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1. Introduction

This is the second part of a work initiated in [21] and whose aim is to survey
the class of epigraphical cones. A convex cone in the Euclidean space R

n+1 is an
epigraphical cone if it can be represented as epigraph

epi f = {(x, t) ∈ R
n+1 : f(x) ≤ t}

of a nonnegative sublinear function f : Rn → R. An epigraphical cone is always
closed and nontrivial, i.e., different from the whole space and different from the zero
cone. It is also solid in the sense that it has a nonempty topological interior. If K
is an epigraphical cone in R

n+1, then its associated nonnegative sublinear function
is given by

fK(x) = min{t ∈ R : (x, t) ∈ K}.
Any geometric statement on K can be formulated in terms of a corresponding an-
alytic property of fK . The reference [21] provides various examples of interesting
epigraphical cones and explains how to combine them in order to produce new
epigraphical cones. The next lemma is a bridge for passing from the class of epi-
graphical cones to the wider class of solid closed convex cones. We start by recalling
a useful definition.

Definition 1.1. Let Od denote the group of orthogonal matrices of order d. Two
convex cones K1, K2 in the Euclidean space Rd are orthogonally equivalent if there
exists U ∈ Od such that K2 = U(K1).
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2 A. Seeger / Epigraphical Cones II

Lemma 1.2. Let K be a nontrivial closed convex cone in R
n+1. Then K is solid if

and only if there exist U ∈ On+1 and a nonnegative sublinear function f : Rn → R

such that

K = U(epi f). (1)

Proof. That a solid cone K admits the representation (1) has been proven in [10,
Proposition 2.8]. Conversely, that a cone of the form (1) is solid is a consequence of
[21, Proposition 2.1] and the fact that solidity is a property that is invariant under
orthogonal transformations.

Example 1.3. The nonnegative orthant Rn+1
+ is a solid closed convex cone in R

n+1.
It is not an epigraphical cone, but it is orthogonally equivalent to an epigraphical
cone. Consider the orthogonal matrix

U = [u1, . . . , un, un+1]

constructed as follows: the columns of the submatrix Ũ = [u1, . . . , un] form an
orthonormal basis of the linear subspace

Ln = {v ∈ R
n+1 : v1 + . . .+ vn+1 = 0}

and un+1 = (n+1)−1/2 (1, . . . , 1)T is a unit vector orthogonal to Ln. One can check
that

R
n+1
+ = U(epi f),

where f : Rn → R is the nonnegative sublinear function given by

f(x) = max
1≤i≤n+1

−
√
n+ 1 (Ũx)i

and (Ũx)i denotes the i-th component of Ũx. One sees that f is nonnegative
because Ũx ∈ Ln for all x ∈ R

n. The set

epi f = {(x, t) ∈ R
n+1 : (Ũx)i + (n+ 1)−1/2t ≥ 0 for all i = 1, . . . , n+ 1}

looks more involved than R
n+1
+ , but it has the merit of being an epigraphical cone.

The equality (1) expresses the fact that K is orthogonally equivalent to an epi-
graphical cone. The interest of having such a representation formula for K is clear:
when it comes to study the structure of K, everything boils down to examining the
function f . This observation is the leading motivation behind the present work.
The organization of the paper is as follows:

- Section 2 concerns the facial structure of an epigraphical cone.

- Section 3 establishes a few results about rotundity and smoothness of epigraph-
ical cones.

- Section 4 exploits the theory of epigraphical cones for obtaining some approx-
imation results involving Painlevé-Kuratowski limits.

- Section 5 provides rules for computing the characteristic function of an epi-
graphical cone. The concept of characteristic function of a cone is understood
in the sense of Vinberg [24].



A. Seeger / Epigraphical Cones II 3

- Section 6 deals with the application of epigraphical cones in optimization the-
ory.

We keep the same notation and terminology as in [21]. In particular, int(Ω), bd(Ω),
cl(Ω) indicate respectively the interior, boundary, and closure of a set Ω. The
unit sphere and the closed unit ball of Rd are denoted by Sd and Bd, respectively.
However, we deviate from the general spirit of [21]. The emphasis now is put in the
study of properties that are valid up to orthogonal characterizations, which allows
to consider a class of convex cones larger than the class of epigraphical cones.

2. Facial analysis of epigraphical cones

A face of a nonempty closed convex set Ω in an Euclidean space is a nonempty
subset F of Ω satisfying the following property:

(1− λ)x+ λy ∈ F with x, y ∈ Ω and λ ∈]0, 1[ =⇒ x, y ∈ F.

A face is necessarily closed and convex. If Ω is a closed convex cone, then so is every
face of Ω. The next theorem tells how to identify the faces of an epigraphical cone.
For the sake of clarity in the exposition, we assume that the associated nonnegative
sublinear function f : Rn → R is positive, i.e., it vanishes only at the origin 0n. In
such a case

Bf := {x ∈ R
n : f(x) ≤ 1}

is a compact convex set.

Theorem 2.1. Let f : Rn →R be a positive sublinear function and p∈ {0, 1, . . . , n}.
Then

F 7→ Ψ(F ) = R+ (F × {1})
is a bijection between the set of p-dimensional faces of Bf and the set of (p + 1)-
dimensional faces of epi f .

Proof. Let F be a face of Bf . We claim that Ψ(F ) is a face of epi f . Pick (x, t)
and (y, s) in epi f and λ ∈]0, 1[ such that

(1− λ)(x, t) + λ(y, s) ∈ Ψ(F ). (2)

One may suppose that t 6= 0, otherwise (x, t) = 0n+1 and we are done. Similarly,
one may suppose that s 6= 0. The condition (2) says that

(1− λ)x+ λy = αz

(1− λ)t+ λs = α

with α ≥ 0 and z ∈ F . Hence, α 6= 0 and

z =

[

(1− λ)t

(1− λ)t+ λs

]

x

t
+

[

λs

(1− λ)t+ λs

]

y

s

is a convex combination of two vectors in Bf . Since F is a face of Bf , it follows that
x/t and y/s are in F . This proves that (x, t) and (y, s) are in Ψ(F ) and completes
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the proof of our claim. Conversely, let G be a nonzero face of epi f . There exists a
compact convex set F in R

n such that Ψ(F ) = G. Such F is unique and given by

F = {x ∈ R
n : (x, 1) ∈ G}. (3)

We claim that (3) is a face of Bf . Pick x, y ∈ Bf and λ ∈]0, 1[ such that (1−λ)x+
λy ∈ F . Hence,

(1− λ)(x, 1) + λ(y, 1) ∈ G.

Since G is a face of epi f , it follows that (x, 1) and (y, 1) are in G. Therefore, x
and y are in F . This proves that F is a face of Bf . For completing the proof of the
theorem we check that

dim[Ψ(F )] = dim(F ) + 1. (4)

The relation (4) is probably known since it holds for any nonempty compact convex
set F in R

n, and not just for a face of Bf . Let p be the dimension of F . Then,

F ⊂ u0 + {u1, . . . , up}

for suitable vectors {uk}pk=0 in R
n. Hence, any element of Ψ(F ) can be expressed

in the form

(x, t) = t

(

u0 +

p
∑

k=1

λkuk, 1

)

= t (u0, 1) +

p
∑

k=1

tλk (uk, 0)

with t ≥ 0 and λ1, . . . , λp ∈ R. Thus,

Ψ(F ) ⊂ span{(u0, 1) , (u1, 0) , . . . , (up, 0)}.

This shows that the dimension of Ψ(F ) is at most p + 1. On the other hand,
since dim(F ) = p, it is possible to find vectors {v0, v1, . . . , vp} in F such that
{(v0, 1), (v1, 1), . . . , (vp, 1)} are linearly independent. Hence, Ψ(F ) contains p + 1
linearly independent vectors, and therefore its dimension is at least p + 1. This
completes the proof of (4).

Remark. The case p = 0 is of special interest because it concerns the identification
of the extreme rays of an epigraphical cone. This theme has been treated already
in [21, Corollary 2.2]. The case p = n yields the well known formula

epi f = R+ (Bf × {1}) (5)

for the epigraph of a positive sublinear function.

By combining Theorem 2.1 and the next lemma one can identify the faces of a
proper cone, not necessarily an epigraphical one. As many authors do, we say that
a closed convex cone is proper if it solid and pointed.

Lemma 2.2. For a closed convex cone K in R
n+1 the following statements are

equivalent:

(a) K is proper.
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(b) There exists v ∈ int(K) such that 〈v, z〉 > 0 for all nonzero z ∈ K.

(c) K is orthogonally equivalent to the epigraph of a positive sublinear function

f : Rn → R.

Proof. (a) ⇒ (b). Let K+ denote the dual cone of K. Since

K ∩ −K+ = {0n+1}, (6)

the convex cone P = K +K+ is closed. We claim that P is pointed. To see this,
take a ∈ P ∩−P and write a = b1+c1 = −(b2+c2) with b1, b2 ∈ K and c1, c2 ∈ K+.
Hence,

K ∋ (b1 + b2) = −(c1 + c2) ∈ −K+.

In view of (6), one gets b1 = −b2 and c1 = −c2. Since K and K+ are pointed,
it follows that b1 = b2 = c1 = c2 = 0n+1. This yields a = 0n+1 and proves the
pointedness of P . As a consequence,

P+ = (K +K+)+ = K+ ∩K

is solid. To see that (b) holds, one just needs to pick any v from the interior of P+.

(b) ⇒ (c). Let v ∈ int(K) be such that

〈v, z〉 > 0 for all z ∈ K\{0n+1}. (7)

Without loss of generality one may assume that ‖v‖ = 1. Let {u1, . . . , un} be an
orthonormal basis for the linear subspace

v⊥ = {z ∈ R
n+1 : 〈v, z〉 = 0}.

Then U = [u1, . . . , un, v] ∈ On+1 and

UTv = en+1 := (0n, 1)

belongs to the interior of Q = UT (K). In view of (7), the closed convex cone Q is
contained in the half-space R

n × R+. Hence, Q is the epigraph of the nonnegative
sublinear function

x ∈ R
n 7→ fQ(x) = min{t ∈ R : (x, t) ∈ Q}.

It remains to check that fQ is positive. Suppose, on the contrary, that fQ vanishes
at some nonzero vector x. Hence, the linear combination z =

∑n
i=1 xiui is a nonzero

vector in K such that

〈v, z〉 =
n
∑

i=1

xi〈v, ui〉 = 0,

contradicting (7). Summarizing, we have shown that K is orthogonally equivalent
to the epigraph of the positive sublinear function fQ.

(c) ⇒ (a). It follows from [21, Proposition 2.1] and the fact that properness is
invariant under orthogonal transformations.
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3. Rotundity and smoothness

Rotundity and smoothness are fundamental properties concerning the unit ball of
a normed space. Such notions can be extended to general convex bodies and even
to proper cones. The next definition can be found for instance in [23].

Definition 3.1. A proper cone K in an Euclidean space is rotund if every face of
K, other than K itself and {0}, is a half-line (called an extreme ray).

Rotund cones are often times referred to as strictly convex cones because they are
characterized by the strict convexity condition

z, v ∈ K not collinear, λ ∈]0, 1[ =⇒ (1− λ)z + λv ∈ int(K).

Rotund cones play an important role in mathematical economics [18] and other
fields [8, 20]. A nice example of rotund cone is the elliptic cone

E(Q) := {(x, t) ∈ R
n+1 :

√

〈x,Qx〉 ≤ t}

associated to a positive definite symmetric matrix Q of order n. Also the ℓp-cone

Kp = {(x, t) ∈ R
n+1 : ‖x‖p ≤ t}

is rotund if one takes p ∈]1,∞[. By contrast, the choices p = 1 or p = ∞ lead to
proper cones that are not rotund. All this can be explained in a clear-cut manner
with the help of the next proposition.

Proposition 3.2. For a positive sublinear function f : R
n → R the following

statements are equivalent:

(a) epi f is rotund.

(b) f is rotund in the sense that f(x) = 1, f(y) = 1, x 6= y imply f (x+ y) < 2.

(c) The boundary of Bf contains no line-segment.

Proof. (a) ⇔ (c) is a consequence of Theorem 2.1 and (c) ⇔ (b) is obvious.

Example 3.3. The intersection of two elliptic cones is a rotund epigraphical cone.
Indeed, if Q1 and Q2 are positive definite symmetric matrices of order n, then the
intersection E(Q1) ∩ E(Q2) is an epigraphical cone whose associated nonnegative
sublinear function

x ∈ R
n 7→ f(x) = max

{

√

〈x,Q1x〉,
√

〈x,Q2x〉
}

is positive and rotund.

The next corollary is helpful when it comes to check the rotundity of a proper cone
that is not necessarily an epigraphical cone.

Corollary 3.4. A proper cone K in R
n+1 is rotund if and only if it is orthogonally

equivalent to the epigraph of a rotund positive sublinear function f : Rn → R.
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Proof. It is a matter of combining Lemma 2.2 and Proposition 3.2. A key obser-
vation is that the notion of rotundity for proper cones is invariant under orthogonal
transformations.

Remark. The notion of local uniform rotundity is one of the main topics in renorm-
ing theory [5, 15]. It has been traditionally considered only as a matter for norms.
However, the definition can be easily generalized for positive sublinear functions.
This opens the way to the definition of local uniform rotundity for proper cones.
For instance, one may declare a proper cone K in R

n+1 to be locally uniformly
rotund if it is orthogonally equivalent to the epigraph of a locally uniformly rotund
positive sublinear function f : Rn → R.

There is no universally accepted definition of smoothness for proper cones. The
notion of smoothness that we adopt here is not that of [14], but one that is dual to
rotundity.

Definition 3.5. A proper cone K in an Euclidean space is smooth if its dual cone
K+ is rotund.

The most bothering aspect of Definition 3.5 is the need of knowing K+, a cone
that is not always directly available. Anyhow, the next proposition clarifies the
geometric meaning of smoothness. As one can see, it is possible to check whether
an epigraphical cone is smooth without evaluating its dual cone.

Proposition 3.6. For a positive sublinear function f : R
n → R the following

statements are equivalent:

(a) epi f is smooth.

(b) f is smooth, i.e., differentiable on R
n\{0n}.

(c) Every boundary point of Bf admits exactly one supporting hyperplane.

Proof. (a) ⇒ (b). By assumption, the dual cone of epi f is rotund. But

(epi f)+ = epi f� (8)

with f� : Rn → R denoting the skewed polar of f (cf. [21, Section 2.3]). Recall
that f�(y) = f ◦(−y), where f ◦ is the usual polar function. By Proposition 3.2, the
positive sublinear function f� is rotund. Hence, f ◦ is rotund. By a classical duality
argument,

x ∈ R
n → f(x) = (f ◦)◦(x) = max

y 6=0n

〈y, x〉
f ◦(y)

is then differentiable on R
n\{0n}. In fact, by using Danskin’s differentiability the-

orem [4] one sees that the gradient of f at a given point x ∈ R
n\{0n} is the unique

solution to the maximization problem

f(x) = max
y∈Bf◦

〈y, x〉.

(b) ⇒ (c). This implication is easy and well known.
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(c) ⇒ (a). The theory of convex bodies asserts that if each boundary point of Bf

has a unique supporting hyperplane, then the boundary of the polar set

(Bf )
◦ = {y ∈ R

n : 〈y, x〉 ≤ 1 for all x ∈ Bf}

contains no line-segment. Since (Bf )
◦ = Bf◦ , it follows that f ◦ is rotund. A

posteriori, also f� is rotund. By combining (8) and Proposition 3.2, one sees that
epi f is smooth.

Example 3.7. The Minkowski sum of two elliptic cones is a smooth epigraphical
cone. Indeed, if Q1 and Q2 are positive definite symmetric matrices of order n,
then E(Q1)+E(Q2) is an epigraphical cone whose associated nonnegative sublinear
function

x ∈ R
n 7→ f(x) = min

u+v=x

{

√

〈u,Q1u〉+
√

〈v,Q2v〉
}

is positive and smooth. Also the vertical sum

E(Q1)⊕v E(Q2) =
{

(x, t) ∈ R
n+1 :

√

〈x,Q1x〉+
√

〈x,Q2x〉 ≤ t
}

is a smooth epigraphical cone, but the intersection E(Q1) ∩ E(Q2) may not be
smooth.

The next corollary fully characterizes the class of smooth cones.

Corollary 3.8. A proper cone K in R
n+1 is smooth if and only if it is orthogonally

equivalent to the epigraph of a smooth positive sublinear function f : Rn → R.

Proof. Combine Lemma 2.2, Proposition 3.6, and the fact that the notion of
smoothness for proper cones is invariant under orthogonal transformations.

4. Approximation results

An epigraphical cone is not necessarily pointed, but it can always be approximated
in the Painlevé-Kuratowski sense by a sequence of pointed epigraphical cones. This
is the idea behind the formulation of the next lemma. In the sequel, the nota-
tion limk→∞Ck stands for the Painlevé-Kuratowski limit of a sequence {Ck}k∈N
of nonempty sets in an Euclidean space. The definition and main properties of
Painlevé-Kuratowski limits can be consulted in standard books on set convergence
[1, 19]. Since we are working in a finite dimensional setting, convergence in the
Painlevé-Kuratowski sense is equivalent to convergence with respect to the uniform
metric

̺(K1, K2) := max
‖z‖=1

|dist[z,K1]− dist[z,K2]| ,

or with respect to any other equivalent metric for that matter (cf. [12]).

Lemma 4.1. Let f : Rn → R be a nonnegative sublinear function. Then

epi f = lim
k→∞

epi fk = cl

[

∞
⋃

k=1

epi fk

]

(9)
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where fk : Rn → R is the positive sublinear function given by fk(x) = max{f(x),
k−1‖x‖}.

Proof. That fk is a positive sublinear function is clear. The sequence {fk}k≥1 is
pointwisely nonincreasing and

f(x) = lim
k→∞

fk(x) = inf
k≥1

fk(x)

for all x ∈ R
n. This implies the Painlevé-Kuratowski convergence of the sequence

{epi fk}k∈N and the formulas stated in (9).

The geometric interpretation of (9) is as follows: what we are doing is to approxi-
mate epi f by another epigraphical cone that is smaller, namely epi fk = (epi f)∩Rk.
Here

Rk := {(x, t) ∈ R
n+1 : ‖x‖ ≤ kt}

is a revolution cone whose axis is generated by en+1. The half-aperture angle of Rk

is equal to

θk = arccos
(

1/
√
1 + k2

)

,

i.e., a positive number smaller than π/2. Note that epi fk is pointed because Rk is
pointed.

The next approximation result can be found in [22]. We give here a shorter proof
that is based on the theory of epigraphical cones.

Theorem 4.2. Let K be a closed convex cone in an Euclidean space X. Suppose

that K is not a sublinear space. Then

(a) There exists an upward monotonic sequence {Qk}k∈N of pointed closed convex

cones in X such that K = limk→∞Qk.

(b) There exists a downward monotonic sequence {Pk}k∈N of solid closed convex

cones in X such that K = limk→∞ Pk.

Proof. Since X can be taken as the linear space spanned by K, there is no loss
of generality in assuming that K is solid. To avoid trivialities we assume also that
dimX ≥ 2. If one sets n = dimX − 1, then one can identify X with R

n+1. In view
of [10, Proposition 2.8], there exist U ∈ On+1 and a nonnegative sublinear function
f : Rn → R such that K = U(epi f). Hence, one can approximate K by means of
the pointed closed convex cone

Qk = U(epi fk)

with fk as in Lemma 4.1. Note that Qk ⊂ Qk+1 for all k ∈ N, and

lim
k→∞

Qk = U
(

lim
k→∞

epi fk

)

= U(epi f) = K.

Consider now the part (b). Since K+ is not a linear subspace either, there exists an
upward monotonic sequence {Wk}k∈N of pointed closed convex cones in X such that
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K+ = limk→∞Wk. If one sets Pk = W+
k , then {Pk}k∈N is a downward monotonic

sequence of solid closed convex cones in X such that

lim
k→∞

Pk =
(

lim
k→∞

Wk

)+

= (K+)+ = K,

the leftmost equality being a consequence of the Walkup-Wets isometry theorem
[25].

Another approximation result in the same spirit concerns the possibility of approx-
imating a closed convex cone by a rotund cone or by a smooth cone.

Theorem 4.3. Let K be a closed convex cone in an Euclidean space X. Suppose

that K is not a sublinear space. Then

(a) K = limk→∞Rk for some upward monotonic sequence {Rk}k∈N of rotund

cones in X.

(b) K = limk→∞ Sk for some downward monotonic sequence {Sk}k∈N of smooth

cones in X.

Proof. Without loss of generality one can assume thatK is solid and that dimX ≥
2. As before, we set n = dimX − 1 and identify X with R

n+1. Then we write

K = U(epi f)

Rk = U(epi gk),

where U and f are as in the proof of Theorem 4.2, and

gk(x) = f(x) + k−1‖x‖.

Note that Rk ⊂ Rk+1 for all k ∈ N, and

lim
k→∞

Rk = U
(

lim
k→∞

epi gk

)

= U(epi f) = K.

Each Rk is pointed because the sublinear function gk is positive. Since K is solid,
Rk is solid (hence, proper) for all k large enough (cf. [11, Corollary 5.2]). It remains
to check that Rk is rotund, but this is a consequence of Proposition 3.2 and the
fact that gk is rotund. The part (b) is obtained from (a) by relying on duality
arguments.

Theorem 4.4 says that any closed convex cone can be approximated in the Painlevé-
Kuratowski sense by a polyhedral cone.

Theorem 4.4. Any closed convex cone in an Euclidean space X can be written as

Painlevé-Kuratowski limit of a sequence of polyhedral cones in X.

Proof. Let K be a closed convex cone in X. We suppose that K is not a linear
subspace, otherwise we are done. Since one can take X as the linear space spanned
by K, there is no loss of generality in assuming that K is solid. As in Theorem 4.2,
one assumes that dimX ≥ 2, one sets n = dimX − 1, and one identifies X with
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R
n+1. In view of Theorem 4.2, for all k ∈ N there exists a pointed closed convex

cone Qk in R
n+1 such that

̺(Qk, K) ≤ 1/k.

We represent Qk = Uk(epi fk) in terms of a suitable matrix Uk ∈ On+1 and a
corresponding positive sublinear function fk : R

n → R. As in (5), one has

epi fk = R+ (Bfk × {1})

Note that Bfk is a nonempty compact convex set in R
n. Thanks to [17, Theorem

2.1], there exists a polytope Ωk in R
n such that

haus(Ωk, Bfk) ≤ 1/k

with “haus� standing for the classical Pompeiu-Hausdorff metric. Since 0n ∈
int(Bfk), one may suppose that 0n ∈ int(Ωk). Consider now the polyhedral cone

Pk = R+ (Ωk × {1}) .

Thanks to [12, Proposition 6.3], one has the estimate

̺(Pk, epi fk) ≤ 2 haus(Ωk, Bfk).

Observe that Uk(Pk) is a polyhedral cone and

̺(Uk(Pk), K) ≤ ̺(Uk(Pk), Qk) + ̺(Qk, K)

= ̺ (Uk(Pk), Uk(epi fk)) + ̺(Qk, K)

= ̺(Pk, epi fk) + ̺(Qk, K)

≤ 2(1/k) + (1/k).

This shows that K = limk→∞ Uk(Pk) and completes the proof of the theorem.

5. Characteristic function of an epigraphical cone

If K is a solid closed convex cone in R
d, then its characteristic function ΦK :

int(K) → R is defined by the d-dimensional integral

ΦK(z) :=

∫

K+

e−〈z,v〉dv.

Such a definition of characteristic function is discussed in the book [7, Chapter 1]
and in many other places [6, 9, 24]. Some authors refer to ΦK as the Vinberg (or
Koszul-Vinberg) characteristic function of K.

It is clear that ΦK is positively homogeneous of degree −d. As shown in [7, Propo-
sition I.3.2], a fundamental property of ΦK is that of behaving as barrier function

for the cone K. This means that

lim
k→∞

ΦK(zk) = ∞ (10)

for any sequence {zk}k∈N in int(K) converging to a point on the boundary of K. As
can be seen from the next lemma, there is also a converse statement: the condition
(10) forces {zk}k∈N to approach the boundary of K.
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Lemma 5.1. Let K is a solid closed convex cone in R
d. Then for all z ∈ int(K),

one has

ΦK(z) ≤
(

1

dist[z, bd(K)]

)d ∫

K+

e−‖v‖dv.

Proof. The point z is at positive distance from bd(K). If r is such distance, then
z + rBd ⊂ K. This inclusion amounts to saying that r ‖v‖ ≤ 〈z, v〉 for all v ∈ K+.
Hence

ΦK(z) ≤
∫

K+

e−r‖v‖dv.

By using a positive homogeneity argument and a suitable change of variables, the
term r moves out of the integral as a factor r−d.

We now address the question of computing the characteristic function of an epi-
graphical cone. In the sequel one uses the notation

Ξf◦(x, s) :=

∫

{f◦≤s}

e〈x,y〉dy, (11)

where integration is carried out over the sublevel set {f ◦ ≤ s} = {y ∈ R
n : f ◦(y) ≤

s}.
Theorem 5.2. If f : Rn → R is a positive sublinear function, then

Φepi f (x, t) =
1

t

∫

Rn

e〈x,y〉−tf◦(y)dy (12)

=

∫ ∞

0

e−ts Ξf◦(x, s)ds (13)

for all (x, t) ∈ int(epi f).

Proof. Let (x, t) be in the interior of Ef . Then

Φepi f (x, t) =

∫

epi f�

e−(〈x,w〉+ts)dwds (14)

=

∫

Rn

[
∫ ∞

f�(w)

e−〈x,w〉−tsds

]

dw (15)

=

∫

Rn

[

e−〈x,w〉 e
−tf�(w)

t

]

dw,

where (14) is a consequence of (8), and (15) is due to Fubini’s integration theorem.
The change of variables y = −w leads finally to the formula (12). In order to obtain
(13) one integrates (14) in a different order. One has

Φepi f (x, t) =

∫ ∞

0

[
∫

{f�≤s}

e−(〈x,w〉+ts)dw

]

ds

=

∫ ∞

0

e−ts

[
∫

{f�≤s}

e−〈x,w〉dw

]

ds.
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It suffices now to observe that the inner integral is equal to Ξf◦(x, s).

As one can see from (13), the function Φepi f (x, · ) is nothing but the standard
Laplace transform of Ξf◦(x, · ). It is not always easy to compute the multidi-
mensional integral (11), not to mention its Laplace transform, but there are some
particular cases were this can be done explicitly. The next example is inspired from
[9, Section 7.4].

Example 5.3. Consider the positive sublinear function f(x) = ‖x‖1, in which case
f ◦(y) = ‖y‖∞. One start by computing

Ξf◦(x, s) =

∫

‖y‖∞≤s

e〈x,y〉dy =
n
∏

i=1

∫ s

−s

e−xiyidyi =
n
∏

i=1

σ(xi, s).

Here

σ(τ, s) =

{

(eτs − e−τs) /τ if τ 6= 0

2s if τ = 0.

Then one needs to evaluate the Laplace transform at t of the function
∏n

i=1 σ(xi, ·).
Of course, one supposes that ‖x‖1 < t. For each i ∈ {1, . . . , n}, one has to distin-
guish between the cases xi 6= 0 and xi = 0. Consider for instance the configuration
x1 > 0, . . . , xn > 0. Since,

n
∏

i=1

(

exis − e−xis
)

=
∑

εi=±1

(

n
∏

i=1

εi

)

e
∑n

i=1
sεixi ,

one ends up with

Φepi f (x, t) =

[

n
∏

i=1

xi

]−1
∑

εi=±1

∏n
i=1 εi

t−∑n
i=1 εixi

.

5.1. Moment-generating function techniques

Since f ◦ is positively homogeneous, a simple change of variables in the integral (12)
leads to

Φepi f (x, t) =
1

tn+1

∫

Rn

e〈t
−1x, y〉−f◦(y)dy,

which in turn implies that

Φepi f (x, t) =
1

tn+1
Φepi f

(x

t
, 1
)

. (16)

In other words, one can always restrict the attention to the particular case t = 1.
By the way, the relation (16) is consistent with the fact that Φepi f is positively
homogeneous of degree −(n+ 1).
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Example 5.4. Let f(x) = ‖x‖∞, in which case f ◦(y) = ‖y‖1. A matter of compu-
tation shows that

Φepi f (x, 1) =

∫

Rn

e〈x, y〉e−‖y‖1dy =
n
∏

i=1

∫ ∞

−∞

exiτ−|τ | dτ =
n
∏

i=1

2

1− x2
i

whenever ‖x‖∞ < 1. In view of (16), one obtains

Φepi f (x, 1) =
2ntn−1

∏n
i=1(t

2 − x2
i )

whenever ‖x‖∞ < t, recovering in this way a formula stated in [9, Lemma 7.3].

It is worthwhile to mention that

x ∈ int(Bf ) 7→ Mf (x) := Φepi f (x, 1) =

∫

Rn

e〈x, y〉e−f◦(y)dy

can be seen as the moment-generating function of an n-dimensional random vector
distributed according to the density function y 7→ e−f◦(y). Strictly speaking, e−f◦

is
a density function only up to a positive normalization factor. A density functions
of the form ce−g, for some constant c and some norm g, generalizes the classical
Laplace density function. This way of perceiving Mf leads to a number of analytic
results that are well known in probability theory. The next corollary is mentioned
just by way of illustration.

Corollary 5.5. Let f : Rn → R be a positive sublinear function. Then

(a) Mf is strictly logconvex and infinitely often differentiable on int(Bf ).

(b) If f is even, then so is Mf .

Remark. Partial differentiation of Φepi f with respect to x leads to

∇xΦepi f (x, t) =
1

t

∫

Rn

y e〈x,y〉−tf◦(y)dy

for all (x, t) ∈ int(epi f). In particular,

∇Mf (x) =

∫

Rn

y e〈x,y〉−f◦(y)dy

for all x ∈ int(Bf ). The above gradient has a special meaning if one sets x = 0n.
Indeed, the term

∇Mf (0n) =

∫

Rn

y e−f◦(y)dy

corresponds to a mathematical expectation.

The next proposition provides a formula for computing the characteristic function
of an elliptic cone. The moment-generating function

x ∈ int (Bn) 7→ M(x) =

∫

Rn

e〈x, y〉e−‖y‖dy
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associated to e−‖·‖ is something intrinsic to the Euclidean space R
n and can be

computed once and for all. One has

M(x) =
κn

[1− ‖x‖2](n+1)/2
,

where the constant κn is given by

κn = M(0n) =

∫

Rn

e−‖y‖dy =
π

n
2 n!

(

n
2

)

Γ
(

n
2

)

with Γ standing for the Euler gamma function.

Proposition 5.6. Let Q be a positive definite symmetric matrix of order n. Let

{u1, . . . , un} be an orthonormal basis of eigenvectors of Q and let {λ1, . . . , λn} be

the corresponding eigenvalues. Then, for all (x, t) ∈ int[E(Q)], one has

ΦE(Q)(x, t) =
1

tn+1

√

detQ M
(

LTx

t

)

(17)

=
κn

√
detQ

[t2 − ‖LTx‖2](n+1)/2
(18)

with L standing for the matrix of order n whose j-th column is the vector
√

λjuj.

Proof. The polar of f(x) =
√

〈x,Qx〉 is given by f ◦(y) =
√

〈y,Q−1y〉. Hence,

ΦE(Q)(x, 1) =

∫

Rn

e〈x,y〉e−
√

〈y,Q−1y〉dy.

By using the spectral decomposition

Q = UDUT =
n
∑

j=1

λj uju
T
j

and the orthogonal transformation η = UTy, one gets

ΦE(Q)(x, 1) =

∫

Rn

e〈U
T x, η〉e−

√
〈η,D−1η〉 dη.

Finally, the change of variables ξj = ηj/
√

λj leads to

ΦE(Q)(x, 1) =
√

λ1 · · ·λn

∫

Rn

e〈L
T x, ξ〉e−‖ξ‖ dξ.

This completes the proof of the case t = 1. The formula (17) is then obtained by
using the homogenization mechanism (16).
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Example 5.7. By taking Q = In as the identity matrix of order n one recovers the
well known formula (cf. [7, 9])

ΦΛ(x, t) =
κn

[t2 − ‖x‖2](n+1)/2

for the characteristic function of the (n+ 1)-dimensional Lorentz cone

Λ := {(x, t) ∈ R
n+1 : ‖x‖ ≤ t}.

More generally, the choice Q = (tanϑ)−2 In leads to the expression

Φrev(ϑ)(x, t) =
κn tanϑ

[(t tanϑ)2 − ‖x‖2](n+1)/2

for the characteristic function of a revolution cone

rev(ϑ) := {(x, t) ∈ R
n+1 : (tanϑ)−1‖x‖ ≤ t}

with half-aperture angle equal to ϑ.

6. Epigraphical conic programming

An epigraphical conic program (ECP) is an optimization problem of the form

minimize 〈c, z〉 (19)

Akz − bk ∈ epi f for all k ∈ {1, . . . , N}
with f : Rn → R standing for a positive sublinear function. The decision variable
z is a vector in some Euclidean space, say R

d. The matrices A1, . . . , AN and the
vectors c, b1, . . . , bN are known and have appropriate dimensions.

A dual problem to (19) can be constructed by using the standard Lagrangean
formalism. If one introduces a Lagrangean function L of the form

L(z, λ1, . . . , λN) = 〈c, z〉+
N
∑

k=1

〈λk, bk − Akz〉,

then the dual problem to (19) consists in maximizing the term

inf
z∈Rd

L(z, λ1, . . . , λN)

with respect to the Karush-Kuhn-Tucker multipliers λ1, . . . , λN ∈ (epi f)+. If one
keeps (8) in mind, then a matter of simplification shows that the dual problem can
be written in the form

maximize
N
∑

k=1

〈bk, λk〉 (20)

λ1, . . . , λN ∈ epi f�

N
∑

k=1

AT
k λk = c.
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Let vprimal and vdual denote the optimal values of (19) and (20), respectively. The
general duality theory for convex optimization problems leads to the following result.

Lemma 6.1. Let f : Rn → R be a positive sublinear function. Then the equality

vprimal = vdual

holds under any of the following two qualification hypotheses:

i) There exists z̃ ∈ R
d such that Akz̃ − bk ∈ int (epi f) for all k ∈ {1, . . . , N}.

ii) f is polyhedral and (19) is feasible.

Proof. Under the assumption ii), one can convert (19) and (20) into a pair of dual
linear programs, one of which is feasible. Hence, the other problem is feasible as well,
and both problems have the same optimal value. Under the Slater type qualification
hypothesis i), the dual problem (20) admits a solution and both problems have the
same optimal value. This can be shown by using one of the many existing min-max
theorems for convex-concave Lagrangeans, see for instance [16, Corollary 4.2].

6.1. First application: finding a Chebishev center

Consider a finite set Ω = {ω1, . . . , ωN} of distinct points in R
n. One wishes to find

a vector x ∈ R
n that is regarded as the “center� of Ω. There are different ways of

formalizing the concept of center. The Chebishev strategy consists in minimizing
the maximal deviation function

x ∈ R
n 7→ δmax(x) := max

1≤k≤N
f(x− ωk),

where f is a given norm on R
n. By definition, a Chebishev center of Ω is a solution

to the minimization problem

rcheb = min
x∈Rn

δmax(x).

The number rcheb is called the Chebishev radius of Ω. Since δmax is continuous
and has bounded level sets, the existence of a Chebishev center is automatically
guaranteed. On the other hand, minimizing δmax is clearly equivalent to solving

minimize t

(x, t) ∈ R
n+1

f(x− ωk) ≤ t for all k ∈ {1, . . . , N}.

This can be written of course in the conic programming format

minimize t (21)

(x, t) ∈ (ωk, 0) + epi f for all k ∈ {1, . . . , N}.

Since (21) is a particular instance of the general ECP, one obtains the following
conclusion.
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Corollary 6.2. Let f be a norm on R
n. Then the Chebishev radius of Ω is equal

to the optimal value of the maximization problem

maximize

N
∑

k=1

〈ωk, yk〉 (22)

(yk, sk) ∈ epi f ◦ for all k ∈ {1, . . . , N}
N
∑

k=1

yk = 0n,
N
∑

k=1

sk = 1,

where the decision variables are the vectors y1, . . . , yN ∈R
n and the scalars s1, . . . , sN.

Proof. For obtaining the dual problem (22), one just needs to work out the general
model (20) with

z =

[

x
t

]

, c =

[

0n
1

]

, bk =

[

ωk

0

]

, Ak = In+1.

For the sake of matrix calculus we are writing the vectors of Rn+1 in column nota-
tion. The KKT multipliers are the (n+ 1)-dimensional vectors

λ1 =

[

y1
s1

]

, . . . , λN =

[

yN
sN

]

,

which we identify with the pairs (y1, s1), . . . , (yN , sN). Note that the Slater type
qualification condition i) mentioned in Lemma 6.1 holds automatically in the present
context. Indeed, if one picks any x̃ ∈ R

n and t̃ bigger than max1≤k≤N f(x̃ − ωk),
then

Akz̃ − bk =

[

x̃
t̃

]

−
[

ωk

0

]

∈ int (epi f)

for all k ∈ {1, . . . , N}.

The maximization problem (22) is perhaps better understood if one writes it in the
form

maximize
N
∑

k=1

sk〈ωk, uk〉

sk ≥ 0, f ◦(uk) ≤ 1 for all k ∈ {1, . . . , N}
N
∑

k=1

skuk = 0n,
N
∑

k=1

sk = 1,

where the maximum is taken over all the representations of 0n as convex combination
of N vectors in the ball Bf◦ associated to the polar norm f ◦.
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6.2. Second application: finding a Fermat center

Instead of the maximal deviation function δmax one could use the total deviation
function

x ∈ R
n 7→ δsum(x) :=

N
∑

k=1

f(x− ωk).

The existence of a minimum of δsum is not problematic either. By definition, a
Fermat center of Ω is a solution to the minimization problem

rfermat = min
x∈Rn

δsum(x). (23)

The above minimal value is called the Fermat radius of Ω. Following [3], we write
the unconstrained problem (23) in the form

minimize
N
∑

k=1

τk

f(x− ωk) ≤ τk for all k ∈ {1, . . . , N},
where the decision variables are the components of x ∈ R

n and the auxiliary vari-
ables τ1, . . . , τN . The latter problem can be reformulated as

minimize
N
∑

k=1

τk (24)

(x, τk) ∈ (ωk, 0) + epi f for all k ∈ {1, . . . , N},
so we are dealing with yet another particular case of the general ECP.

Corollary 6.3. Let f be a norm on R
n. Then the Fermat radius of Ω is equal to

the optimal value of the maximization problem

maximize

N
∑

k=1

〈ωk, yk〉 (25)

f ◦(yk) ≤ 1 for all k ∈ {1, . . . , N}
N
∑

k=1

yk = 0n.

Proof. We apply again Lemma 6.1, but this time we use

z =

[

x
τ

]

, c =

[

0n
1N

]

, bk =

[

ωk

0

]

, Ak =

[

In On,N

0Tn eTk,N

]

.

Here τ is the column vector whose components are τ1, . . . , τN , the symbol On,N

indicates the zero matrix of size n×N , and ek,N is the k-th canonical vector of RN .
The equality constraint in (20) becomes

N
∑

k=1

[

In 0n
ON,n ek,N

] [

yk
sk

]

=

[

0n
1N

]

,
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which after simplification yields
∑N

k=1 yk = 0n and sk = 1 for all k ∈ {1, . . . , N}.
This explains the form (25) that we are getting for the dual problem associated to
(24). The Slater type qualification condition i) mentioned in Lemma 6.1 is again in
force. To see this, pick any x̃ ∈ R

n and then let τ̃1 > f(x̃−ω1), . . . , τ̃N > f(x̃−ωN).
In such a case,

Akz̃ − bk =

[

x̃
τ̃k

]

−
[

ωk

0

]

∈ int (epi f)

for all k ∈ {1, . . . , N}.

6.3. Final comments

The nice survey by Boyd et al. [3] on second-order conic programming (SOCP)
focuses the attention on the optimization model

minimize 〈w, x〉 (26)

‖Akx+ bk‖ ≤ 〈ck, x〉+ dk for all k ∈ {1, . . . , N}.

This is of course a particular instance of the general model (19).

SOCP are typically solved by interior point methods (cf. [2, 3, 13]). Such methods
can be adapted to the epigraphic conic program (19), provided one has a suitable
barrier function for the set epi f . It is here where the Vinberg characteristic function
Φepi f enters into action. It would lead us to far to describe all the technicalities
of the interior point method applied to (19), but this is certainly something that
deserves an exhaustive treatment in a more specialized paper.
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