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1. Introduction

In recent years, operators which have some kind of generalized monotonocity prop-
erty have received a lot of attention (see for example [7] and the references therein).
Many papers considering generalized monotonicity were devoted to the investigation
of its relation to generalized convexity; others studied the existence of solutions of
generalized monotone variational inequalities and, in some cases, derived algorithms
for finding such solutions.

Monotone operators are known to have many very interesting properties. For in-
stance, it is known that a monotone operator T defined on a Banach space is locally
bounded in the interior of its domain. Actually by the Libor Veselý theorem, when-
ever T is maximal monotone and D(T ) is convex, interior points of the domain
D(T ) are the only points of D(T ) where T is locally bounded. So the question nat-
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urally arises: are these properties shared by other operators which satisfy a more
relaxed kind of monotonicity?

In a recent paper, Iusem, Kassay and Sosa [8] introduced the class of the so-called
premonotone operators. This class includes monotone operators, but contains many
more: for example, if T is monotone and R is globally bounded, then T + R is
premonotone. In fact, it includes ε-monotone operators which are related to the
very useful ε-subdifferentials [9, 10]. In [8] it is shown that, in a finite dimensional
space, premonotone operators are locally bounded in the interior of their domain.
The proof was based on the finite dimensionality of the space.

In this paper we will show that these results remain valid in infinite dimensional
Banach spaces. We also show that some properties of monotone operators remain
valid in a much more general context. More precisely, after some preliminary defini-
tions and results in Section 2, we introduce in Section 3 the notion of a premonotone
bifunction. We will show that such bifunctions are locally bounded in the interior
of their domain and we will deduce local boundedness of premonotone operators.
We will also show a generalization of the Libor Veselý theorem.

Let us fix some notation and recall some definitions. In what follows, X will be a
Banach space. Given a multivalued operator T : X → 2X

∗

, we will set D(T ) = {x ∈
X : T (x) 6= ∅} and gr(T ) = {(x, x∗) ∈ X×X∗ : x∗ ∈ T (x)} to be its domain and its
graph, respectively. T is called norm×weak∗ closed (resp., sequentially norm×weak∗

closed) if gr(T ) is closed (resp., sequentially closed) in the norm×weak∗ topology
of X × X∗. Given x0 ∈ X, T is called sequentially norm×weak∗ closed at x0 if
for every sequence (xn, x

∗
n) ∈ gr(T ) such that xn → x0 and x∗

n weak∗-converges to
some x∗

0 ∈ X∗, one has x∗
0 ∈ T (x0). T is called monotone if 〈x∗ − y∗, x− y〉 ≥ 0 for

all (x, x∗), (y, y∗) ∈ gr(T ). It is called maximal monotone if it is monotone, and for
each monotone operator S such that gr(T ) ⊆ gr(S), one has T = S. The operator
T is called locally bounded at x0 ∈ X if there exists some neighborhood V of x0

such that the set T (V ) :=
⋃

x∈V T (x) is bounded.

Given a convex set C ⊆ X and x ∈ C we will denote by NC(x) the normal cone of
C at x:

NC(x) = {x∗ ∈ X∗ : ∀y ∈ C, 〈x∗, y − x〉 ≤ 0}.

2. σ-Monotone operators

Most definitions and many of the results of this section are essentially due to [8],
the main difference being that in [8] one considers premonotone operators in R

n,
without specifying a given σ.

Definition 2.1. (i) Given an operator T : X → 2X
∗

and a map σ : D(T ) → R+,
T is said to be σ-monotone if for every x, y ∈ D (T ) , x∗ ∈ T (x) and y∗ ∈ T (y),

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖. (1)

(ii) An operator T is called premonotone if it is σ-monotone for some σ : D(T ) →
R+.



M. H. Alizadeh, N. Hadjisavvas, M. Roohi / Local Boundedness Properties ... 51

(iii) A σ-monotone operator T is called maximal σ-monotone, if for every operator
T ′ which is σ′-monotone with gr(T ) ⊆ gr(T ′) and σ′ an extension of σ, one has
T = T ′.

The notion of premonotone operators for the finite-dimensional case is introduced
in [8]. The same paper also contains examples of maximal σ-monotone operators.

Remark 2.2. (i) It should be noticed that T : X → 2X
∗

is σ-monotone if and only
if

∀x, y ∈ D (T ) , x∗ ∈ T (x) , y∗ ∈ T (y) , 〈x∗ − y∗, x− y〉 ≥ −σ(y)‖x− y‖. (2)

(ii) If σ(y) = 2ε ≥ 0 for each y ∈ D(T ), then T is called ε-monotone [10].

(iii) Definition 2.1 does not allow negative values for σ, since this can only happen
in very special cases. For instance, if T satisfies (1) and its domain contains any
line segment [x0, y0] := {(1−t)x0+ty0 : t ∈ [0, 1]}, then the set of points x ∈ [x0, y0]
where σ(x) < 0 is at most countable. Indeed, if this is not the case, then there exists
ε > 0 such that σ(x) < −ε for infinitely many x ∈ [x0, y0]. Choose x∗

0 ∈ T (x0),
y∗0 ∈ T (y0). Given n ∈ N, choose xk = x0 + tk(y0 − x0), k = 1, . . . n− 1, such that
0 < t1 < · · · < tn−1 < 1 and σ(xk) < −ε. Then choose x∗

k ∈ T (xk). Set xn = y0 and
x∗
n = y∗0. Relation (2) gives for all k = 0, 1, . . . n− 1:

〈
x∗
k+1 − x∗

k, xk+1 − xk

〉
≥ ε ‖xk+1 − xk‖ ⇒

〈
x∗
k+1 − x∗

k, y0 − x0

〉
≥ ε ‖y0 − x0‖ .

Adding these inequalities for k= 0, 1, . . . n−1 yields 〈y∗0 − x∗
0, y0 − x0〉≥nε‖y0−x0‖.

This should hold for each n ∈ N, which is impossible.

(iv) The notion of premonotonicity is not suited to linear operators, since every
σ-monotone linear operator T : X → X∗ is in fact monotone. Indeed, in this case
putting y = 0 in (2) we find

∀x ∈ X, 〈Tx, x〉 ≥ −σ (0) ||x||. (3)

Replacing x by x− y we deduce that

∀x, y ∈ X, 〈Tx− Ty, x− y〉 ≥ −σ (0) ||x− y||.

Thus T is ε-monotone with ε = σ (0) /2. Then Proposition 3.2 in [10] shows that
T is monotone.

(v) A σ-monotone operator is maximal σ-monotone if and only if, for every operator
T ′ which is σ′-monotone with gr(T ) ⊆ gr(T ′) and σ′(x) ≤ σ(x) for all x ∈ D(T ),
one has T = T ′.

The following proposition is an easy consequence of Zorn’s Lemma, as for monotone
operators.
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Proposition 2.3. Every σ-monotone operator has a maximal σ-monotone exten-
sion.

Definition 2.4. Let A be a subset of X. Given a mapping σ : A → R+, two pairs
(x, x∗), (y, y∗) ∈ A×X∗ are σ-monotonically related if

〈x∗ − y∗, x− y〉 ≥ −min{σ(x), σ(y)}‖x− y‖.

The proof of the following proposition is obvious.

Proposition 2.5. The σ-monotone operator T : X → 2X
∗

is maximal σ-monotone
if and only if, for every point (x0, x

∗
0) ∈ X × X∗ and every extension σ′ of σ to

D(T )∪{x0} such that (x0, x
∗
0) is σ

′-monotonically related to all pairs (y, y∗) ∈ gr(T ),
we have (x0, x

∗
0) ∈ gr(T ).

Given an operator T : X → 2X
∗

, we define the function σT : D(T ) → R+ ∪{∞} by

σT (y) = inf{a ∈ R+ : 〈x∗ − y∗, x− y〉 ≥ −a ‖x− y‖ , ∀(x, x∗) ∈ gr(T ), y∗ ∈ T (y)}.

Note that if the operator T is premonotone, then

σT = inf{σ : T is σ-monotone}

and thus σT is finite, and T is σT -monotone. Also in this case, it is obvious that

σT (y) = max

{
sup{

〈x∗ − y∗, y − x〉

‖y − x‖
: x ∈ X\{y}, x∗ ∈ T (x), y∗ ∈ T (y)}, 0

}
(4)

(see also [8]). The following result is due to [8].

Proposition 2.6. Let an operator T be given.

(i) σT is finite and T is σT -monotone, if and only if T is σ-monotone for some
σ.

(ii) σT is finite and T is maximal σT -monotone, if and only if T is maximal
σ-monotone for some σ.

Proof. We have only to prove that whenever T is maximal σ-monotone for some
σ, then it is maximal σT -monotone. Assume that S : X → 2X

∗

is σ′-monotone with
gr(T ) ⊆ gr(S) and σ′ an extension of σT . Since σ′ = σT ≤ σ on D(T ), by Remark
2.2(v) we get that S = T . Hence, T is maximal σT -monotone.

Proposition 2.7. Every maximal σ-monotone operator T is convex-valued and
weak∗ closed-valued. Moreover, if σ is defined and usc at some point x0 ∈ D(T ),
then T is sequentially norm×weak∗ closed at x0.

Proof. Let T : X → 2X
∗

be a maximal σ-monotone operator and (x, x∗
1), (x, x

∗
2) ∈

gr(T ), λ ∈ [0, 1]. Then for each (y, y∗) ∈ gr(T ),

〈λx∗
1 + (1− λ)x∗

2 − y∗, x− y〉

= λ〈x∗
1 − y∗, x− y〉+ (1− λ)〈x∗

2 − y∗, x− y〉

≥ − λmin{σ(x), σ(y)}‖x− y‖ − (1− λ)min{σ(x), σ(y)}‖x− y‖

= −min{σ(x), σ(y)}‖x− y‖.
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That is, (x, λx∗
1 + (1 − λ)x∗

2) is σ-monotonically related with all (y, y∗) ∈ gr(T ).
Now, it follows from Proposition 2.5 that (x, λx∗

1+(1−λ)x∗
2) ∈ gr(T ) which implies

that T (x) is convex. Likewise, one can show that T (x) is weak∗ closed.

We now show sequential closedness: suppose that (xn, x
∗
n) is a sequence in gr(T )

such that xn → x0 and x∗
n

w∗

→ x∗
0. Assume that σ is usc at x0. It follows from the

σ-monotonicity of T that for each (y, y∗) ∈ gr(T ) we have

〈x∗
n − y∗, xn − y〉 ≥ −min{σ(xn), σ(y)}‖xn − y‖.

By taking limits in the above inequality and using the upper semicontinuity of σ at
x0 and the fact that {x∗

n} is a bounded sequence, we get

〈x∗
0 − y∗, x0 − y〉 ≥ −min{σ(x0), σ(y)}‖x0 − y‖

which implies that (x0, x
∗
0) is σ-monotonically related with all (y, y∗) ∈ gr(T ). By

using Proposition 2.5 we deduce that (x0, x
∗
0) ∈ gr(T ).

We note that, as for monotone operators, in general gr(T ) is only sequentially
norm×weak∗ closed, not norm×weak∗ closed [5]. However, we will see in the next
section that maximal σ-monotone operators are actually usc in the interior of their
domains.

The assumption of upper semicontinuity of σ cannot be omitted from Proposition
2.7, as the following example shows. This is also an example of a premonotone
operator which is not ε-monotone. Note that for T : R → R we have

σT (y) = max

{
sup
x≤y

{T (x)− T (y)} , sup
x≥y

{T (y)− T (x)}

}
. (5)

Example 2.8. We define the functions ϕ, σ : R → R by

ϕ(x) =

{
x sin2 x if x ≥ 0,

0 if x < 0,

and

σ(x) = max

{
ϕ(x),max

z≤x
ϕ(z)− ϕ(x)

}
.

We show that ϕ is σ-monotone, i.e., for all x, y ∈ R the following inequality holds:

(ϕ(x)− ϕ(y)) (x− y) ≥ −min{σ(x), σ(y)} |x− y| .

We may assume without loss of generality that x ≤ y, so we have to prove that
ϕ(x)− ϕ(y) ≤ min{σ(x), σ(y)}. Indeed,

ϕ(x)− ϕ(y) ≤ ϕ(x) ≤ σ(x)

and
ϕ(x)− ϕ(y) ≤ max

z≤y
ϕ(z)− ϕ(y) ≤ σ(y)
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so ϕ is σ-monotone. Note that ϕ is not ε-monotone since (ϕ(x)− ϕ(y)) sgn (x− y)
is not bounded from below (take y = 2kπ + π/2, x = 2kπ + π for large k ∈ N).

We now change ϕ and σ at one point: define T, σ1 : R → R by

T (x) =





ϕ(x) if x 6=
π

2
,

π

4
if x =

π

2
,

and σ1(x) =





σ(x) if x 6=
π

2
,

π

4
if x =

π

2
.

One can readily show that T is σ1-monotone.

Now let T̃ be a maximal σ1-monotone extension of T . Its graph is not closed;
indeed (π/2, π/2) belongs to the closure of gr(T̃ ). However, it does not belong

to gr(T̃ ) since it is not σ1-monotonically related to (π, 0) ∈ gr(T̃ ): since σ1(π) =
maxz≤π ϕ(z) ≥ ϕ(π/2) = π/2, one has

(π
2
− 0

)
sgn

(π
2
− π

)
= −

π

2
< −

π

4
= −min

{
σ1

(π
2

)
, σ1(π)

}
.

3. Local boundedness and related properties

Some properties of σ-monotone operators can be more easily investigated through
the use of σ-monotone bifunctions that we now introduce. LetX be a Banach space,
C a nonempty subset of X and σ : C → R+ be a map. A bifunction F : C×C → R

will be called σ-monotone if

∀x, y ∈ C, F (x, y) + F (y, x) ≤ min{σ (x) , σ(y)}‖x− y‖. (6)

Equivalently, F is σ-monotone if

∀x, y ∈ C, F (x, y) + F (y, x) ≤ σ(y)‖x− y‖. (7)

This notion is a generalization of the notion of monotone bifunction introduced in
[4], where σ is identically zero.

Given any bifunction F : C ×C → R, we define as in [1, 3] the operator AF : X →
2X

∗

by

AF (x) =

{
{x∗ ∈ X∗ : ∀y ∈ C,F (x, y) ≥ 〈x∗, y − x〉} if x ∈ C,

∅ if x /∈ C.

Note that in case F (x, x) = 0 for all x ∈ C, one has AF (x) = ∂F (x, ·)(x) (the
subdifferential of the function F (x, ·) at x).

Proposition 3.1. For a σ-monotone bifunction F , AF is σ-monotone.

Proof. Let x∗ ∈ AF (x) and y∗ ∈ AF (y). By the definition of AF ,

F (x, y) ≥ 〈x∗, y − x〉
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and
F (y, x) ≥ 〈y∗, x− y〉.

From these inequalities we obtain

〈x∗ − y∗, x− y〉 ≥ −F (x, y)− F (y, x) ≥ −min{σ (x) , σ(y)}‖x− y‖.

Definition 3.2. A σ-monotone bifunction F is called maximal σ-monotone if AF

is maximal σ-monotone.

For a given operator T : X → 2X
∗

, as in [6] we define GT : D(T ) × D(T ) →
R ∪ {+∞} by GT (x, y) = supx∗∈T (x)〈x

∗, y − x〉. For each x ∈ D(T ), GT (x, ·) is
lsc and convex, and GT (x, x) = 0. The following result shows that GT is actually
real valued whenever T is σ-monotone, and establishes some relations between σ-
monotonicity of GT and T .

Proposition 3.3. Let T be an operator. Then the following statements are true.

(i) If T is σ-monotone, then GT is a real-valued, σ-monotone bifunction.

(ii) If T is maximal σ-monotone, then GT is a maximal σ-monotone bifunction
and AGT = T .

(iii) Suppose that T is σ-monotone with closed convex values and D(T ) = X. If
GT is maximal σ-monotone, then T is maximal σ-monotone.

Proof. (i) Let T : X → 2X
∗

be σ-monotone. Given x, y ∈ D (T ), for every
x∗ ∈ T (x) and y∗ ∈ T (y), we have

〈x∗ − y∗, x− y〉 ≥ −σ(y)‖x− y‖.

Thus
〈y∗, x− y〉+ 〈x∗, y − x〉 ≤ σ(y)‖x− y‖.

This implies that

sup
y∗∈T (y)

〈y∗, x− y〉+ sup
x∗∈T (x)

〈x∗, y − x〉 ≤ σ(y)‖x− y‖.

Form here we conclude that

∀x, y ∈ D (T ) , GT (x, y) +GT (y, x) ≤ σ(y)‖x− y‖.

Consequently, GT (x, y) ∈ R for all x, y ∈ D (T ) and GT is a σ-monotone bifunction.

(ii) Let (x, z∗) ∈ gr(T ). For every y ∈ C we have

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉.

This means that z∗ ∈ AGT (x); i.e., T (x) ⊆ AGT (x). It follows from Proposition 3.1
and part (i) that AGT is σ-monotone. Since T is maximal σ-monotone, we conclude
that T = AGT .
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(iii) Since GT is maximal σ-monotone by assumption, AGT is maximal σ-monotone.
Let x ∈ X and z∗ ∈ AGT (x). Then

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉.

Now, the separation theorem implies that z∗ ∈ T (x). Thus, gr(AGT ) ⊆ gr(T ). This
implies that T = AGT and T is maximal σ-monotone.

Remark 3.4. Given a maximal σ-monotone bifunction F , according to Proposition
3.3, we can construct AF and the σ-monotone bifunction G := GAF . One has
G(x, y) ≤ F (x, y) for all x, y ∈ D(AF ). It follows from Proposition 3.3 that AF =
AG. However, Example 2.5 of [6] implies that the correspondence F 7→ AF is not
one to one, even for the monotone case σ ≡ 0.

We now generalize a definition from [6].

Definition 3.5. A bifunction F : C × C → R is called:

(i) Locally bounded at (x0, y0) ∈ X ×X if there exist an open neighborhood V
of x0, an open neighborhood W of y0 and M ∈ R such that F (x, y) ≤ M for
all (x, y) ∈ (V ×W ) ∩ (C × C).

(ii) Locally bounded on K ×L ⊆ X ×X, if it is locally bounded at each (x, y) ∈
K × L.

(iii) Locally bounded at x0 ∈ X if it is locally bounded at (x0, x0), i.e., there exist
an open neighborhood V of x0 and M ∈ R such that F (x, y) ≤ M for all x,y
∈ V ∩ C.

(iv) Locally bounded on K ⊆ X, if it is locally bounded at each x ∈ K.

If a bifunction (not necessarily σ-monotone) F : C × C → R is locally bounded at
x0 ∈ intC, then AF is locally bounded at x0 [2]. Consequently, if T is an operator
such that GT is locally bounded at x0 ∈ intD(T ), then T is locally bounded at x0

since T (x) ⊆ AGT (x) for all x ∈ X. This will be the main instrument for showing
local boundedness of operators.

We will show that σ-monotone bifunctions are locally bounded in the interior of
their domain, under mild assumptions. In case X = R

n we can give a constructive
proof.

Proposition 3.6. Let X = R
n and C ⊆ R

n. Assume that F : C × C → R is
σ-monotone and F (x, ·) is lsc and quasiconvex for every x ∈ C. Then F is locally
bounded at every point of intC × intC.

Proof. Let (x0, y0) ∈ intC × intC. Since the space is finite-dimensional, we can
find z1, z2, . . . , zm ∈ C such that V := co{z1, z2, . . . , zm} ⊆ C is a neighborhood of
y0. Let U ⊆ C be a compact neighborhood of x0 in C. Set Mk = minx∈U F (zk, x);
the minimum exists since F (zk, ·) is lsc. For every x ∈ U , y ∈ V we find, using
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quasiconvexity of F (x, ·) and σ-monotonicity of F :

F (x, y) ≤ max
1≤k≤m

F (x, zk)

≤ max
1≤k≤m

{σ(zk) ‖x− zk‖ − F (zk, x)}

≤ max
1≤k≤m

σ(zk) sup
z∈U,w∈V

‖z − w‖+ max
1≤k≤m

(−Mk).

Since U and V are both bounded, supz∈U,w∈V ‖z − w‖ is finite. We are done.

For the general case of a Banach space X, we need the following lemma from [2],
whose proof we include for the sake of completeness.

Lemma 3.7 ([2]). Let X be a Banach space and f : X → R ∪ {+∞} be lsc and
quasiconvex. If x0 ∈ int dom(f), then f is bounded from above on a neighborhood
of x0.

Proof. Let ε > 0 be such that B(x0, ε) ⊆ dom(f). Set Sn = {x ∈ B(x0, ε) : f(x) ≤
n}. Then Sn are convex and closed and

⋃
n∈N Sn = B(x0, ε). By Baire’s theorem,

there exists n ∈ N such that intSn 6= ∅. Take any x1 ∈ intSn and any x2 6= x0

such that x2 ∈ B(x0, ε) and x0 ∈ co{x1, x2}. Choose n1 > max{n, f(x2)}. Then
x1 ∈ intSn1

, x2 ∈ Sn1
hence x0 ∈ intSn1

so f is bounded by n1 at a neighborhood
of x0.

Theorem 3.8. Suppose X is a Banach space, C is a subset of X and F : C ×
C → R is a σ-monotone bifunction such that for every x ∈ C, F (x, ·) is lsc and
quasiconvex. Further, suppose that for some x0 ∈ C and y0 ∈ intC there exists
ε > 0 such that B(y0, ε) ⊆ C and for each y ∈ B(y0, ε), F (y, ·) is bounded from
below on B(x0, ε) ∩ C (note that this bound may depend on y). Then F is locally
bounded at (x0, y0).

Proof. Let ε > 0 be as in the assumption. Define g : B(y0, ε) → R ∪ {+∞} by

g(y) := sup{F (x, y) : x ∈ B(x0, ε) ∩ C}.

For every y ∈ B(y0, ε) and x ∈ B(x0, ε) ∩ C, σ-monotonicity of F implies

F (x, y) ≤ min{σ(x), σ(y)}‖x− y‖ − F (y, x) ≤ σ(y)(ε+ ‖y − x0‖)−My

where My is a lower bound of F (y, ·) on B(x0, ε) ∩ C. Therefore, g is real-valued.
On the other hand, g is lsc and quasiconvex and also y0 ∈ int dom(g). By Lemma
3.7, there exists δ < ε and M ∈ R such that g(y) ≤ M for all y ∈ B(y0, δ). Then
by the definition of g we get F (x, y) ≤ M for all y ∈ B(y0, δ) and x ∈ B(x0, δ)∩C;
i.e., F is locally bounded at (x0, y0).

The condition “F (y, ·) is bounded from below on B(x0, ε)∩C� can be easily removed
by imposing some usual assumptions on the bifunction F or the space X, as shown
in the following two results.
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Corollary 3.9. Suppose X is a reflexive Banach space, C is a subset of X and
F : C × C → R is a σ-monotone bifunction such that for every x ∈ C, F (x, ·) is
lsc and quasiconvex. Then F is locally bounded at every point of intC × intC. If
in addition C is weakly closed, then F is locally bounded on C × intC.

Proof. Let x0 ∈ intC. Choose ε > 0 such that B(x0, ε) ⊆ C. By assumption
F (x, ·) is lsc and quasiconvex, so it is weakly lsc. For every y ∈ C, F (y, ·) attains
its minimum on the weakly compact set B(x0, ε) and so F (y, ·) is bounded from
below on B(x0, ε). Therefore, all conditions of Theorem 3.8 are satisfied. Thus F
is locally bounded at every point of intC × intC.

If in addition C is weakly closed, then for any x0 ∈ C and ε > 0, B(x0, ε) ∩ C is
weakly compact and we can repeat the previous argument.

Corollary 3.10. Suppose X is a Banach space, C is a subset of X and F : C×C →
R is a σ-monotone bifunction such that for every x ∈ C, F (x, ·) is lsc and convex.
Then F is locally bounded at any point of C × intC.

Proof. Let x0 ∈ C and y0 ∈ intC. Choose ε > 0 such that B(y0, ε) ⊆ C. For
every y ∈ B(y0, ε), the subdifferential of ∂F (y, ·) is nonempty at y. Choose y∗ ∈
∂F (y, ·)(y). Then for every x ∈ B(x0, ε) ∩ C one has

F (y, x)− F (y, y) ≥ 〈y∗, x− y〉 ≥ −‖y∗‖ ‖x− y‖ ≥ −‖y∗‖ (ε+ ‖x0 − y‖).

Thus F (y, ·) is bounded from below on B(x0, ε) ∩ C. By Theorem 3.8, F is locally
bounded at (x0, y0).

We immediately obtain a generalization of Proposition 3.5 in [8] to general Banach
spaces:

Corollary 3.11. Suppose that X is a Banach space and T : X → 2X
∗

is a pre-
monotone operator. Then T is locally bounded at every point of intD(T ).

Proof. Apply Corollary 3.10 to GT .

Corollary 3.12 (Rockafellar). Every set valued monotone operator T from X to
X∗ is locally bounded on intD(T ).

For maximal σ-monotone operators, there is a kind of converse to Corollary 3.11,
generalizing the Libor Veselý theorem [11, Theorem 1.14]. We first show:

Lemma 3.13. If T is maximal σ-monotone, then for all x ∈ D (T ) one has T (x)+
ND(T ) (x) ⊆ T (x).

Proof. Take w∗ ∈ ND(T ) (z) and define

T1 (x) =

{
T (x) if x 6= z,

T (x) + R+w
∗ if x = z.
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Then T (x) ⊆ T1 (x) for all x ∈ D(T ). For z∗ ∈ T (z) , y∗ ∈ T (y) and λ > 0,

〈z∗ + λw∗ − y∗, z − y〉 = 〈z∗ − y∗, z − y〉+ λ〈w∗, z − y〉

≥ −min {σ (z) , σ (y)} ||z − y||.

Thus T1 is σ-monotone. By the maximality of T we get T = T1, which completes
the proof.

Theorem 3.14. Suppose that T is maximal σ-monotone and σ is defined and usc
on D (T ). Let x0 ∈ D (T ). If T is locally bounded at x0, then x0 ∈ D (T ). If in
addition D (T ) is convex, then x0 ∈ intD(T ).

Proof. Since T is locally bounded at x0, there exists an open neighborhood U of
x0 such that T (U) is bounded. Choose a sequence {xn} ⊆ D (T ) ∩ U such that
xn → x0 and choose x∗

n ∈ T (xn). It follows from Alaoglou’s theorem that there

exist a subnet {(xα, x
∗
α)} of {(xn, x

∗
n)} and x∗

0 ∈ X∗ such that x∗
α

w∗

→ x∗
0. Since the

net {x∗
α} is in the bounded set T (U), we have 〈x∗

α, xα〉 → 〈x∗
0, x0〉. Therefore for all

(y, y∗) ∈ gr (T ), by upper semicontinuity of σ,

〈x∗
0 − y∗, x0 − y〉 = lim

α
〈x∗

α − y∗, xα − y〉

≥ − lim sup
α

min {σ (xα) , σ (y)} ||xα − y||

≥ −min {σ (x0) , σ (y)} ||x0 − y||.

Thus (x0, x
∗
0) is σ-monotonically related with all (y, y∗) ∈ gr (T ). So x∗

0 ∈ T (x0)
and x0 ∈ D(T ).

Now let D (T ) be convex. We will show that U ⊆ intD (T ). Indeed, if not, then
U contains a boundary point of D (T ). By the Bishop-Phelps theorem it will also
contain a support point of D (T ), i.e., there exist z ∈ U ∩D (T ) and 0 6= w∗ ∈ X∗

such that 〈w∗, z〉 = sup{〈w∗, y〉 : y ∈ D (T )}. We know that T is locally bounded
at z, hence z ∈ D(T ). On the other hand, w∗ ∈ ND(T )(z), thus the cone ND(T )(z)
is not equal to {0}. Then Lemma 3.13 shows that T (z) cannot be bounded, a
contradiction.

Thus U ⊆ intD (T ). Since T is locally bounded on U , we obtain U ⊆ D(T ), hence
x0 ∈ intD(T ).

We now deduce some properties related to local boundedness.

Proposition 3.15. Suppose T : X → 2X
∗

is maximal σ-monotone and σ is usc.
Then

(i) The operator T is usc in intD(T ) from the norm topology in X to the weak∗

topology in X∗;

(ii) If X is finite-dimensional, then for every y ∈ intD(T ), σT (y) is given by the
following formula:

σT (y) = sup

{
〈x∗ − y∗, y − x〉

‖y − x‖
: x 6= y, (x, x∗) ∈ gr(T ), y∗ ∈ T (y)

}
. (8)
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Proof. Fix y ∈ intD(T ). To show upper semicontinuity at y, it is sufficient to show
that for any net {(yα, y

∗
α)} in gr(T ) such that yα → y in X, there exists a weak∗

cluster point of {y∗α} in T (y). Since T is locally bounded at y we may assume that

both {yα} and {y∗α} are bounded and, by selecting a subnet if necessary, y∗α
w∗

→ y∗.
Since {y∗α} is bounded, we have

〈y∗α, yα〉 → 〈y∗, y〉 .

As in the proof of Proposition 2.7 we deduce that y∗ ∈ T (y).

To show part (ii), choose any sequence {xn}n∈N ⊆ D(T ) converging to y with
y 6= xn, and let x∗

n ∈ T (xn). Then the sequence {x∗
n} is bounded. By selecting

a subsequence if necessary, we may assume that x∗
n converges in norm to some

z∗ ∈ T (y). Since

sup

{
〈x∗ − y∗, y − x〉

‖y − x‖
: x 6= y, (x, x∗) ∈ gr(T ), y∗ ∈ T (y)

}
≥

〈x∗
n − z∗, y − xn〉

‖y − xn‖

≥ − ‖x∗
n − z∗‖ → 0,

relation (8) follows from relation (4).

Next we show that under appropriate conditions, a σ-monotone bifunction is not
only locally bounded, but also bounded by a small number in a neighborhood of
any interior point. This is a consequence of the following more general result.

Proposition 3.16. Suppose that F : C ×C → R is a σ-monotone bifunction such
that F (x, x) = 0 for all x ∈ C. Assume that F (x, ·) is lsc and convex for each
x ∈ C and σ is usc. If x0 ∈ intC, then there exist an open neighborhood V of x0

and K ∈ R such that F (y, x) ≤ K ‖x− y‖ for all x ∈ V and y ∈ C.

Proof. From F (x, x) = 0 for all x ∈ C, we infer that AF (x) = ∂F (x, ·)(x). Since
F (x, ·) is lsc and convex, the subdifferential of F (x, ·) at each x ∈ intC is nonempty-
valued. Thus intC ⊆ D(AF ), so the σ-monotone operator AF is locally bounded
at x0. Therefore, there exist an open neighborhood V1 ⊆ C of x0 and K1 ∈ R such
that ‖x∗‖ ≤ K1 for all x∗ ∈ AF (x), x ∈ V1. Since σ is usc at x0, it is bounded
from above by a number K2 on a neighborhood V2 of x0. Then for each y ∈ C and
x ∈ V := V1 ∩ V2, if we choose x∗ ∈ AF (x) we get

F (y, x) ≤ − F (x, y) + σ(x) ‖y − x‖

≤ − 〈x∗, y − x〉+K2 ‖y − x‖ ≤ (K1 +K2) ‖y − x‖ .
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