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1. Introduction

The theory of set-valued random variables has been extensively studied and ap-
plied in the areas of information science, probability and statistics. In particular,
the strong law of large numbers (SLLN) for sums of independent set-valued ran-
dom variables in Banach space have been studied by several authors. Taylor and
Inoue [16] established the SLLN for compactly uniformly integrable independent
sequences of compact-valued random variables {Xn : n ≥ 1} by assuming that
∑∞

n=1 n
−pE‖Xn‖

p < ∞ (Chung type condition). Then, they also proved another
SLLN result by replacing Chung type condition by the condition that {Xn : n ≥ 1}
is stochastically dominated (see [17]). Developing the work in [17], Fu and Zhang [7]
obtained the SLLN for triangular arrays of rowwise independent and compactly uni-
formly integrable compact-valued random variables. In this paper, we state several
new variants of SLLN for double arrays of independent set-valued random variables
under various assumptions. The paper is organized as follows. In Section 2 we
state and summarize basic results in set-valued integration and probability. Sec-
tion 3 is concerned with the SLLN for double array of independent compact valued
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and compactly uniformly integrable random variables. In Section 4 we present
the SLLN for double array of independent convex weakly compact valued random
variables.

2. Preliminaries

Throughout this paper (Ω,F , P ) is a complete probability space, (X, ‖.‖) is a real
separable Banach space andX∗ is its topological dual. Let c(X) (resp. cc(X)) (resp.
cwk(X)) (resp. k(X)) (resp. ck(X)) be the set of nonempty closed (resp. closed con-
vex) (resp. convex weakly compact) (resp. compact) (resp. convex compact) subsets
of X. For A ∈ c(X), the distance function and the support function associated with
A are defined respectively by

d(x,A) = inf{‖x− y‖ : y ∈ A}, (x ∈ X)

δ∗(x∗, A) = sup{〈x∗, y〉 : y ∈ A}, (x∗ ∈ X∗).

We also define
|A| = sup{‖x‖ : x ∈ A}

and denote by dH the Hausdorff distance defined on the c(X) associated with the
topology of the norm in X

dH(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}

.

If dH(A,B) < ∞ then

dH(A,B) = max
{

inf{λ > 0 : B ⊂ U(A;λ)}, inf{λ > 0 : A ⊂ U(B;λ)}
}

,

where U(A;λ) = {x ∈ X : d(x,A) ≤ λ} and U(B;λ) = {x ∈ X : d(x,B) ≤ λ}.

A closed valued mapping F : Ω → c(X) is F -measurable if for every open set U in
X the set

F−(U) := {ω ∈ Ω : F (ω) ∩ U 6= ∅}

is a member of F . A function f : Ω → X is a F -measurable selection of F if
f(ω) ∈ F (ω) for all ω ∈ Ω. A Castaing representation of F is a sequence (fn)n∈N
of F -measurable selections of F such that

F (ω) = cl{fn(ω), n ∈ N} ∀w ∈ Ω

where the closure is taken with respect to the topology of associated with the
norm in X. It is known that a nonempty closed-valued mapping F : Ω → c(X)
is F -measurable iff it admits a Castaing representation. Since F is complete, the
F -measurability is equivalent to the measurability in the sense of graph, namely
the graph of F is a member of F ⊗B(X), here B(X) denotes the Borel tribe on X.
Further the Effros σ-field E of c(X) is generated by the subsets

U− := {F ∈ c(X) : F ∩ U 6= ∅}
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where U is an open subset in X. Then a mapping Γ : Ω → c(X) is F -measurable
if and only if, for any B ∈ E , one has Γ−1(B) ∈ F . The distribution PΓ of the

F -measurable mapping Γ : Ω → c(X) on the measurable space (c(X), E) is defined
by

PΓ(B) = P{Γ−1(B)}, ∀B ∈ E .

Two F -measurable mappings Γ and ∆ are said to be equidistributed (or to have the
same distribution) if

PΓ = P∆.

Two F -measurable mappings Γ and ∆ are independent, if the following equality
holds

P(Γ,∆) = PΓ ⊗ P∆.

A closed-valued F -measurable mapping is also called closed-valued random variable.
We denote by L1

X(F) the space of X-valued F -measurable and Bochner-integrable
functions defined on Ω. A c(X)-valued F -measurable F : Ω → c(X) is integrable if
the set S1

F (F) of all F -measurable and integrable selections of F is nonempty and
it is called integrably bounded if |F | ∈ L1

R
(F). Given two closed valued integrable

random variables F and G, then F and G are independent iff for any n ∈ N, for
any f = (f1, f2, ...fn) in [S1

F (FF )]
n and for any g = (g1, g2, ...gn) in [S1

G(FG)]
n, f

and g are independent, where FF is a σ-algebra generated by F . We refer to Hess
([8], Theorem 1-2) for a complete study of the independence of integrable set-valued
random variables.

The expectation E[F ] of a closed valued integrable random variable F is defined by

E[F ] := cl{Ef : f ∈ S1
F}

where the closure is taken in X and Ef is the usual expectation of f ∈ S1
F .

If F is a cwk(X)-valued random variable with |F | ∈ L1
R
, shortly F ∈ L1

cwk(X)(F),

then the expectation of F , denote by E[F ]

E[F ] = {Ef : f ∈ S1
F}

is convex weakly compact. See ([4], Theorem V-14).

If F is a ck(X)-valued random variable with |F | ∈ L1
R
, shortly F ∈ L1

ck(X)(F), then

the expectation of F is given by E[F ]

E[F ] = {Ef : f ∈ S1
F}

is convex and norm compact. See ([4], Theorem V-15).

Given a sub-σ-algebra A of F and an integrable F -measurable cc(X)-valued map-
ping F : Ω → cc(X). Hiai and Umegaki [10] showed the existence of aA-measurable
cc(X)-valued integrable mapping denoted by E[F |A] such that

S1
E[F |A](A) = cl{E[f |A] : f ∈ S1

F (F)}

the closure being taken in L1
X(F), and E[F |A] is the conditional expectation of F

relative to A. We summarize the properties of conditional expectations as follows.
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Proposition 2.1. If F and G are two closed convex valued integrable random vari-
ables in X, and A is a sub-σ-algebra of F , then we have the following properties:

(a) E[cl{F +G}|A] = cl{E[F |A] + E[G|A]} a.s.

(b) If r is a real A-measurable function such that rF is integrable, then

E[rF |A] = rE[F |A] a.s.

(c) If g is a bounded scalarly A-measurable function from Ω to X∗, then

δ∗(g, E[F |A]) = E(δ∗(g, F )|A) a.s.

In particular δ∗(x∗, E[F |A]) = E(δ∗(x∗, F )|A) a.s. for every x∗ ∈ X∗.

(d) Let F be A-measurable and r be a F-measurable positive function such that
rF is integrable; then

E[rF |A] = E(r|A)F a.s.

In the case where F ∈ L1
cwk(X)(F), and the dualX∗ is strongly separable, we present

a specific version of conditional expectation that we summarize below.

Proposition 2.2. Assume that X∗ is strongly separable and F ∈ L1
cwk(X)(F). Let

A be a sub-σ-algebra of F . Then there is a unique (for the equality a.s.) A-
measurable cwk(X)-valued mapping Y := E[F |A] satisfying the properties:

(i) S1
E[F |A](A) = {E(f |A) : f ∈ S1

F (F)}; (1)

(ii) ∀v ∈ L∞
X∗(A), Eδ∗(v, Y ) = Eδ∗(v, F ); (2)

(iii) d(0, E[F |A]) ≤ E(d(0, F )|A). (3)

The existence of cwk(X)-valued conditional expectation for cwk(X)-valued random
variable was stated in ([2], Theorem 3). A unified approach for general conditional
expectation of cc(X)-valued integrable multifunctions is given in [18] allowing to
recover both the cc(X)-valued conditional expectation of cc(X)-valued integrable
mapping in the sense of [10] and the cwk(X)-valued conditional expectation of
cwk(X)-valued integrably bounded multifunctions given in [2].

Let A be a sub-σ-algebra of F and σ(F ) be the σ-algebra generated by F . If A
and σ(F ) are independent, then

E[F |A] = E[F ] ∈ cwk(X).

A sequence (Xn,Fn)n∈N of cc(X)-valued mapping is adapted if each Xn is Fn-
measurable. When X∗ is strongly separable, an adapted sequence (Xn,Fn)n∈N in
L1

cwk(X)(F) is a L1-bounded cwk(X)-valued martingale, submartingale, or super-

martingale, if E[Xn+1|Fn] =,⊃, or ⊂ Xn a.s. for all n ∈ N and supn∈NE|Xn| < ∞.
Note that this definition has a meaning thanks to Proposition 2.2.

For more information on multivalued conditional expectation and related subjects
we refer to [1, 3, 4, 10, 13, 18, 19]. We refer to [4] for the theory of Measurable
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Multifunctions and Convex Analysis, and to [6, 12] for basic theory of martingales
and adapted sequences.

Let us recall the maximal inequalities for positive submartingales. The first one has
been obtained by Doob and the second one is a special version of Marcinkiewicz.

Theorem 2.3. Let {Xk,Fk : 1 ≤ k ≤ n} be a positive submartingale. Then for
p ≥ 1 we have the maximal inequalities:

E

(

max
1≤k≤n

Xk

)p

≤ qpEXp
n, if p > 1, q =

p

p− 1
;

E

(

max
1≤k≤n

Xk

)

≤
e

e− 1
(1 + E(Xn log+ Xn)), if p = 1.

A real separable Banach space is of Rademacher type p (1 ≤ p ≤ 2) if and only if
there exists a constant 0 < C < ∞ such that

E

∥

∥

∥

∥

∥

n
∑

j=1

fj

∥

∥

∥

∥

∥

p

≤ C

n
∑

j=1

E‖fj‖
p

for every finite collection {f1, ..., fn} of independent integrable random variables
with mean 0. The details of definition and proofs, we refer the reader to [11].

A collection {Fmn : m ≥ 1, n ≥ 1} of weakly compact valued random variables is
stochastically dominated by a real valued random variable F if for some constant
C < ∞

P{|Fmn| ≥ t} ≤ CP{|F | ≥ t}, t ≥ 0, m ≥ 1, n ≥ 1.

This condition is satisfied when the collection {Fmn : m ≥ 1, n ≥ 1} is identically
distributed.

A double array {Fmn : m ≥ 1, n ≥ 1} of compact valued random variables is said
to be compactly uniformly integrable (CUI) if for every ε > 0 there exists a compact
subset Kε such that

sup
m≥1,n≥1

E|FmnI[Fmn /∈Kε]| < ε.

For notational convenience, for a, b ∈ R, max{a, b} is denoted by a ∨ b and the
symbol C denotes a generic constant (0 < C < ∞).

Now we proceed to state our main results.

3. SLLN for compact valued independent random variables in Banach

spaces

In this section, SLLN will be obtained for double array of CUI set-valued random
variables in arbitrary separable Banach space. We need some lemmas which will be
used later.
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Lemma 3.1. Let A ∈ k(X) and {amn : m ≥ 1, n ≥ 1} be a double array of
nonnegative constants. If

m
∑

i=1

n
∑

j=1

ai j ≤ mαnβ and
1

mαnβ
max
1≤k≤m
1≤l≤n

ak l → 0

as m ∨ n → ∞ for some α > 0, β > 0,

then

dH

(

1

mαnβ

m
∑

i=1

n
∑

j=1

ai jA,
1

mαnβ

m
∑

i=1

n
∑

j=1

ai j coA

)

→ 0 as m ∨ n → ∞.

Proof. We put

max
1≤k≤m
1≤l≤n

ak l = δmn and
m
∑

i=1

n
∑

j=1

ai j = γmn.

Since inf{λ > 0 :
∑m

i=1

∑n
j=1 ai jA ⊂ U(γmn coA;λ)} = 0 for each m,n, it is

sufficient to prove that inf{λ > 0 : γmn coA ⊂ U(
∑m

i=1

∑n
j=1 ai jA;λ)} = o(mαnβ)

as m ∨ n → ∞.

For ε > 0, we will show that

γmn coA ⊂ U

(

m
∑

i=1

n
∑

j=1

ai jA;Cδmn +mαnβε

)

,

for mn sufficiently large and a constant C > 0.

Indeed, since coA is compact, there exists b1, b2, ..., bh belong to coA such that
coA ⊂

⋃h
p=1{x : ‖x − bp‖ < ε}. We consider only the elements bp of the form

bp = η1a1 + η2a2 + ...+ ηtpatp , 0 < ηj < 1,
∑tp

j=1 ηj = 1, aj ∈ A.

For each m,n such that mn sufficiently large, we put c1 = a1 1, ..., cn = a1n, cn+1 =
a2 1, ..., c2n = a2n, ..., c(m−1)n+1 = am 1, ..., cmn = amn. Then {cj : 1 ≤ j ≤ mn} is a
sequence of nonnegative constant and max1≤j≤mn cj = δmn,

∑mn
j=1 cj = γmn. There

exists integers 0 = s0 < s1 < ... < stp = mn such that

∣

∣

∣

∣

∣

∣

sj
∑

r=sj−1+1

cr − ηjγmn

∣

∣

∣

∣

∣

∣

≤ 2δmn, for all j = 1, 2, ..., tp.

By putting

dp =

tp
∑

j=1

sj
∑

r=sj−1+1

craj ∈
m
∑

i=1

n
∑

j=1

ai jA,
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we have

‖dp − γmnbp‖ ≤

tp
∑

j=1

∣

∣

∣

∣

∣

∣

sj
∑

r=sj−1+1

cr − ηjγmn

∣

∣

∣

∣

∣

∣

‖aj‖ ≤ 2tpδmn|A| ≤ Cδmn.

Let b ∈ coA, there exists bp0 such that ‖γmnb− γmnbp0‖ < γmnε ≤ mαnβε. Hence,
‖γmnb− dp0‖ ≤ Cδmn +mαnβε. It follows that

inf

{

λ > 0 : γmn coA ⊂ U

(

m
∑

i=1

n
∑

j=1

ai jA;λ

)}

≤ Cδmn +mαnβε = o(mαnβ) + ε.

The lemma is proved.

The two following lemmas are direct corollaries from Theorem 2.1 and Theorem
2.4 in [14]. Their proofs are obtained easily by noting that a p-uniformly smooth
Banach space is also q-uniformly smooth Banach space (1 ≤ q ≤ p ≤ 2) and the
real line R is a 2-uniformly smooth Banach space.

Lemma 3.2. For every double array of independent random variables {Vi j : i ≥
1, j ≥ 1} and every choice of constant α > 0, β > 0, the condition

∞
∑

m=1

∞
∑

n=1

E|Vmn|
p

mαpnβp
< ∞ for some 1 ≤ p ≤ 2

implies

1

mαnβ

m
∑

i=1

n
∑

j=1

(Vi j − EVi j) → 0 a.s. as m ∨ n → ∞.

Lemma 3.3. Let {Vi j : i ≥ 1, j ≥ 1} be a double array of independent random
variables. Suppose that {Vi j : i ≥ 1, j ≥ 1} is stochastically dominated by a random
variable V . If E

(

|V |(log+ |V |)2
)

< ∞, then

1

mn

m
∑

i=1

n
∑

j=1

(Vi j − EVi j) → 0 a.s. as m ∨ n → ∞.

Now we will establish the SLLN for double array of independent and CUI set-valued
random variables in k(X), where X is arbitrary separable Banach space.

Theorem 3.4. Let {Fi j : i ≥ 1, j ≥ 1} be a double array of independent and CUI
set-valued random variables in k(X). Then the strong law of large numbers

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j,
1

mn

m
∑

i=1

n
∑

j=1

E[coFi j]

)

→ 0 a.s. as m ∨ n → ∞

holds, if

(i) The double series
∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(ij)p
< ∞ for some 1 ≤ p ≤ 2, or
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(ii) The collection {Fi j : i ≥ 1, j ≥ 1} is stochastically dominated by a random
variable F and E

(

|F | (log+ |F |)2
)

< ∞.

Proof. For every ε > 0 there exists a compact subset K of k(X) such that
E|FmnI[Fmn /∈K]| < ε for all m,n ∈ N. By the compactness of K there exists
{K1, K2, ..., Kp} ⊂ K such that K ⊂

⋃p
t=1{A : dH(Kt, A) < ε} :=

⋃p
t=1 B(Kt, ε).

Now let us denote
Gmn = I[Fmn∈K]G

′
mn,

where

G′
mn = I[Fmn∈B(K1,ε)]K1 +

p
∑

t=2

I[[Fmn∈B(Kt,ε)]∩[∪
t−1

j=1
[Fmn∈B(Kj ,ε)]]c]

Kt.

It is easy to check that Gmn =
∑p

t=1 KtI[Gmn=Kt] for all m,n ∈ N and we have

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j,
1

mn

m
∑

i=1

n
∑

j=1

E[coFi j]

)

≤ dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j,
1

mn

m
∑

i=1

n
∑

j=1

Fi jI[Fi j∈K]

)

(I)

+ dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi jI[Fi j∈K],
1

mn

m
∑

i=1

n
∑

j=1

Gi j

)

(II)

+ dH

(

1

mn

m
∑

i=1

n
∑

j=1

p
∑

t=1

KtI[Gi j=Kt],
1

mn

m
∑

i=1

n
∑

j=1

p
∑

t=1

KtP (Gi j = Kt)

)

(III)

+ dH

(

1

mn

m
∑

i=1

n
∑

j=1

p
∑

t=1

KtP (Gi j = Kt),
1

mn

m
∑

i=1

n
∑

j=1

p
∑

t=1

coKtP (Gi j =Kt)

)

(IV)

+ dH

(

1

mn

m
∑

i=1

n
∑

j=1

E[coGi j],
1

mn

m
∑

i=1

n
∑

j=1

E[coFi jI[Fi j∈K]]

)

(V)

+ dH

(

1

mn

m
∑

i=1

n
∑

j=1

E[coFi jI[Fi j∈K]],
1

mn

m
∑

i=1

n
∑

j=1

E[coFi j]

)

. (VI)

Let us estimate the above parts as follow:

For (I), we have

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j,
1

mn

m
∑

i=1

n
∑

j=1

Fi jI[Fi j∈K]

)

≤
1

mn

m
∑

i=1

n
∑

j=1

(

|Fi jI[Fi j /∈K]| − E|Fi jI[Fi j /∈K]|
)

+
1

mn

m
∑

i=1

n
∑

j=1

E|Fi jI[Fi j /∈K]|

≤
1

mn

m
∑

i=1

n
∑

j=1

(

|Fi jI[Fi j /∈K]| − E|Fi jI[Fi j /∈K]|
)

+ ε.
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Since {|Fi jI[Fi j /∈K]| : i ≥ 1, j ≥ 1} is a double array of independent random variables,
moreover, if the condition (i) is satisfied then

∞
∑

i=1

∞
∑

j=1

E|Fi jI[Fi j /∈K]|
p

(ij)p
≤

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(ij)p
< ∞,

or if the condition (ii) is satisfied then

P
(

|Fi jI[Fi j /∈K]| ≥ t
)

≤ P (|Fi j| ≥ t) ≤ P (|F | ≥ t).

Thus from Lemma 3.2 and Lemma 3.3, we obtain

lim sup
m∨n→∞

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j,
1

mn

m
∑

i=1

n
∑

j=1

Fi jI[Fi j∈K]

)

≤ ε a.s.

For (II), by the definition of Gmn, we have

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi jI[Fi j∈K],
1

mn

m
∑

i=1

n
∑

j=1

Gi j

)

≤
1

mn

m
∑

i=1

n
∑

j=1

dH(Fi jI[Fi j∈K], Gi j) < ε.

For (III), we have

dH

(

1

mn

m
∑

i=1

n
∑

j=1

p
∑

t=1

KtI[Gi j=Kt],
1

mn

m
∑

i=1

n
∑

j=1

p
∑

t=1

KtP (Gi j = Kt)

)

≤

p
∑

t=1

|Kt|

∣

∣

∣

∣

∣

1

mn

m
∑

i=1

n
∑

j=1

(

I[Gi j=Kt] − P (Gi j = Kt)
)

∣

∣

∣

∣

∣

.

Note that {I[Gi j=Kt] − P (Gi j = Kt) : i ≥ 1, j ≥ 1} is the collection of independent
and bounded random variables with means zero. Thus from Lemma 3.3, it follows
that (III) converges to 0 as m ∨ n → ∞.

For (IV), applying Lemma 3.1 with α = β = 1, ai j = P (Gi j = Kt), we have

(IV) ≤

p
∑

t=1

dH

(

1

mn

m
∑

i=1

n
∑

j=1

KtP (Gi j = Kt),
1

mn

m
∑

i=1

n
∑

j=1

coKtP (Gi j = Kt)

)

→ 0

as m ∨ n → ∞.
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For (V), by the definition of Gmn, we obtain

dH

(

1

mn

m
∑

i=1

n
∑

j=1

E[coGi j],
1

mn

m
∑

i=1

n
∑

j=1

E[coFi jI[Fi j∈K]]

)

≤
1

mn

m
∑

i=1

n
∑

j=1

dH(E[coGi j], E[coFi jI[Fi j∈K]])

≤
1

mn

m
∑

i=1

n
∑

j=1

EdH(Gi j, Fi jI[Fi j∈K]) < ε.

For (VI), we have

(VI) ≤
1

mn

m
∑

i=1

n
∑

j=1

dH
(

E[coFi jI[Fi j∈K]], E[coFi j]
)

≤
1

mn

m
∑

i=1

n
∑

j=1

EdH(Fi jI[Fi j∈K], Fi j) < ε.

Combining the above parts, we obtain

lim sup
m∨n→∞

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j,
1

mn

m
∑

i=1

n
∑

j=1

E[coFi j]

)

≤ 4ε a.s.

The proof is completed.

Remark. By setting Fmn = {0} a.s. for all m ≥ 2, n ≥ 1, from Theorem 3.4, we
recover a related result in [16].

4. SLLN for convex weakly compact valued independent random vari-

ables in separable Banach space

In this section we assume that the strong dual of X is separable in order to have the
weak compactness property of conditional expectation (see Proposition 2.2), apart
from this fact our proofs work with any separable Banach space.

Definition 4.1. Let 1 < p < ∞. A double array {Fi j : i ≥ 1, j ≥ 1} of convex
weakly compact valued random variables in L1

cwk(X)(F) is of type p if there exists
a constant C such that

E

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣

p

≤ C

m
∑

i=1

n
∑

j=1

E |Fi j|
p for all m ≥ 1, n ≥ 1.

Example 4.2. Let X be a separable Banach space and K ∈ cwk(X). Assume that
{fi j : i ≥ 1, j ≥ 1} is a collection of independent real valued random elements with
Efi j = 0 and E|fi j|

p < ∞ for all i ≥ 1, j ≥ 1. Then the collection {Fi j = fi jK :
i ≥ 1, j ≥ 1} is independent cwk(X)-valued random variables, moreover 0 ∈ E[Fi j]
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for all i ≥ 1, j ≥ 1. Since the real line R is Rademacher type 2 Banach space, it
follows that for all 1 < p ≤ 2 we have

E

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣

p

= |K|pE

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

fi j

∣

∣

∣

∣

∣

p

≤ C|K|p
m
∑

i=1

n
∑

j=1

E|fi j|
p = C

m
∑

i=1

n
∑

j=1

E|Fi j|
p,

for all m ≥ 1, n ≥ 1. Hence the double array {Fi j : i ≥ 1, j ≥ 1} is of type p.

Example 4.3. Let X be a separable Banach space and let {Fi j : i ≥ 1, j ≥ 1} be
a collection of cwk(X)-valued random variables such that 0 ≤ |Fi j| ≤ (ij)−α a.s.
for each i ≥ 1, j ≥ 1 and for some α > 1. We have

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣

≤
m
∑

i=1

n
∑

j=1

|Fi j| ≤
∞
∑

i=1

∞
∑

j=1

1

(ij)α
:= C.

It shows that for each 1 < p < ∞ we obtain

E

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣

p

≤ Cp ≤ C ′

m
∑

i=1

n
∑

j=1

E|Fi j|
p

for each m ≥ 1, n ≥ 1. Then the collection {Fi j : i ≥ 1, j ≥ 1} is of type p.

Lemma 4.4. Let (X, d) be a metric space and {xmn : m ≥ 1, n ≥ 1} ⊂ X. If there
exists an element x ∈ X such that

lim
k∨l→∞

d(x2k 2l , x) = 0, and lim
k∨l→∞

max
2k<m≤2k+1

2l<n≤2l+1

d(xmn, x) = 0,

then d(xmn, x) −→ 0 as m ∨ n → ∞.

Proof. For m > 1, n > 1, there exists k, l ∈ N such that 2k < m ≤ 2k+1, 2l < n ≤
2l+1. We have

d(xmn, x) ≤ d(xmn, x2k 2l) + d(x2k 2l , x)

≤ max
2k<m≤2k+1

2l<n≤2l+1

d(xmn, x2k 2l) + d(x2k 2l , x)

≤ max
2k<m≤2k+1

2l<n≤2l+1

d(xmn, x) + 2 d(x2k 2l , x).

When k ∨ l → ∞ then m ∨ n → ∞ and we obtain the conclusion of lemma.

The following lemma is a maximal inequality for convex weakly compact valued
random variables with metric Hausdorff dH , and it plays the key role in establishing
the next law of large numbers.
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Lemma 4.5. Assume that X is a separable Banach space with strongly separable
dual, {Fi j : i ≥ 1, j ≥ 1} are independent convex weakly compact valued random
variables of type p with 1 < p < ∞ and 0 ∈ E[Fi j], E|Fi j|

p < ∞ for all i ≥ 1,
j ≥ 1. Then there exists a positive constant C such that

E

[

max
1≤k≤m,1≤l≤n

∣

∣

∣

∣

∣

k
∑

i=1

l
∑

j=1

Fi j

∣

∣

∣

∣

∣

]p

≤ C

m
∑

i=1

n
∑

j=1

E |Fi j|
p for all m ≥ 1, n ≥ 1. (4)

Proof. For each 1 ≤ k ≤ m, 1 ≤ l ≤ n, let us set

Sk l =
k
∑

i=1

l
∑

j=1

Fi j, Yml = max
1≤k≤m

|Sk l|,

Fk l = σ{Fi j : 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Now for each k = 1, 2, . . . ,m and 2 ≤ l ≤ n, using the conditional expectation
properties given by Proposition 2.1, we obtain

E[Sk l|Fk (l−1)] = E[Sk (l−1) + F1 l + · · ·+ Fk l|Fk (l−1)]

= E[Sk (l−1)|Fk (l−1)] + E[F1 l|Fk (l−1)] + · · ·+ E[Fk l|Fk (l−1)]

= Sk (l−1) + E[F1 l] + · · ·+ E[Fk l] ⊃ Sk (l−1) a.s.

It shows that {Sk l,Fk l : 1 ≤ l ≤ n} is a cwk(X)-valued submartingale (see e.g.
[1]).
On the other hand, by the well-known equality for cwk(X)-valued conditional ex-
pectation (see (2)) we have

δ∗(x∗, E[Sk l|Fk (l−1)]) = E(δ∗(x∗, Sk l)|Fk (l−1)) a.s. ∀x∗ ∈ B∗
X∗ .

Hence we deduce from this equality and Jensen inequality for conditional expecta-
tion

|Sk (l−1)| ≤ |E[Sk l|Fk (l−1)]| = sup
x∗∈B∗

X∗

|δ∗(x∗, E[Sk l|Fk (l−1)])|

= sup
x∗∈B∗

X∗

|E(δ∗(x∗, Sk l)|Fk (l−1))| ≤ sup
x∗∈B∗

X∗

E(|δ∗(x∗, Sk l)||Fk (l−1))

≤ E

(

sup
x∗∈B∗

X∗

|δ∗(x∗, Sk l)||Fk (l−1)

)

= E(|Sk l||Fk (l−1)).

Thus {|Sk l|,Fk l : 1 ≤ l ≤ n} is a nonnegative submartingale for each k =
1, 2, . . . ,m. Hence {Yml = max1≤k≤m |Sk l|,Fml : 1 ≤ l ≤ n} is a submartingale,
too. So by Doob’s inequality (see [5], p. 255 or Theorem 2.3),

E

[

max
1≤k≤m,1≤l≤n

|Sk l|

]p

= E

(

max
1≤l≤n

Yml

)p

≤ qpEY p
mn, q =

p

p− 1
. (5)
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Similarly {|Sk n|,Fk n : 1 ≤ k ≤ m} is also a submartingale and so by Doob’s
inequality again

EY p
mn = E

[

max
1≤k≤m

|Sk n|

]p

≤ qpE|Smn|
p

≤ qpC

m
∑

i=1

n
∑

j=1

E|Fi j|
p, q =

p

p− 1
. (6)

The conclusion (4) follows immediately from (5) and (6).

The SLLN for convex weakly compact valued random variables will be established
in the following theorem. In the case of single-valued random variables, this result
was proved by Rosalsky and Thanh [15].

Theorem 4.6. Let X be a real separable Banach space with the strongly separable
dual. Let 1 < p < ∞ and {Fmn : m ≥ 1, n ≥ 1} be a double array of independent
cwk(X)-valued random variables of type p with 0 ∈ E[Fi j] and E|Fi j|

p < ∞ for all
i ≥ 1, j ≥ 1. If

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(iαjβ)p
< ∞, (7)

for some α > 0, β > 0 then

dH

(

1

mαnβ

m
∑

i=1

n
∑

j=1

Fi j, {0}

)

→ 0 a.s. as m ∨ n → ∞. (8)

Proof. First, let ε > 0, by Markov’s inequality we have

∞
∑

k=1

∞
∑

l=1

P







∣

∣

∣

∣

∣

∣

1

2kα2lβ

2k
∑

i=1

2l
∑

j=1

Fi j

∣

∣

∣

∣

∣

∣

> ε







≤
∞
∑

k=1

∞
∑

l=1

1

(2kα2lβ)pεp
E

∣

∣

∣

∣

∣

∣

2k
∑

i=1

2l
∑

j=1

Fi j

∣

∣

∣

∣

∣

∣

p

≤ C

∞
∑

k=1

∞
∑

l=1

∑2k

i=1

∑2l

j=1 E|Fi j|
p

(2kα2lβ)p
≤ C

∞
∑

i=1

∞
∑

j=1

∞
∑

k=[log i]

∞
∑

l=[logj]

E|Fi j|
p

(2kα2lβ)p

≤ C

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(2[logi]α2[log j]β)p
≤ C

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(iαjβ)p
< ∞. (by (7))

It follows by Borel-Cantelli lemma that

lim
k∨l→∞

dH





1

2kα2lβ

2k
∑

i=1

2l
∑

j=1

Fi j, {0}



 = 0 a.s. (9)
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Next, let ε > 0 be arbitrary again, then

∞
∑

k=1

∞
∑

l=1

P







max
2k<m≤2k+1

2l<n≤2l+1

∣

∣

∣

∣

∣

1

mαnβ

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣

> ε







≤
∞
∑

k=1

∞
∑

l=1

P







max
2k<m≤2k+1

2l<n≤2l+1

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣

> 2kα2lβε







≤
∞
∑

k=1

∞
∑

l=1

1

(2kα2lβ)pεp
E



 max
2k<m≤2k+1

2l<n≤2l+1

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣





p

(by Markov’s inequality)

≤ C

∞
∑

k=1

∞
∑

l=1

1

(2kα2lβ)p
E



 max
1≤m≤2k+1

1≤n≤2l+1

∣

∣

∣

∣

∣

m
∑

i=1

n
∑

j=1

Fi j

∣

∣

∣

∣

∣





p

≤ C

∞
∑

k=1

∞
∑

l=1

∑2k+1

i=1

∑2l+1

j=1 E|Fi j|
p

(2kα2lβ)p
(by Lemma 4.5)

≤ C

∞
∑

k=1

∞
∑

l=1

∑2k+1

i=1

∑2l+1

j=1 E|Fi j|
p

(2(k+1)α2(l+1)β)p
≤ C

∞
∑

i=1

∞
∑

j=1

∞
∑

k=[log i]

∞
∑

l=[log j]

E|Fi j|
p

(2kα2lβ)p

≤ C

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(2[log i]α2[log j]β)p
≤ C

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(iαjβ)p
< ∞. (by (7))

Again by the Borel-Cantelli lemma, we have that

lim
k∨l→∞

max
2k<m≤2k+1

2l<n≤2l+1

dH

(

1

mαnβ

m
∑

i=1

n
∑

j=1

Fi j, {0}

)

= 0 a.s. (10)

Combining (9), (10) and Lemma 4.4, we obtain (8).

In the next theorem, we obtain the Marcinkiewicz-Zygmund’s type law of large
numbers for double arrays of convex weakly compact valued random variables.

Theorem 4.7. Let X be a real separable Banach space with strongly separable dual.
Let 1 < p < ∞ and {Fmn : m ≥ 1, n ≥ 1} be a double array of independent cwk(X)-
valued random variables of type p with 0 ∈ E[Fi j] and E|Fi j|

p < ∞ for all i ≥ 1,
j ≥ 1. Suppose that {Fmn : m ≥ 1, n ≥ 1} is stochastically dominated by a random
variable F .

(i) If E(|F |r log+ |F |) < ∞ for some r ∈ (1 , p), then

dH

(

1

(mn)
1

r

m
∑

i=1

n
∑

j=1

Fi j, {0}

)

→ 0 a.s. as m ∨ n → ∞. (11)
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(ii) If E(|F |(log+ |F |)2) < ∞, then

dH

(

1

mn

m
∑

i=1

n
∑

j=1

Fi j, {0}

)

→ 0 a.s. as m ∨ n → ∞. (12)

Proof. (i) Let F be the distribution function of |F | and d(k) be the number of
divisors of k. For m ≥ 1, n ≥ 1, set

F ′
mn = FmnI[|Fmn|≤(mn)

1
r ]
, F ′′

mn = FmnI[|Fmn|>(mn)
1
r ]
.

By using the fact that
∑∞

k=i+1 k
−p

r d(k) = O
(

(i+ 1)1−
p

r log i)
)

, we obtain the in-
equalities

∞
∑

i=1

∞
∑

j=1

E|F ′
i j|

p

(ij)
p

r

≤ C

∞
∑

k=1

d(k)

k
p

r

∫ k
1
r

0

xpdF(x)

= C

∞
∑

i=1

(

∞
∑

k=i

d(k)

k
p

r

)

∫ i
1
r

(i−1)
1
r

xpdF(x) ≤ C

∞
∑

i=1

log i

i
p

r
−1

∫ i
1
r

(i−1)
1
r

xpdF(x)

≤ CE|F |r log+ |F | < ∞. (13)

On the other hand, if we use the fact that
∑n

k=1 k
−1

r d(k) = O(n1− 1

r logn), then

∞
∑

i=1

∞
∑

j=1

E|F ′′
i j|

(ij)
1

r

≤ C

∞
∑

k=1

d(k)

k
1

r

∫ ∞

k
1
r

xdF(x)

= C

∞
∑

i=1

(

i
∑

k=1

d(k)

k
1

r

)

∫ (i+1)
1
r

i
1
r

xdF(x) ≤ C

∞
∑

i=1

i1−
1

r log i

∫ (i+1)
1
r

i
1
r

xdF(x)

≤ CE|F |r log+ |F | < ∞.

This implies that

∞
∑

i=1

∞
∑

j=1

E|F ′′
i j|

p

(ij)
p

r

< ∞. (14)

Combining (13) and (14) we have

∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(ij)
p

r

≤ C

∞
∑

i=1

∞
∑

j=1

E|F ′
i j|

p

(ij)
p

r

+ C

∞
∑

i=1

∞
∑

j=1

E|F ′′
i j|

p

(ij)
p

r

< ∞.

Applying Theorem 4.6 with α = β = 1
r
, we get (11).

(ii) For m ≥ 1, n ≥ 1, set

F ′
mn = FmnI[|Fmn|≤mn], F ′′

mn = FmnI[|Fmn|>mn].
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By the same method, it is easy to check that

∞
∑

i=1

∞
∑

j=1

E|F ′
i j|

p

(ij)p
≤ CE|F | log+ |F | ≤ CE|F |(log+ |F |)2 < ∞. (15)

On the other hand, note that
∑n

k=1 k
−1 d(k) = O(log2 n), we obtain

∞
∑

i=1

∞
∑

j=1

E|F ′′
i j|

ij
≤ C

∞
∑

k=1

d(k)

k

∫ ∞

k

xdF(x) ≤ CE|F | (log+ |F |)2 < ∞.

It also implies that

∞
∑

i=1

∞
∑

j=1

E|F ′′
i j|

p

(ij)p
< ∞. (16)

(15) and (16) yield
∞
∑

i=1

∞
∑

j=1

E|Fi j|
p

(ij)p
< ∞.

Applying Theorem 4.6 with α = β = 1, we get (12).
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