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Pseudomonotone∗ single–valued functions were introduced in [9] and it was proved that the gradi-
ent of a differentiable pseudoconvex function is pseudomonotone∗. In the same paper this concept
was extended in a natural way to multivalued maps but, to date, there is no result that relates
multivalued pseudomonotone∗ maps to the subdifferential of locally Lipschitz pseudoconvex func-
tions. In this paper, we give a nonsmooth Lipschitz pseudoconvex function whose subdifferential
is not pseudomonotone∗ in the sense of [9]. Besides such a characterization was achieved in [10]
using a weaker definition of pseudomonotonicity∗. Exploiting this weaker concept, we provide a
characterization of the solution set of pseudoconvex programs.
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1. Introduction: paramonotone maps

Let X be a real Banach space, X∗ be its topological dual space and 〈·, ·〉 denote the
canonical pairing between X and X

∗. A multivalued map T : X ⇉ X
∗ is said to

be monotone if 〈x∗ − y∗, x − y〉 ≥ 0 for all x, y ∈ D(T ) and x∗ ∈ T (x), y∗ ∈ T (y),
where D(T ) is the domain of T , i.e.

D(T ) = {x ∈ X : T (x) 6= ∅}.

In order to ensure convergence of several methods for variational inequalities, maps
with a slight stronger property were considered for the first time in [3].

Definition 1.1. The multivalued map T : X ⇉ X
∗ is paramonotone if

i) it is monotone,

ii) for every x, y ∈ D(T ) and x∗ ∈ T (x), y∗ ∈ T (y) such that 〈x∗− y∗, x− y〉 = 0
then x∗ ∈ T (y) and y∗ ∈ T (x).
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The term “paramonotone� was introduced in [7] but the prefix “para� is somehow
misleading: the paramonotone maps are more than monotone. In [9] this prop-
erty was named monotonicity+ but we prefer to follow [7] since paramonotonicity
is commonly used in literature. The main motivation for the introduction of the
paramonote maps lies in the analysis of interior point algorithm for variational in-
equalities. Indeed such maps possess a cutting plane property that ensures the con-
vergence of several methods as Korpolevich–type method with Bregman distances
[7], a perturbation method for saddle point problems [12], an outer approximation
method in a reflexive Banach space [5], and also proximal point methods with either
Bregman distance [4] or ϕ–divergences [1]. Even if the class of the paramonotone
maps is more restricted than monotone, it’s worth noting that is larger than the
class of strictly monotone maps, and it includes the subdifferentials of proper con-
vex functions (see [11]). This last property allows us to present a new simple proof
of a result given in [6] concerning the solution set of a convex optimization problem
with nonsmooth objective function.

We recall the following classical notation. Let f : X −→ (−∞,+∞] be a proper
lower semicontinuous convex function, the subdifferential of f at x ∈ dom f is the
(possibly empty) set

∂f(x) = {x∗ ∈ X
∗ : f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ X};

given a nonempty closed and convex set C and x ∈ C, the normal cone to C at x is

N(x,C) = {x∗ ∈ X
∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ C}.

Moreover if we denote by δ(·, C) the indicator function of the closed and convex set
C, i.e. the function such that δ(x,C) = 0 if x ∈ C and δ(x,C) = +∞ otherwise,
then ∂δ(x,C) = N(x,C) for all x ∈ C: therefore the multivalued map N(·, C) is
paramonotone.

Now consider the following minimization problem

min{f(x) : x ∈ C} (1)

with C ⊆ X and f : X −→ (−∞,+∞] a given proper function and denote by S its
solution set. The well–known minimum principle affirms that if C is convex and f
is convex and continuous at x̄ ∈ C, then x̄ ∈ S if and only if

∂f(x̄) ∩ −N(x̄, C) 6= ∅.

The next result shows that this intersection is not only different from the empty set
but it is also constant on the solution set.

Theorem 1.2 ([6]). Let C be a closed and convex set and f be a continuous and

convex function. Let x̄ ∈ S be a fixed solution and

S = {x ∈ C : ∂f(x) ∩ −N(x,C) = ∂f(x̄) ∩ −N(x̄, C)};

then S = S.
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Proof. Put T (z) = ∂f(z) ∩ −N(z, C); since domT = S the inclusion S ⊆ S is
trivial. For the converse we observe that T is a paramonotone map. Indeed the
monotonicity of T trivially derives from the monotonicity of ∂f while the para-
monotonicity follows from the fact that −N(·, C) also satisfies property ii). Given
x ∈ S, and fixed x∗ ∈ T (x) and x̄∗ ∈ T (x̄) we have

0 = f(x̄)− f(x) ≥ 〈x∗, x̄− x〉 ≥ 0

and
0 = f(x)− f(x̄) ≥ 〈x̄∗, x− x̄〉 ≥ 0.

Adding the two inequalities we have 〈x∗ − x̄∗, x − x̄〉 = 0; hence x̄∗ ∈ T (x) and
x∗ ∈ T (x̄) which implies x ∈ S.

A generalization of paramonotone maps was firstly studied in [9]. The authors
introduced the concept of pseudomonotonicity∗ both for single–valued and for mul-
tivalued maps in order to obtain weaker sufficient conditions ensuring the con-
vergence of cutting plane methods. Moreover they proved that a differentiable
function is pseudoconvex if and only if its gradient is pseudomonotone∗. Neverthe-
less, unlike in the differentiable case, there was no result that relates multivalued
pseudomonotone∗ maps to subdifferentials of nonsmooth pseudoconvex functions.
In the next section we define a Lipschitz function which is pseudoconvex with respect
to the Clarke subdifferential, but its subdifferential does not fulfill the definition of
pseudomonotonicity∗ introduced in [9].

Subsequently, Hadjisavvas and Schaible introduced in [10] a weaker definition of
multivalued pseudomonotone∗ maps. In light of our counterexample this new def-
inition is more appropriate. Indeed they not only showed that these maps possess
the cutting plane property but they proved the characterization of a locally Lip-
schitz pseudoconvex function by means of the pseudomonotonicity∗ of its Clarke
subdifferential. This equivalence allows us to formulate in Section 3 a simple char-
acterization of the solution set of a pseudoconvex nonsmooth minimization problem
over a convex set. This result is a generalization of Theorem 1.2.

2. The concept of s–pseudomonotonicity∗

As already mentioned in the introduction, a generalization of the concept of para-
monotonicity for single–valued maps was firstly introduced in [9].

Definition 2.1. The single-valued map F : X −→ X
∗ is pseudomonotone∗ if

i) it is pseudomonotone, i.e. for all x, y ∈ X such that 〈F (x), y − x〉 ≥ 0 then
〈F (y), x− y〉 ≤ 0,

ii) for every x, y ∈ X such that 〈F (x), y − x〉 = 0 and 〈F (y), x − y〉 = 0 then
there exists k > 0 such that F (x) = kF (y).

It is clear that every paramonotone map is also pseudomonotone∗. The importance
of the concept of pseudomonotonicity∗ is double. First of all it is, in some way,
a minimal condition ensuring that the cutting plane property for variational in-
equalities holds. Moreover the gradient of a differentiable pseudoconvex function is
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pseudomonotone∗. In the same paper, the authors extended in a natural way the
definition of pseudomonotonicity∗ to multivalued maps. Since in the next section we
will employ a weaker and more appropriate concept of pseudomonotonicity∗ due to
Hadjisavvas, and Schaible [10] we call this s–pseudomonotonicity (where the prefix
“s� stands for strong).

Definition 2.2. A multivalued map T : X ⇉ X
∗ is s–pseudomonotone∗ if

i) it is pseudomonotone, i.e. for all x, y ∈ D(T ) and x∗ ∈ T (x) such that 〈x∗, y−
x〉 ≥ 0 then 〈y∗, x− y〉 ≤ 0 for all y∗ ∈ T (y),

ii) for every x, y ∈ D(T ) and x∗ ∈ T (x), y∗ ∈ T (y) such that 〈x∗, y− x〉 = 0 and
〈y∗, x− y〉 = 0 then there exists k > 0 such that ky∗ ∈ T (x).

Hadjisavvas and Schaible [10] observed that, unlike in the differentiable case, there is
no known result that relates multivalued s–pseudomonotone∗ maps to suitable sub-
differentials of nonsmooth pseudoconvex functions. In spite of this attractiveness,
they proposed a more appropriate definition (that we introduce in the next section).
Nevertheless they did not present an example in support of their conjecture. Aim
of this section is to confirm their presupposition. We need some definitions. Given
a locally Lipschitz function f : X −→ (−∞ +∞] the Clarke directional derivative

of f at x ∈ dom(f) along the direction v ∈ X is

f ◦(x, v) = lim sup
(x′,t)→(x,0+)

f(x′ + tv)− f(x′)

t

and the Clarke subdifferential at x is

∂◦f(x) = {x∗ ∈ X
∗ : f ◦(x, v) ≥ 〈x∗, v〉, ∀v ∈ X}.

A locally Lipschitz function f is said pseudoconvex with respect to the Clarke subdif-
ferential ∂◦ if for every x ∈ dom(f), y ∈ X and x∗ ∈ ∂◦f(x) such that 〈x∗, y−x〉 ≥ 0
we have f(y) ≥ f(x). In [13] the authors established that a locally Lipschitz
function is pseudoconvex if and only if its Clarke subdifferential is pseudomono-
tone. The following example shows that in general the subdifferential fails to be
s–pseudomonotone∗.

Example 2.3. Consider the function f : R2 −→ R defined by

f(x1, x2) =





|x1|+ |x2| − 1, if |x1| ≥ 1
(
|x1| − 1 +

√
(1− |x1|)2 + 4|x1x2|
2x1

)2

, if 0 < |x1| < 1 and |x2| < 1

x2
2, if x1 = 0 and |x2| < 1

|x2|, if |x1| < 1 and |x2| ≥ 1

Clearly f is a nonnegative continuous function and f(x1, x2) = 0 if and only if
(x1, x2) belongs to the segment σ = [−1, 1] × {0}. Therefore σ is the set of all
minimizers of f . Since f is symmetric with respect to the two axes, we limit
ourselves to study the main properties of f on the first orthant R2

+ only.
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Lipschitzianity of f . The first orthant can be divided in three disjointed boxes
with the following interior part: S = (0, 1) × (0, 1), R1 = (0, 1) × (1,+∞) and
R2 = (1,+∞)× (0,+∞). In each open box the function is differentiable with

∇f(x1, x2)

=





(
N(x1, x2)(N(x1, x2)− 2x1x2)

2x3
1

√
(1− x1)2 + 4x1x2

,
N(x1, x2)

x1

√
(1− x1)2 + 4x1x2

)
, if (x1, x2) ∈ S

(0, 1), if (x1, x2) ∈ R1

(1, 1), if (x1, x2) ∈ R2

where N(x1, x2) = x1 − 1 +
√

(1− x1)2 + 4x1x2. Clearly f is Lipschitzian on the
closure of R1 and R2 respectively. On S, since ∂f

∂x2
(x1, ·) is increasing, we have

0 ≤ ∂f

∂x2

(x1, x2) ≤
x1 − 1 +

√
(1− x1)2 + 4x1

x1

√
(1− x1)2 + 4x1

=
2

1 + x1

≤ 2

and therefore

0 ≤ ∂f

∂x1

(x1, x2) ≤
N(x1, x2)− 2x1x2

x2
1

.

Moreover, since the function x2 7→ N(x1, x2) − 2x1x2 assumes its maximum at
x2 =

2−x1

4
we deduce

∂f

∂x1

(x1, x2) ≤
1

2
.

Hence the gradient of f is bounded on S and then f is Lipschitzian on the closure
of S too. In conclusion f is Lipschitzian over all the space.

Quasiconvexity of f . Fixed a level α > 0, it is easy to show that

{(x1, x2) ∈ R
2
+ : f(x1, x2) ≤ α} = {(x1, x2) ∈ R

2
+ : x2 ≤ rα(x1)}

where

rα(x1) =

{
(α−√

α)x1 +
√
α, if x1 ∈ [0, 1]

−x1 + 1 + α, if x1 ∈ (1,+∞)

when α ≤ 1 and

rα(x1) =

{
α, if x1 ∈ [0, 1]

−x1 + 1 + α, if x1 ∈ (1,+∞)

when α ≥ 1. Hence the contour lines are convex polygons.

Pseudoconvexity of f . Now we show that all the points of R2
+ except σ are not

stationary points. This is trivial for all the points where f is differentiable. Now we
evaluate the Clarke subdifferential in the other points. We recall that if Ωf denotes
the set of all the points where f is differentiable, Rademacher’s theorem affirms that
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Figure 2.1: Contour lines of f .

Ωf is of full Lebesgue measure and the Clarke subdifferential can be equivalently
expressed as

∂◦f(x) = conv

{
x∗ ∈ R

2 : x∗ = lim
n→+∞

∇f(xn), xn ∈ Ωf and xn → x

}

where the notation “conv� indicates the convex hull. Using this formula we are able
to compute the subdifferential of f :

∂◦f(x1, x2) =





[2x3
2 − 2x2

2, 2x
2
2 − 2x3

2]× {2x2}, if x1 = 0 and x2 ∈ (0, 1)

{0} × [1, 2(1 + x1)
−1], if x1 ∈ [0, 1) and x2 = 1

[0, 1]× {1}, if x1 = 1 and x2 ∈ [1,+∞)

[
√
x2 − x2, 1]× {1}, if x1 = 1 and x2 ∈ (0, 1)

Observe that there are no stationary points out of σ. This property and the quasi-
convexity of f ensure that f is pseudoconvex as proved in [2, Theorem 4.1].

The map ∂◦f is not s–pseudomonotone∗. First of all we show that f is differentiable
at the origin with ∇f(0, 0) = (0, 0); indeed

0 ≤ lim inf
(x1,x2)→(0,0)

f(x1, x2)√
x2
1 + x2

2

≤ lim sup
(x1,x2)→(0,0)

f(x1, x2)√
x2
1 + x2

2

≤ lim
(x1,x2)→(0,0)

(
|x1| − 1 +

√
(1− |x1|)2 + 4|x1x2|

)2

4x2
1

√
x2
1 + x2

2

= 0.

Moreover f is not differentiable at (1, 0) and (0, 1) ∈ ∂◦f(1, 0). Indeed it is sufficient
to consider the sequence of points {(xn,

1−xn

4
)} with xn < 1 and converging to 1;

then

lim
n→+∞

∇f

(
xn,

1− xn

4

)
= (1, 0).
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Therefore, choosing the points (0, 0) and (1, 0) and the elements (0, 0) = ∇f(0, 0)
and (0, 1) ∈ ∂◦f(1, 0) we have

〈(0, 0), (1, 0)− (0, 0)〉 = 0 = 〈(0, 1), (0, 0)− (1, 0)〉

but there doesn’t exist k > 0 such that (0, 1) = k∇f(0, 0).
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1
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Figure 2.2: Graph of f .

This example clarifies that the concept of s–pseudomonotonicity∗ is too strong in
order to characterize the Clarke subdifferential of a locally Lipschitz and pseudocon-
vex function. This fact was presupposed in [10] but, to the best of our knowledge,
there was not any proof of this conjecture.

3. The pseudoconvex nonsmooth minimization problem

In [10] the authors proposed a slightly modified concept of pseudomonotonicity∗
for multivalued maps which is based on a particular equivalence relation between
multivalued maps. In order to introduce the definition we recall some results. Given
a multivalued map T : X ⇉ X

∗ we denote by Z(T ) the set of zeros of T , i.e.

Z(T ) = {x ∈ X : 0 ∈ T (x)}.

Two maps T1, T2 are called equivalent and write T1 ∼ T2 if D(T1) = D(T2), Z(T1) =
Z(T2), and for every x ∈ X \ Z(T1),

⋃

r>0

rT1(x) =
⋃

s>0

sT2(x).

This is an equivalence relation and for each map T we denote by

T (x) =
⋃

S∼T

S(x)
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the equivalent maximum element with respect to the order defined by graph inclu-
sion. If we consider the family of pseudomonotone maps only, it is easy to show
that T is pseudomonotone and it could be expressed as

T (x) =





N(x, LT,x), if x ∈ Z(T )⋃

r>0

rT (x), if x ∈ D(T ) \ Z(T )

∅, if x /∈ D(T )

where

LT,x = {y ∈ X : ∃y∗ ∈ T (y) s.t. 〈y∗, x− y〉 = 0}
and N(x, LT,x) is the normal cone to LT,x at x.

Definition 3.1. A multivalued map T : X ⇉ X
∗ is pseudomonotone∗ if

i) it is pseudomonotone,

ii) for every x, y ∈ D(T ) and x∗ ∈ T (x), y∗ ∈ T (y) such that 〈x∗, y− x〉 = 0 and
〈y∗, x− y〉 = 0 then x∗ ∈ T (y) and y∗ ∈ T (x).

Definitions 2.1 and 3.1 are equivalent for single–valued maps (see [10]). Moreover
condition ii) in Definition 3.1 is less restrictive than condition ii) in Definition 2.2.
Indeed, fixed y ∈ LT,x, from the pseudomonotonicity of T we deduce

〈x∗, y − x〉 ≤ 0, ∀x∗ ∈ T (x)

and thus T (x) ⊆ N(x, LT,x). Hence every s–pseudomonotone∗ map is pseudomono-
tone∗ too but the converse does not hold as follows from Example 2.3 and from the
following result [10] which characterizes nonsmooth pseudoconvex functions with
the pseudomonotonicity∗ of a suitable subdifferential.

Theorem 3.2. Let f : X −→ (−∞,+∞] be a locally Lipschitz function; then f is

pseudoconvex with respect to ∂◦ if and only if ∂◦f is pseudomonotone∗.

Going back to Example 2.3, we have shown that

(0, 1) /∈
⋃

r>0

r∇f(0, 0) = {(0, 0)}.

Consequently ∂◦f is not s-pseudomonotone∗. Nevertheless Theorem 3.2 guaranties
that ∂◦f is pseudomonotone∗. In particular, since it is immediate to verify that
σ = L∂◦f,(0,0), then

(0, 1) ∈ ∂̂◦f(0, 0) = {0} × R.

In order to prove the main result of this paper we need two results. The first one
was proved in [10].

Lemma 3.3. If T : X ⇉ X
∗ is pseudomonotone∗ and S : X ⇉ X

∗ is a pseu-

domonotone map equivalent to T , then S is pseudomonotone∗.
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The second result is a minimum principle for the pseudoconvex minimization prob-
lem (1). For sake of completeness we give a short proof.

Lemma 3.4. Consider the minimization problem (1). Suppose f is a locally Lips-

chitz pseudoconvex function with respect to ∂◦ and x̄ ∈ C. Then x̄ ∈ S if and only

if ∂◦f(x̄) ∩ −N(x̄, C) is a nonempty set.

Proof. The necessary optimality condition is well known [8]. For the reverse im-
plication, fix x̄∗ ∈ ∂◦f(x̄) ∩ −N(x̄, C) and y ∈ C. Since −x̄∗ is normal to C at x̄,
then 〈x̄∗, y− x̄〉 ≥ 0. Finally the ∂◦–pseudoconvexity of f implies that f(y) ≥ f(x̄)
which concludes the proof.

Now we are able to provide a characterization of the solution set of the pseudoconvex
minimization problem (1).

Theorem 3.5. Consider the minimization problem (1). Suppose f is a locally Lip-

schitz pseudoconvex function with respect to ∂◦ and x̄ ∈ S. Define

S = {x ∈ C : ∂̂◦f(x) ∩ −N(x,C) = ∂̂◦f(x̄) ∩ −N(x̄, C)}.

Then S = S.

Proof. If x, x̄ ∈ S, the necessary optimality condition implies that ∂◦f(x) ∩
−N(x,C) and ∂◦f(x̄) ∩ −N(x̄, C) are nonempty sets. Since ∂̂◦f is the maximal

element with respect to graph inclusion we have ∂̂◦f(x) ∩ −N(x,C) 6= ∅ and

∂̂◦f(x̄) ∩ −N(x̄, C) 6= ∅ too. Fix two elements x∗ ∈ ∂̂◦f(x) ∩ −N(x,C) and

x̄∗ ∈ ∂̂◦f(x̄) ∩ −N(x̄, C). Since −x∗ and −x̄∗ belong to the normal cones to C
in x and x̄ respectively, we can write

〈x∗, x̄− x〉 ≥ 0 and 〈x̄∗, x− x̄〉 ≥ 0. (2)

From the pseudomonotonicity of ∂̂◦f we deduce

〈x̄∗, x− x̄〉 ≤ 0 and 〈x∗, x̄− x〉 ≤ 0. (3)

and, comparing equations (2) and (3) we have

〈x∗, x̄− x〉 = 0 = 〈x̄∗, x− x̄〉. (4)

Besides, from Theorem 3.2 the subdifferential map ∂◦f is pseudomonotone∗, and
from Lemma 3.3 we obtain that ∂̂◦f is pseudomonotone∗ too. Hence x̄∗ ∈ ∂̂◦f(x)

and x∗ ∈ ∂̂◦f(x̄). Furthermore for any y ∈ C

〈x̄∗, y − x〉 = 〈x̄∗, y − x̄〉+ 〈x̄∗, x̄− x〉 = 〈x̄∗, y − x̄〉 ≥ 0.

where the second equality descends from (4), while the inequality is due to the fact
that x̄∗ ∈ −N(x̄, C). Thus x̄∗ ∈ −N(x,C). Analogously x∗ ∈ −N(x̄, C) which
concludes the first inclusion.
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For the converse let x be in S. The necessary optimality condition for x̄ implies
that ∂̂◦f(x̄)∩−N(x̄, C) 6= ∅. Then ∂̂◦f(x)∩−N(x,C) 6= ∅ too. Fix x∗ in ∂̂◦f(x)∩
−N(x,C): only two different cases are conceivable.

Suppose x /∈ Z(∂◦f). Then x∗ ∈ ∂̂◦f(x) means that there exist k > 0 and x∗ ∈
∂◦f(x) such that x∗ = kx∗. Since−N(x,C) is a cone x∗ = k−1x∗ ∈ −N(x,C). Then
∂◦f(x) ∩ −N(x,C) 6= ∅ and the sufficiency of the first order optimality condition
in Lemma 3.4 implies that x ∈ S.

Suppose x ∈ Z(∂◦f). Then 0 ∈ ∂◦f(x). The sufficiency of the first order optimality
condition concludes the proof.

We conclude describing the particular case when the function f is differentiable.

Theorem 3.6. Consider the minimization problem (1). Suppose f is a differen-

tiable pseudoconvex function and x̄ ∈ S. Define

Sk = {x ∈ C : ∇f(x) = k∇f(x̄) and 〈∇f(x̄), x− x̄〉 = 0}.

with k > 0. Then S =
⋃

k>0 Sk.

Proof. Two different cases are possible.

Suppose ∇f(x̄) 6= 0. Since −∇f(x̄) ∈ N(x̄, C) then ∇̂f(x̄) ∩ −N(x̄, C) = ∇̂f(x̄)
and hence

S =
{
x ∈ C : ∇̂f(x) = ∇̂f(x̄)

}
=
⋃

k>0

Sk

where the equality 〈∇f(x̄), x− x̄〉 = 0 descends from the minimum principle

〈∇f(x̄), x− x̄〉 ≥ 0,

from the pseudomonotonicity

〈∇f(x), x̄− x〉 ≤ 0

and from the fact that ∇̂f(x) = ∇̂f(x̄).

Suppose ∇f(x̄) = 0. The set
⋃

k>0 Sk coincides with the set of all stationary points

on C and, by definition, every x ∈ S is a stationary point on C too. Fix an arbitrary
x ∈ C such that ∇f(x) = 0; from the pseudomonotonicity∗ we have

L∇f,x = {y ∈ X : 〈∇f(y), x− y〉 = 0} = {y ∈ X : ∇f(y) = 0}.

and the set ∇̂f(x) ∩ −N(x,C) coincides with the solution set of the following
inequality system

{
〈x∗, y − x〉 ≤ 0, ∀y ∈ X s.t. ∇f(y) = 0,

〈x∗, y − x〉 ≥ 0, ∀y ∈ C.
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Since we can choose y = x̄ we deduce that 〈x∗, x̄ − x〉 = 0 and thus the system is
equivalent to the following

{
〈x∗, y − x̄〉 ≤ 0, ∀y ∈ X s.t. ∇f(y) = 0,

〈x∗, y − x̄〉 ≥ 0, ∀y ∈ C.

This concludes the proof.
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