δ] such that G+(su + t̄)−G−(su + t̄) = τ2−τ1
n

for
some n ∈ N. In fact, G+(su) − G−(su) = 0 and G+(su + δ) − G−(su + δ) > 0; by
continuity the claim follows. Then

ut̄(τ2 − τ1) = ut̄(n(G
+(su + t̄)−G−(su + t̄)) = ut̄(0) = su.

Now, defining

v(x) :=

{

u(x) if x ∈ [a, b] \ [τ1, τ2],

ut̄(x− τ1) if x ∈ [τ1, τ2],

we get (25) and (26).

We claim that F ∗∗(v) ≤ F ∗∗(u). In fact, for all s ∈ (su − δ, su + δ) there exists a
measurable function m(s) (= [f ∗∗(s, g+(s))− f ∗∗(s, 0)]/g+(s)) such that

f ∗∗(s, z) = f ∗∗(s, 0) +m(s)z for all z ∈ (infA−

s , supA
+
s ).

Hence, by the periodicity of ut̄ and a change of variables,

∫ τ2

τ1

f ∗∗(v(x), v′(x)) dx = n

∫ G+(su+t̄)

G−(su+t̄)

f ∗∗(ut̄(x), u
′

t̄(x)) dx

= n

∫ G+(su+t̄)

G−(su+t̄)

{f ∗∗(ut̄(x), 0) +m(ut̄(x))u
′

t̄(x)} dx.
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Another change of variables implies,

∫ G+(su+t̄)

G−(su+t̄)

m(ut̄(x))u
′

t̄(x) dx

=

∫ 0

G−(su+t̄)

m(ut̄(x))u
′

t̄(x) dx+

∫ G+(su+t̄)

0

m(ut̄(x))u
′

t̄(x) dx = 0,

therefore, by the monotonicity assumption on f ∗∗(·, 0),

∫ G+(su+t̄)

G−(su+t̄)

f ∗∗(ut̄(x), u
′

t̄(x)) dx =

∫ G+(su+t̄)

G−(su+t̄)

f ∗∗(ut̄(x), 0) dx

≤

∫ G+(su+t̄)

G−(su+t̄)

f ∗∗(su, 0) dx =
1

n

∫ τ2

τ1

f ∗∗(u(x), u′(x)) dx

and the claim follows. The Lipschitz regularity result follows by (27) and (28).

If (23∗) holds, the proof goes in a similar way with straightforward changes.

6. The relaxation results

In this section we state three results. Theorem 6.1 is our main result; there we
prove that under suitable assumptions the solvability of (P ) follows from that one
of (P ∗∗). Of course, combining the assumptions of this theorem with those of
some existence results for (P ∗∗), e.g. f ∗∗ has superlinear growth with respect to
the second variable, so to apply the direct method of the Calculus of Variations, or
the assumptions of the recent [13, Theorem 7.1], then we obtain existence results
for (P ), without assuming a priori the solvability of (P ∗∗). In the other results,
Theorems 6.2 and 6.3, we consider two special cases. Precisely, in the first one it is
assumed that α < β and that (P ∗∗) has a minimizer in Ω+; in the second one we
assume that α = β and that the constant function u ≡ α is a solution to (P ∗∗).

As far as Theorem 6.1 is concerned, we need the following assumption, also used in
[14]:

meas

{

s ∈ [α, β] : f ∗∗(s, 0) = min
σ∈[α,β]

f ∗∗(σ, 0) and inf C+
s > 0

}

= 0, (29)

with the position inf C+
s = 0 if C+

s = ∅. We point out also that a main point in the
proof of Theorem 6.1 is the classification of the values of a minimizer in Ω∗ of (P ∗∗)
in the interval [τ1, τ2], where it is constant, see Theorem 3.1(b).

Theorem 6.1. Let α ≤ β. Let f : I×R → [0,+∞) be a Borel-measurable function,
with f ∗∗(·, 0) lower semicontinuous and satisfying (8) and (29).

Assume
co {z ∈ R : f(s, z) = f ∗∗(s, z)} = R for a.e. s ∈ I, (30)

C+
s is a closed set in (0,+∞) for a.e. s ∈ I (31)

C−

s is a closed set in (−∞, 0) for a.e. s ∈ I (32)

and the following properties:
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(i) there exists s∗ ∈ Q+
+ such that one of the three properties below holds:

(1 ) f(s∗, 0) = f ∗∗(s∗, 0),
(2 ) s∗ = α and (23∗) holds with α in place of s̄,
(3 ) s∗ = β and (23∗∗) holds with β in place of s̄,

(ii) (23∗) holds for every s̄ ∈ Q+
− ∩ D0,

(iii) (23∗∗) holds for every s̄ ∈ Q−

+ ∩ D0.

If (P ∗∗) is solvable, then (P ) is solvable.

Theorem 6.2. Let α < β. Let f : I×R → [0,+∞) be a Borel-measurable function,
with f ∗∗(·, 0) lower semicontinuous.

Suppose that

C+
s is a not empty, closed set in (0,+∞) for a.e. s ∈ [α, β]. (33)

If v ∈ Ω+ is a solution to (P ∗∗), such that

v′(x) ∈ co C+
v(x) for a.e. x ∈ [a, b], (34)

then there exists u ∈ Ω+ solution to (P ).

Proof. Since v ∈ Ω+ then (33) and (34) obviously imply (12). Of course, (13) is
trivially satisfied. The conclusion follows by Proposition 4.1.

Differently than in Theorems 6.1 and 6.2, whose proof make use of Proposition 4.1,
where the lower semicontinuity of f ∗∗(·, 0) is requested, the proof of Theorem 6.3
relies on Proposition 5.2 only, where the regularity of assumption on f ∗∗(·, 0) is
weakened to Borel measurability.

Theorem 6.3. Let α = β. Let f : I×R → [0,+∞) be a Borel-measurable function,
with f ∗∗(·, 0) Borel-measurable.

Suppose that the constant function u(x) = α is a solution to (P ∗∗) and if f(α, 0) >
f ∗∗(α, 0) suppose that

(23∗) or (23∗∗) holds with s̄ = α. (35)

Then there exists a solution to (P ).

Moreover, if g± are in L∞(α − δ, α) (if (23∗) holds) or in L∞(α, α + δ) (if (23∗∗)
holds), then (P ) has a Lipschitz solution.

Proof. If f(α, 0) = f ∗∗(α, 0) then u is a minimizer of (P ). If instead (35) holds,
then the claim is a direct consequence of Proposition 5.2.

We now give the proof of our main result.

Proof of Theorem 6.1. If (P ∗∗) is solvable, then by Theorem 3.1 there exists
u ∈ Ω∗, solution to (P ∗∗), satisfying one of the four cases listed in Theorem 3.1(b).
In particular, there exist τ1, τ2 in [a, b], a ≤ τ1 ≤ τ2 ≤ b, such that u is strictly
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monotone in [a, τ1] and [τ2, b], u
′(x) 6= 0 for a.e. x ∈ [a, τ1] ∪ [τ2, b], and u(x) = su

for every [τ1, τ2].

We write a complete proof for the second case (b2); i.e., u ∈ Ω+
+ and su is any element

in Q+
+. This is the only case where (30) is used. By assumption (i), there exists

s∗ ∈ Q+
+ such that (1 ), (2 ) or (3 ) holds. If (1 ) holds, without loss of generality we

can assume su = s∗. If instead (2 ) or (3 ) holds, then su = α or su = β, respectively,
and f(su, 0) > f∗∗(su, 0).

Let us consider the intervals [α, τ1] and [τ2, β].

If (14) holds, with ũ replaced by u, then u does not neeed to be modified in
[a, τ1] ∪ [τ2, b]. If instead (14) does not hold, we modify u in [a, τ1] and [τ2, b] using
Proposition 4.1. Precisely, since u is strictly increasing in [a, τ1] and in [τ2, b], with
u′(x) > 0 for a.e. x, then {x : u′(x) < 0} is a negligible set and (13) holds. More-
over, since the restrictions of u to [a, τ1] and to [τ2, b] have an absolutely continuous
inverse function, see e.g. [1], then (30) and (31) imply that

C+
u(x) is a not empty, closed set in (0,+∞) for a.e. x ∈ [a, b].

We want to prove that

u′(x) ∈ co C+
u(x) for a.e. x ∈ [a, τ1] ∪ [τ2, b].

By (30), to prove the statements above it suffices to prove that

u′(x) ≥ inf C+
u(x) for a.e. x ∈ [a, τ1] ∪ [τ2, b]. (36)

To do this we use a similar argument to that used in the proof of [14, Lemma 4.5].

Let v denote the restriction of u in (a, τ1); then v has an absolutely continuous
inverse. Recalling that f ∗∗(su, 0) = minσ∈[α,β] f

∗∗(σ, 0), by (29) we have

meas
{

x ∈ (a, τ1) : f
∗∗(u(x), 0) = f ∗∗(su, 0) and inf C+

u(x) > u′(x)
}

≤ meas
{

x ∈ (a, τ1) : f ∗∗(u(x), 0) = f ∗∗(su, 0) and inf C+
u(x) > 0

}

= meas v−1({s ∈ (α, su) : f ∗∗(s, 0) = f ∗∗(su, 0) and inf C+
s > 0}) = 0. (37)

Observe that u is a minimizer of the constrained problem

minimize

{
∫ τ1

a

f ∗∗(w(x), w′(x)) dx : w ∈ Υ+

}

,

where

Υ+ := {w ∈ AC([a, τ1]) : w(a) = α, w(τ1) = su, w
′(x) ≥ 0 a.e. in (a, τ1)}

Hence, by [17, Theorem 7 and Remark 4] u satisfies the following DuBois-Reymond
condition

f ∗∗(u(x), u′(x))− c ∈ u′(x)∂f ∗∗(u(x), u′(x)) a.e. in (a, τ1) (38)
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for some constant c ≤ f ∗∗(su, 0). For every s there exists m(s) such that

f ∗∗(s, z) = f ∗∗(s, 0) +m(s)z for every z ∈ [0, inf C+
s ].

Thus, by (38) we deduce the existence of a constant c ≤ f ∗∗(su, 0) such that

f ∗∗(u(x), 0) +m(u(x))u′(x)− c

= u′(x)m(u(x)) for a.e. x ∈ (a, τ1) with u
′(x) < inf C+

u(x).

Hence by (37) we get

f ∗∗(su, 0) < f∗∗(u(x), 0)

= c ≤ f ∗∗(su, 0) for a.e. x ∈ (a, τ1) such that u′(x) < inf C+
u(x);

this is an absurd, so it must be

u′(x) ≥ inf C+
u(x) for a.e. x ∈ (a, τ1).

Reasoning in a similar way it can be proved that u′(x) ≥ inf C+
u(x) for a.e. x ∈ (τ2, b)

and (36) follows. We have so proved that (12) holds. By Proposition 4.1 we obtain
the existence of a minimizer ũ ∈ Ω∗ of (P ∗∗) satisfying (14) and ũ = u(x) = su in
[τ1, τ2]. Now, let us consider the interval [τ1, τ2]. If

f(su, 0) = f ∗∗(su, 0) = f ∗∗(u(x), u′(x)) for every x ∈ (τ1, τ2),

as it happens when (1) holds, then ũ does not need to be modified in the interval
[τ1, τ2]. Otherwise, by Proposition 5.2 there exists v ∈ Ω minimizer of (P ∗∗) such
that

f(v(x), v′(x)) = f ∗∗(v(x), v′(x)) for a.e. x ∈ [τ1, τ2]

and
v(x) = ũ(x) for every x ∈ [a, τ1] ∪ [τ2, b].

Thus, v is a minimizer of (P ).

Let us now sketch the proof assuming the third case, (b3), listed in Theorem 3.1(b),
i.e., u ∈ Ω+

− and su is a suitable element in Q+
−; in particular, su < α.

If (14) does not hold, we can apply Proposition 4.1 to modify u in [a, τ1]∪ [τ2, b]. In
fact, u is strictly decreasing in [a, τ1] and strictly increasing in [τ2, b], with u

′(x) 6= 0
for a.e. x. By (31) and (32)

C+
u(x) is a closed set in (0,+∞) for a.e. x ∈ [τ2, b]

and
C−

u(x) is a closed set in (−∞, 0) for a.e. x ∈ [a, τ1].

We claim that
u′(x) ≥ inf C+

u(x) for a.e. x ∈ [τ2, b],

u′(x) ≤ sup C−

u(x) for a.e. x ∈ [a, τ1].
(39)
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Indeed, by su ∈ Q+
−, and without using (29), it follows that

f ∗∗(u(x), 0) > f∗∗(su, 0) for all x ∈ (a, τ1) ∪ (τ2, b).

Reasoning as in the previous case, we can prove that

f ∗∗(su, 0) < f∗∗(u(x), 0) ≤ f ∗∗(su, 0)

for a.e. x ∈ (τ2, b) such that u′(x) < inf C+
u(x),

and

f ∗∗(su, 0) < f∗∗(u(x), 0) ≤ f ∗∗(su, 0)

for a.e. x ∈ (a, τ1) such that u′(x) > sup C−

u(x).

Thus (39) holds true and by (30) we have that u′(x) ∈ co C+
u(x) for a.e. x ∈ [τ2, b] and

u′(x) ∈ co C−

u(x) for a.e. x ∈ [a, τ1]. Therefore, (12) and (13) hold. By Proposition

4.1 we obtain the existence of a function ũ ∈ Ω∗, which is a minimizer of (P ∗∗)
satisfying (14) and ũ(x) = u(x) = su in [τ1, τ2].

Now, by (ii), either f(su, 0) = f ∗∗(su, 0) or f(su, 0) > f∗∗(su, 0) with su satisfying
(23∗). In the first case, define v = ũ and we have concluded, since v is a minimizer of
(P ). In the second case, we apply Proposition 5.2 obtaining a function v, minimizer
of (P ∗∗), satisfying (25) and v = ũ in [a, τ1] ∪ [τ2, b]. Thus, v is a solution to (P ).

The remaining cases in (b) of Theorem 3.1, that is u ∈ Ω+ and u ∈ Ω−

+, can be
treated in a similar way.

Remark 6.4. A comparison with the relaxation result proved in [6] is in order.

In [6] f may assume value +∞, but if f is a real valued function, as in our setting,
both the continuity of f and f ∗∗ is assumed, together with a growth condition
including the superlinearity growth and some linear growth as well, see [6, (H3)].
These assumptions are weakened in our result; indeed in our case f and f ∗∗ may be
irregular and the growth condition is now replaced by the weaker assumption (30),
see [6, Proposition 3.1], including cases of no growth.

Let us compare the other assumptions. Of course, the continuity of f and f ∗∗

imply (31) and (32) (it would be sufficient to have the lower semicontinuity of
z 7→ f(s, z) for a.e. s ∈ I). Moreover, in [6] there are two technical assumptions,
see [6, (2.13) and (2.14)]. Roughly speaking, (2.13) says that if Ef∗∗(s, z̄) is the
value at 0 of the tangent line to the graph of z 7→ f ∗∗(s, z) in z̄, then the map
s 7→ Ef∗∗(s, z̄) is piecewise monotone in a neighbour of s̄, for every s̄ such that
f(s̄, z̄) > f∗∗(s̄, z̄); moreover, if z̄ = 0 then the above assumption is strenghtened
assuming that s 7→ Ef∗∗(s, 0) = f ∗∗(s, 0) has no strict local minima on D0.

A consequence of [6, (2.13) and (2.14)] is that if f(s̄, 0) > f∗∗(s̄, 0) then there exists
δ > 0 such that either s 7→ f ∗∗(s, 0) is monotone in [s̄−δ, s̄+δ], or it is increasing in
[s̄− δ, s̄] and decreasing in [s̄, s̄+ δ] (we remind here that with increasing we mean
non-decreasing). Now, if s̄ ∈ Q+

− then these cases reduce to assume that there exists
δ > 0 such that s 7→ f ∗∗(s, 0) is increasing in [s̄− δ, s̄+ δ]; in fact, f ∗∗(·, 0) cannot
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be decreasing in a right neighbour of s̄, otherwise a contradiction arises with the
request s̄ ∈ Q+

−. Analogously, if s̄ ∈ Q−

+ then s 7→ f ∗∗(s, 0) has to be decreasing in
a neighbour of s̄. Therefore, taking also into account what previously observed in
Remark 5.1, we conclude that the assumptions in [6] imply (ii) and (iii).

As far as (i) is concerned, suppose that α = β. If f(α, 0) = f ∗∗(α, 0) then (i)
holds true. In the opposite case f(α, 0) > f∗∗(α, 0), using [6, (2.13) and (2.14)]
and reasoning as above we get that there exists δ > 0 such that s 7→ f ∗∗(s, 0) is
either increasing in [α− δ, α] or decreasing in [α, α+ δ]. Thus, taking into account
Remark 5.1 once again we get that both the second and the third item in (i) hold.
Moreover, α = β trivially implies (29), so we conclude that if α = β then our result
includes [6, Theorem 2.2].

A discrepancy among our relaxation result and [6, Theorem 2.2] turns out if α < β.
In this case (i) and (29) are not a consequence of the assumptions in [6]; however,
they have the benefit to avoid any request on s 7→ Ef∗∗(s, z̄) when z̄ 6= 0.

7. Examples

In this section we present some examples of problem (P ), so to better understand
the role played by the assumptions in Theorem 6.1 and their sharpness.

Assumption (30).

An example which shows that (30) cannot be removed is the following.

Example 7.1. Let f(z) = z2e−z2 and Ω = {u ∈ AC([0, 1]) : u(0) = 0, u(1) = β}
with β > 0.

Then f ∗∗(z) = 0 for all z and assumption (30) is not satified. However, all the other
assumptions of Theorem 6.1 holds.

Of course, u(x) = βx solves (P ∗∗). Moreover, infF = 0. To prove this, fixed n > β
consider

un(x) =















nx if 0 ≤ x ≤
1

2
+

β

2n

β − n(x− 1) if
1

2
+

β

2n
≤ x ≤ 1.

Then F (un) → 0. Now, (P ) does not have a solution, because no absolutely con-
tinuous functions in Ω can have derivative equal to 0 a.e..

Assumption (31).

Let us consider the following example.

Example 7.2. Let

f(s, z) =











−|s|z + |s| if z < 0

|s| if 0 ≤ z < 1

z − 1 if z ≥ 1.
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and consider
Ω := {u ∈ AC([0, 1]) : u(0) = 0, u(1) = 1}.

Then

f ∗∗(s, z) =

{

−|s|z + |s| if z ≤ 1

z − 1 if z > 1.

In particular, f(0, z) = f ∗∗(0, z) and f(s, z) = f ∗∗(s, z) for all s 6= 0 and z ∈
(−∞, 0] ∪ [1,+∞). All the assumptions of Theorem 6.1 are satisfied and u(x) = x
is a minimizer both of (P ∗∗) and (P ).

If in Example 7.2 we change the definition of f(s, ·) at z = 1 we may lose the
solvability of (P ), see the proposition below. Notice that in this case (31) fails.

Proposition 7.3. Consider

minimize

{

F (u) :=

∫ b

a

f(u(x), u′(x)) dx

}

, u ∈ Ω, (P )

where
Ω := {u ∈ AC([0, 1]) : u(0) = 0, u(1) = 1},

and

f(s, z) =











−|s|z + |s| if z < 0

|s| if 0 ≤ z ≤ 1

z − 1 if z > 1.

Then (P ∗∗) is solvable, but there are no solutions to (P ).

In particular, all the assumptions in Theorem 6.1 are satisfied, with the exception
of (31) that fails to hold.

Proof. It is obvious that

f ∗∗(s, z) =

{

−|s|z + |s| if z ≤ 1

z − 1 if z > 1.

In particular, f ∗∗(s, 1) = 0, so u(x) = x is a minimizer of (P ∗∗). Moreover,
f ∗∗(s, 0) = |s|, therefore, mins∈[0,1] f

∗∗(s, 0) = 0 and (29) holds true.

Notice that Q+
+ in (2) is equal to {0} and f ∗∗(0, 0) = 0 = f(0, 0) so that (i) in

Theorem 6.1 is satisfied. It is obvious that Q+
− and Q−

+ are both empty sets, which
implies (ii) and (iii) in Theorem 6.1. Assumptions (8), (30) and (32) trivially hold.
However, (31) fails, since C+

s = (1,+∞) for all s 6= 0, and it is not a closed set in
(0,+∞).

To conclude we remark that (P ) has not a solution. In fact, if

un(x) =











0 if 0 ≤ x ≤
1

n
n

n− 1
x−

1

n− 1
if

1

n
< x ≤ 1
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then

F (un) =

∫ 1

n

0

f(0, 0) dx+

∫ 1

1

n

f

(

n

n− 1
x−

1

n− 1
,

n

n− 1

)

dx

=

(

n

n− 1
− 1

)(

1−
1

n

)

=
1

n
.

Thus, infF = 0, but F never attains this value.

Assumption (i) in Theorem 6.1.

In the well known Bolza’s example f(s, z) = s2 + (z2 − 1)2, α = β = 0 and
I = R. The corresponding problem (P ) has not a minimizer. In particular, the
variational problem (P ∗∗) has the constant function u(x) = 0 as a solution and the
Langrangian f(s, z) satisfies neither (35) of Theorem 6.3 nor (i) of Theorem 6.1.
Thus, this example shows that (i) of Theorem 6.1 cannot be removed. Now, we
observe that the alternative (2) in (i) of Theorem 6.1 cannot be weakened (a similar
example can be produced for (3)); precisely, (b∗∗) in (23∗∗) is sharp, that is if 1

g+
or

1
g−

is not in L1 then (P ) may have no solutions (see in particular Claim 4. in the

proof).

Proposition 7.4. Fixed γ ∈ R, consider f : R × R → [0,+∞), depending on γ,
f(s, z) = g(s) + h(s, z) with

g(s) =

{

1 if s < 0

0 if s ≥ 0,
h(s, z) =



































1−
|z|

|s|γ
if s 6= 0 and |z| < |s|γ

z − |s|γ if s 6= 0 and z ≥ |s|γ

0 if s 6= 0 and z ≤ −|s|γ

max{z, 0} if s = 0 and z 6= 0

1 if s = 0 and z = 0.

Consider

minimize

{

F (u) :=

∫ b

a

(g(u(x)) + h(u(x), u′(x))) dx

}

, u ∈ Ω, (P )

where

Ω := {u ∈ AC([0, 1]) : u(0) = 0, u(1) = 0}.

There exists a minimizer of (P ) if and only if γ < 1.

Proof. Problem (P ∗∗) is solvable for any γ ∈ R. In fact, notice that f(s, z) ≥ 0,
therefore f ∗∗ is a non-negative function, too. Since f ∗∗(0, 0) = 0 then u(x) ≡ 0 is a
solution of (P ∗∗).

Let us proof the thesis of the statement using Theorem 6.1.

Claim 1. f ∗∗(·, 0) is a lower semicontinuous function and (8), (30)–(32) are satisfied.



244 M. Bianchini, G. Cupini / A Relaxation Result for Simple Integrals

Proof of Claim 1. Of course, f(s, 0) = 1 for every s ∈ R and for any value of
z ∈ R we have that

f ∗∗(s, z) =











g(s) if s 6= 0 and z < |s|γ

g(s) + z − |s|γ if s 6= 0 and z ≥ |s|γ

max{z, 0} if s = 0.

Since f ∗∗(s, 0) = g(s), then f ∗∗(·, 0) is a lower semicontinuous function. Moreover,
(8) holds since 0 ∈ ∂f ∗∗(·, 0). For all s 6= 0,

C+
s = [|s|γ,+∞), C−

s = (−∞,−|s|γ]

and C+
0 = (0,+∞), C−

0 = (−∞, 0); hence assumptions (30)–(32) are satisfied.

Claim 2. Assumption (i) of Theorem 6.1 is satisfied if and only if γ < 1.

Proof of Claim 2. Since Q+
+ = {0} and f(0, 0) = 1 > 0 = f ∗∗(0, 0), then (1) does

not hold. Assumption (23∗) with s̄ = 0 fails as well, because f ∗∗(s, 0) = g(s) for all
s, and it is not increasing in [−δ, 0] for any positive δ. As far as the validity of (3) is
concerned, the first claim of (23∗∗) is satisfied since f ∗∗(·, 0) is constant in [0,+∞).
Let us consider (∗∗). For any δ > 0, the only possible choice for g+ : [0, δ] → R is
g+(s) = sγ, and 1

g+
∈ L1(0, δ) if and only if γ < 1. For g− : [0, δ] → R we can choose

any function such that g−(s) ≤ −sγ for all s and that satisfies the corresponding
assumptions in (∗∗), see (23∗∗). Thus, (b∗∗) holds if and only if γ < 1.

Claim 3. If γ < 1 there exists a minimizer of (P ).

Proof of Claim 3. Since both Q+
− and Q−

+ are empty sets, then (ii) and (iii) hold
true. Therefore, Theorem 6.1 implies that if γ < 1 there exists a minimizer of (P ).

Claim 4. If γ ≥ 1 then (P ) has no solutions.

Proof of Claim 4. Fixed n ≥ 2, let v+n and v−n be the solutions of the Cauchy
problems

y′ = yγ in

[

1

n
,
1

2

]

, y

(

1

n

)

=
1

n

and

y′ = −yγ in

[

1

2
, 1−

1

n

]

, y

(

1−
1

n

)

=
1

n
,

respectively.
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Define un : [0, 1] → [0,+∞),

un(x) =















































x if 0 ≤ x ≤
1

n

v+n (x) if
1

n
≤ x ≤

1

2

v−n (x) if
1

2
≤ x ≤ 1−

1

n

1− x if 1−
1

n
≤ x ≤ 1.

Then,

F (un) =

∫ 1

n

0

f(x, 1) dx+

∫ 1

2

1

n

f(v+n (x), (v
+
n )

′(x)) dx

+

∫ 1− 1

n

1

2

f(v−n (x), (v
−

n )
′(x)) dx+

∫ 1

1− 1

n

f(1− x,−1) dx

=

∫ 1

n

0

(1− |x|γ) dx+

∫ 1

1− 1

n

(1− |1− x|γ) dx ≤
2

n
,

which implies that infΩ F = 0. Thus, taking into account that f(s, z) ≥ 1 for
all s < 0 and every z, there exists a minimizer of (P ) if and only if there exists
u ∈ AC([0, 1]) such that u(0) = u(1) = 0, u(x) > 0 for a.e. x ∈ (0, 1), and it satisfies

u′(x) = (u(x))γ for a.e. x s.t. u′(x) > 0 (40)

u′(x) ≤ −(u(x))γ for a.e. x s.t. u′(x) < 0. (41)

Such a function u does not exist. By contradiction, suppose that u exists. Let
x0 ∈ (0, 1) be such that u(x0) > 0 and let v ∈ C1([0, 1]) be the unique solution of
the Cauchy problem

v′(x) = (v(x))γ, v(x0) = u(x0).

Obviously, there exists c, depending on γ, such that v(x) ≥ c > 0 for every x ∈
[0, x0]. Let x1 = max{x ∈ [0, x0] : u(x) = 0} and x2 = min{x ∈ [x1, x0] : u(x) ≥
v(x)}.

Then, by (40) and (41)

v(x1) = (u(x2)− v(x2))− (u(x1)− v(x1)) =

∫ x2

x1

(u′(x)− v′(x)) dx

≤

∫ x2

x1

((u(x))γ − (v(x))γ) dx < 0,

an absurd.
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7.1. Assumption (29).

The following proposition shows that also assumption (29) cannot be removed.

Proposition 7.5. Consider

minimize

{

F (u) :=

∫ b

a

f(u′(x)) dx

}

, u ∈ Ω, (P )

where
Ω := {u ∈ AC([0, 1]) : u(0) = 0, u(1) = 1},

and

f(z) =

{

−z if z < 0

|z − 2| if z ≥ 0.

Then (P ∗∗) is solvable, but there are no solutions to (P ).

In particular, all the assumptions in Theorem 6.1 are satisfied, with the exception
of (29) that fails to hold.

Proof. Since

f ∗∗(z) =











−z if z < 0

0 if 0 ≤ z ≤ 2

z − 2 if z > 2

then u(x) = x is a solution to (P ∗∗).

We claim that assumption (29) does not hold. In fact, f ∗∗ is independent of s,
s 7→ inf C+

s is constant and takes value 2. Now, it is easy to verify that all the other
assumptions in Theorem 6.1 hold. To prove that (P ) has not a minimizer, for every
integer n ≥ 3 define

un(x) =











−
2

n− 2
x if 0 ≤ x ≤

1

2
−

1

n

2x− 1 if
1

2
−

1

n
< x ≤ 1.

Then

F (un) =

∫ 1

2
−

1

n

0

f

(

−
2

n− 2

)

dx =
2

n− 2

(

1

2
−

1

n

)

=
1

n
;

therefore infF = 0. It is obvious that no functions u ∈ Ω exist such that F (u) =
0.

We conclude observing that if α = β then the relaxation result proved in [6] is
included in our Theorem 6.1 (see Remark 6.4); thus, if α = β then [6, Example 2.5]
is an example of a variational problem for whom Theorem 6.1 applies. Moreover,
this example can be generalized choosing suitable non-smooth functions a(η), b(η),
c(η).
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