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We consider a certain metric on the space of all convex compacta in R
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of strictly convex compacta is a complete metric subspace of the metric space of convex compacta
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this metric and the Hausdorff metric.
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1. Introduction

We begin by some definitions for a finite-dimensional Euclidean space (Rn, ‖ · ‖)
over R with the inner product (·, ·). Let Br(a) = {x ∈ R

n | ‖x− a‖ ≤ r}. Let clA
denote the closure and intA the interior of the subset A ⊂ R

n. The diameter of
the subset A ⊂ R

n is defined by diamA = supx,y∈A ‖x− y‖. The distance from the
point x ∈ R

n to the set A ⊂ R
n is given by the formula ̺(x,A) = infa∈A ‖x − a‖.

We shall denote the convex hull of a set A ⊂ R
n by coA. We shall denote the conic

hull of a set A ⊂ R
n by coneA (cf. [1, 9, 13]).
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The Hausdorff distance between two subsets A,B ⊂ R
n is defined as follows

h(A,B) = max

{

sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖
}

= inf{r > 0 | A ⊂ B +Br(0), B ⊂ A+Br(0)}.

The supporting function of the subset A ⊂ R
n is defined as follows

s(p,A) = sup
x∈A

(p, x), ∀p ∈ R
n. (1)

The supporting function of any set A is always lower semicontinuous, positively uni-
form and convex. If the set A is bounded then the supporting function is Lipschitz
continuous [1, 9].

It follows from the Separation Theorem (cf. [9, Lemma 1.11.4]) that for any convex
compacta A,B in R

n

h(A,B) = sup
‖p‖=1

|s(p,A)− s(p,B)|. (2)

Let (T, ̺) be a metric space. We say that a set-valued mapping F : (T, ̺) → 2R
n\{∅}

is upper semicontinuous at the point t = t0 if

∀ε > 0 ∃δ > 0 ∀t : ̺(t, t0) < δ F (t) ⊂ F (t0) +Bε(0),

and lower semicontinuous at the point t = t0 if

∀ε > 0 ∃δ > 0 ∀t : ̺(t, t0) < δ F (t0) ⊂ F (t) +Bε(0).

We say that a set-valued mapping F : (T, ̺) → 2R
n\{∅} is continuous at the point

t = t0 if F is upper and lower semicontinuous at the point t = t0.

We say that a set-valued mapping F : (T, ̺) → 2R
n\{∅} is (upper, lower) (semi)con-

tinuous on the set T , if F is (upper, lower) (semi)continuous at any point t0 ∈ T .

For any convex compact set A ⊂ R
n and any vector p ∈ R

n, the subset A(p) = {x ∈
A | (p, x) = s(p,A)} is the subdifferential of the supporting function s(p,A) at the
point p. The set-valued mapping R

n ∋ p → A(p) is always upper semicontinuous
(cf. [1, 13]).

A convex compactum in R
n is called strictly convex if its boundary contains no

nondegenerate line segments.

Definition 1.1 ([10]). Let E be a Banach space and let a subset A ⊂ E be convex
and closed. The modulus of convexity δA : [0, diamA) → [0,+∞) is the function
defined by

δA(ε) = sup
{

δ ≥ 0
∣

∣

∣
Bδ

(x1 + x2

2

)

⊂ A, ∀x1, x2 ∈ A : ‖x1 − x2‖ = ε
}

.

Definition 1.2 ([10]). Let E be a Banach space and let a subset A ⊂ E be
convex and closed. If the modulus of convexity δA(ε) is strictly positive for all
ε ∈ (0, diamA), then we call the set A uniformly convex (with modulus δA(·)).
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For any uniformly convex set A the modulus δA is a strictly increasing function on
the segment [0, diamA). In the finite-dimensional case the class of strictly convex
compacta coincides with the class of uniformly convex compacta with moduli of
convexity δA(ε) > 0 for all permissible ε > 0 (cf. [3]).

We shall use ∗ for objects from conjugate space E∗: ‖ · ‖∗ is the norm in E∗, B∗
1(0)

is the unit closed ball in E∗ and so on.

Following Plís [8] we define the metric ρ which is the main objective of the present
paper.

Definition 1.3 ([8, Formula (3)]). The metric ρ on the space of convex com-
pacta in R

n is defined by the formula

ρ(A,B) = sup
‖p‖=1

h(A(p), B(p)), (3)

for any convex compacta A,B ⊂ R
n.

Definition 1.3 coincides with the definition of theDemyanov metric (see its definition
in [4, Formula (4.1)]) – this was proved in [6].

The Hausdorff metric is the most natural metric for various questions of set-valued
analysis and its applications. Nevertheless, there are some limitations for using this
metric. For example, if we have a sequence {Ak}∞k=1 of strictly convex compact
sets and h(Ak, A) → 0, then the limit set A needs not be strictly convex. Indeed,
consider on the Euclidean plane the following ellipsoids

Ak = {(x1, x2) ∈ R
2 | x2

1 + k2x2
2 ≤ 1}.

Each set Ak is strictly convex, but the limit set A = {(x1, 0) ∈ R
2 | x1 ∈ [−1, 1]} is

not strictly convex. Note, that strict convexity of the set means differentiability of
the supporting function of this set. This fact is very useful for applications. Below
we give some sufficient conditions for the limit of a sequence of strictly convex
compacta to be also strictly convex.

We say that a sequence of convex compacta {Ak}∞k=1 ⊂ R
n is uniformly convex

with modulus δ if infk diamAk > 0 and the function δ(ε), ε ∈ [0, infk diamAk), is
continuous and has the property 0 < δ(ε) ≤ δAk

(ε) for all ε ∈ (0, infk diamAk) and
for all k.

Lemma 1.4. Let a sequence {Ak}∞k=1 ⊂ R
n of convex compacta converge to a con-

vex compactum A in the Hausdorff metric. If the sequence {Ak}∞k=1 is uniformly
convex with modulus δ, δ : (0, ε0] → (0,+∞), then the compactum A is a uniformly
convex set with the modulus δA(ε) ≥ δ(ε), 0 < ε ≤ ε0. In particular, this implies
strict convexity of the set A.

Proof. Choose arbitrary points x, y ∈ A with ‖x−y‖ < ε0. There are two sequences
{xk} ⊂ Ak, {yk} ⊂ Ak such that xk → x, yk → y, k → ∞. For all sufficiently large
k we have ‖xk − yk‖ < ε0. Due to the uniform convexity of the sequence {Ak} we
obtain that

xk + yk
2

+Bδ(‖xk−yk‖)(0) ⊂ A,
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and
(

p,
xk + yk

2

)

+ δ(‖xk − yk‖)‖p‖ ≤ s(p,Ak), ∀p ∈ R
n.

Taking the limit k → ∞, using (2) and the continuity of the function δ we get

(

p,
x+ y

2

)

+ δ(‖x− y‖)‖p‖ ≤ s(p,A), ∀p ∈ R
n,

i.e.

s
(

p,
x+ y

2
+Bδ(‖x−y‖)(0)

)

≤ s(p,A), ∀p ∈ R
n.

By the Separation Theorem [9, 13] we obtain the following

x+ y

2
+Bδ(‖x−y‖)(0) ⊂ A.

2. The main properties of metric ρ

In general, the subdifferential of a convex function is only upper semicontinuous
[1, 13]. For a (not strictly) convex compactum A the sets A(p) are also upper
semicontinuous with respect to p. This leads to the fact that in the formula (3)
from Definition 1.3 one cannot replace sup by max.

Example 2.1. Consider in R
3 two sets:

A = co
{{

(x1, x2, x3) | (x1 − 1)2 + x2
2 = 1; x3 = 0

}

∪ {(0, 0, 1)}
}

,

B = co
{{

(x1, x2, x3) | (x1 − 1)2 + x2
2 + x8

2 = 1; x3 = 0
}

∪ {(0, 0, 1)}
}

.

It is easy to see that B ⊂ A, diamB = diamA =
√
5, and diamA and diamB are

attained only on the line segment [(0, 0, 1), (2, 0, 0)] ⊂ B.

Let ak ∈ {(x1, x2, x3) | (x1−1)2+x2
2 = 1; x2 < 0; x3 = 0} be such that ak → (2, 0, 0).

The line segment [(0, 0, 1), ak] is a generatrix of the cone A for all k.

Let Hk be a supporting plane of the set A such that [(0, 0, 1), ak] ⊂ Hk. Let pk be
a unit normal vector to the plane Hk such that (pk, ak) > 0. It is easy to see that
pk → p0 =

1√
5
(1, 0, 2).

For any k we have B(pk) = {(0, 0, 1)} and A(pk) = Hk ∩ A = [(0, 0, 1), ak]. By
Definition 1.3 it follows that

ρ(A,B) ≥ h(A(pk), B(pk)) = h ({(0, 0, 1)}, {(0, 0, 1), ak})
= ‖(0, 0, 1)− ak‖ =

√

‖ak‖2 + 1,

and
√

‖ak‖2 + 1 →
√
5,

√

‖ak‖2 + 1 <
√
5 for all k. However, the only line segment

which realizes diamA = diamB =
√
5 is the line segment [(0, 0, 1), (2, 0, 0)] ⊂

A ∩ B. Thus ρ(A,B) = limk→∞ h(A(pk), B(pk)) =
√
5, but for all p, ‖p‖ = 1,

h(A(p), B(p)) <
√
5.
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Lemma 2.2. Let A ⊂ R
n be a convex compactum. If the set-valued mapping

∂ B1(0) ∋ p → A(p) is lower semicontinuous, then the compactum A is strictly
convex.

Proof. Suppose that there exists p ∈ ∂ B1(0) such that the set A(p) is not a
singleton. Let {x, y} ⊂ A(p), x 6= y, and q = y−x

‖y−x‖ . Obviously, q is orthogonal to
p.

Consider a sequence {qk}∞k=1 ⊂ cone{p, q} such that qk → p, k → ∞, ‖qk‖ = 1 and
qk 6= p for all k. Let H−

p = {z ∈ R
n | (p, z) ≤ s(p,A)}, H+

qk
= {z ∈ R

n | (qk, z) ≥
(y, qk)}, H+

q = {z ∈ R
n | (q, z) ≥ (y, q)}.

By lower semicontinuity of A(·) we have for any ε > 0 and for all sufficiently large
k

A(p) ⊂ A(qk) +Bε(0). (4)

On the other hand,

A(qk) ⊂ H+
qk
∩H−

p ⊂ H+
q ∩H−

p . (5)

Due to the inclusion (5) we obtain that

̺(x,A(qk)) ≥ ̺(x,H+
q ∩H−

p ) = ‖x− y‖ > 0. (6)

Inequality (6) implies that for all k

x /∈ A(qk) +
‖x− y‖

2
B1(0).

This contradicts the inclusion (4).

Lemma 2.3. Consider a sequence Fk : (T, ̺) → 2R
n\{∅} of set-valued mappings

which are upper (lower) semicontinuous with compact images. Let the sequence
{Fk(t)}∞k=1 uniformly converge to the set-valued mapping F : (T, ̺) → 2R

n\{∅} in
the Hausdorff metric, i.e.

∀ε > 0 ∃kε ∀k > kε ∀t ∈ T h(Fk(t), F (t)) < ε.

Then the set-valued mapping F is upper (lower) semicontinuous on T .

Proof. The proof is a standard argument of uniform convergence.

We shall write Fk ⇉ F , t ∈ T , in the case of uniform convergence on the set T of
the sequence Fk to the mapping F .

Theorem 2.4. The metric space of convex compacta in R
n is complete with respect

to the metric ρ.

Proof. Let {Ak}∞k=1 be a fundamental sequence of convex compacta with respect
to the metric ρ. This means that

∀ε > 0 ∃M ∀k,m > M ∀p ∈ ∂ B1(0) h(Am(p), Ak(p)) < ε.
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By convexity of compact sets Am(p) and completeness of the space of convex com-
pacta with respect to the Hausdorff metric (see [9, Theorem 1.3.2]) we obtain that
Am(p) ⇉ Ap, p ∈ ∂ B1(0), and the set Ap is convex and compact for all p ∈ R

n,
‖p‖ = 1.

Put
A = cl co

⋃

‖p‖=1

Ap.

For any q ∈ ∂ B1(0) and any x(q) ∈ Aq there exists a sequence {xm(q)}∞m=1 such
that xm(q) ∈ Am(q) for all m and xm(q) → x(q). Taking the limit m → ∞
in the inequality (p, xm(p)) ≥ (p, xm(q)), we obtain (p, x(p)) ≥ (p, x(q)). Hence
(p, x(p)) ≥ s(p,A) and x(p) ∈ A(p), i.e. Ap ⊂ A(p).

The converse inclusion A(p) ⊂ Ap can be proved with the help of separation theo-
rem.

Corollary 2.5. The metric subspace of strictly convex compacta in R
n is complete

with respect to the metric ρ.

Proof. The proof is analogous to the proof of Theorem 2.4 except that all sets
Am(p), Ap are singletons.

Suppose that A, B are convex compacta. By formula (2) we have

ρ(A,B) = sup
‖p‖=1

sup
‖q‖=1

|s(q, A(p))− s(q, B(p))| ,

and hence

ρ(A,B) ≥ sup
‖p‖=1

|s(p,A(p))− s(p,B(p))| = sup
‖p‖=1

|s(p,A)− s(p,B)| = h(A,B). (7)

Thus ρ(Ak, A) → 0 implies that h(Ak, A) → 0.

Theorem 2.6. The metric space of strictly convex compacta in R
n is not locally

compact with respect to the metric ρ.

Proof. Choose a sequence {Ak}∞k=1 of strictly convex compacta such that Ak ⊂
BR(0) for all k and there exists a nonstrictly convex compactum A with h(Ak, A) →
0. Suppose that a subsequence {Akm}∞m=1 converges to a compactum B in the metric
ρ.

From the estimate ρ(Akm , B) ≥ h(Akm , B) and h(Akm , A) → 0 we get equality
B = A. So ρ(Akm , A) → 0. This means that Akm(p) ⇉ A(p), ‖p‖ = 1. But the set
Akm(p) is a singleton for all m and p. By the choice of A there exists p0 ∈ ∂ B1(0)
such that the set A(p0) is not a singleton. Contradiction.

Next we shall obtain the estimate of the distance ρ(A,B) via h(A,B) for some
convex closed sets in a Banach space. In a Banach space E for closed convex
bounded sets A,B ⊂ E we define

ρ(A,B) = sup
‖p‖∗=1

h(A(p), B(p)).
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If the space E is reflexive then A(p) 6= ∅, B(p) 6= ∅ for all p ∈ E∗.

Note that if the space E contains a uniformly convex nonsingleton set then such
space E has an equivalent uniformly convex norm [3, Theorem 2.3]. In particular,
such space E is reflexive.

Note also that for any uniformly convex set A we have that diamA < +∞ and the
modulus of convexity δA(ε) is a strictly increasing function when ε ∈ [0, diamA)
[3].

Theorem 2.7. Let E be a Banach space. Let A,B ⊂ E be convex closed bounded
sets. Let the set A be a nonsingleton and a uniformly convex set with the modulus
of convexity δA. Let ∆ = limt→diamA−0 δA(t). Then

ρ(A,B) ≤











h(A,B) + δ−1
A (h(A,B)), h(A,B) < ∆,

h(A,B)

(

1 +
diamA

∆

)

, h(A,B) ≥ ∆,
(8)

where the function δ−1
A is the inverse function of δA. Furthemore, if the set A is a

singleton then ρ(A,B) = h(A,B).

Proof. Let h = h(A,B). Suppose that A is not a singleton. Fix p ∈ ∂ B∗
1(0). Let

A(p) = {a(p)}. Fix an arbitrary point b(p) ∈ B(p).

Case 1. h < ∆. Choose t > 1 such that th < ∆.

Subcase 1.1. s(p,A) ≥ s(p,B). By formula (2) we have 0 ≤ (p, a(p))−(p, b(p)) ≤ h.
Let a ∈ A be a point such that a ∈ b(p) +Bth(0).

Define HA(p) = {z ∈ E | (p, z) = s(p,A)}, H−
A (p) = {z ∈ E | (p, z) ≤ s(p,A)},

HB(p) = {z ∈ E | (p, z) = s(p,B)}.
We have ̺(b(p), HA(p)) = (p, a(p) − b(p)) ≤ h, ̺(a,HA(p))) ≤ ‖a − b(p)‖ +
̺(b(p), HA(p)) ≤ (1 + t)h and A ∪ B ⊂ H−

A (p). Hence the line segment [a(p), a]

belongs to the set HA(p)
−. Let w = a(p)+a

2
, ̺(w,HA(p)) = 1

2
̺(a,HA(p)) ≤ 1+t

2
h.

By the inclusion
w + δA(‖a(p)− a‖)B1(0) ⊂ A ⊂ H−

A (p)

we get

δA(‖a(p)− a‖) ≤ ̺(w,HA(p)) ≤
1 + t

2
h.

Hence ‖a(p)− a‖ ≤ δ−1
A

(

1+t
2
h
)

. Thus we obtain that

‖a(p)− b(p)‖ ≤ ‖a(p)− a‖+ ‖a− b(p)‖ ≤ δ−1
A

(

1 + t

2
h

)

+ th,

i.e. b(p) ∈ a(p) +
(

δ−1
A

(

1+t
2
h
)

+ th
)

B1(0). Due to the arbitrary choice of the point
b(p) ∈ B(p) we have

B(p) ⊂ a(p) +

(

δ−1
A

(

1 + t

2
h

)

+ th

)

B1(0)
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and

h(A(p), B(p)) = h({a(p)}, B(p)) ≤ δ−1
A

(

1 + t

2
h

)

+ th.

Taking the limit t → 1 + 0, we obtain that

h(A(p), B(p)) = h({a(p)}, B(p)) ≤ δ−1
A (h) + h.

Subcase 1.2. s(p,A) < s(p,B). Then all arguments of the Subcase 1.1 still apply
except that

̺(a,HA(p)) ≤ ̺(a,HB(p)) ≤ ‖a− b(p)‖ ≤ th,

̺(w,HA(p)) ≤ t
2
h, ‖a(p)− a‖ ≤ δ−1

A

(

t
2
h
)

. Hence

h(A(p), B(p)) = h({a(p)}, B(p)) ≤ δ−1
A

(

t

2
h

)

+ th.

Taking the limit t → 1 + 0, we obtain that

h(A(p), B(p)) ≤ δ−1
A

(

1

2
h

)

+ h.

So again when h < ∆ we have for all p ∈ ∂ B∗
1(0)

h(A(p), B(p)) ≤ δ−1
A (h) + h.

Hence ρ(A,B) = sup‖p‖∗=1 h(A(p), B(p)) ≤ δ−1
A (h) + h.

Case 2. h ≥ ∆. Then for any t > 1 we have

ρ(A,B) ≤ diamA+ th ≤ h

∆
diamA+ th ≤ h

(

t+
diamA

∆

)

, ∀t > 1.

Taking the limit t → 1 + 0, we get

ρ(A,B) ≤ h

(

1 +
diamA

∆

)

.

In the case when A is a singleton the equality ρ(A,B) = h(A,B) follows by Defini-
tion 1.3.

For a set A ⊂ R
n, A ⊂ BR(a) for some a ∈ R

n and R > 0, we define the R-strongly
convex hull of the set A, as the intersection of all closed balls of radius R each of
which contains the set A. We shall denote the R-strongly convex hull of the set A
by strcoRA (cf. [2]).

Example 2.8. The estimate (8) is exact. Consider two sets A and B on the Eu-
clidean plane R

2. Let 0 < ε < R, a
(√

2Rε− ε2, 0
)

∈ R
2 and

A = strcoR{Bε((0, 0)) ∪ {a}}+BR(0), B = strcoR{Bε(a) ∪ {(0, 0)}}+BR(0).
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Let p = (0, 1). It is easy to see that h(A,B) = ε, A(p) = (ε+R) p, B(p) =
(√

2Rε− ε2, ε
)

+Rp. Hence

ρ(A,B) ≥ h(A(p), B(p)) = ‖a‖ =
√
2Rε− ε2 =

√

2Rh(A,B)− h2(A,B).

The sets A and B = a − A are intersections of closed balls of radius R + ε and

δA(s) = δB(s) ≥ (R + ε)δH
(

s
R+ε

)

, where δH(s) = 1 −
√

1− s2

4
is the modulus of

convexity for the Hilbert space (see [7, p. 63]). Thus δA(s) = δB(s) ≥ s2

8(R+ε)
, and

δ−1
A (t) ≤ 2

√

2(R + ε)t. So the order of h(A,B) in formula (8) is exact.

Remark 2.9. The result of Theorem 2.7 was proved for p-convex sets in [8, Formula
(5)]. Note that any p-convex set, p > 0, in the paper [8] is in fact the intersection
of closed balls of radius R = 1

2p
. From the definition of p-convex set (inequality (2)

of [8]) it follows that for any p-convex set A ⊂ R
n, any point a ∈ ∂ A and any unit

vector w ∈ {q ∈ R
n | (q, x− a) ≤ 0, ∀x ∈ A} we have

(w, x− a) + p‖x− a‖2 ≤ 0, ∀x ∈ A,

or

A ⊂ BR (a−Rw) , where R =
1

2p
.

Hence A =
⋂

‖w‖=1 B 1

2p
(a(w)− 1

2p
w), where {a(w)} = A(w).

This also follows by results of [5], [9, Chapter 3].

Corollary 2.10. Suppose that Fi : (T, ̺) → 2R
n\{∅}, i = 1, 2, are continuous (in

the metric ρ) set-valued mappings with strictly convex images. Let L : Rn → R
n be a

linear operator. Then the set-valued mappings F1(t)+F2(t), LF1(t), F2(t)
∗ F1(t) =

⋂

x∈F1(t)
(F2(t)− x), F1(t)∩F2(t) (the latter two if nonempty) are continuous in the

metric ρ.

Proof. The proof is similar for all cases. Let us prove the continuity of F1(t)∩F2(t).

The continuity of set-valued mappings Fi in the metric ρ and formula (7) gives the
continuity of set-valued mappings Fi in the Hausdorff metric.

It is well known that the intersection of two continuous in the Hausdorff metric
set-valued mappings with compact strictly convex images is also continuous in the
Hausdorff metric (cf. [1, 9]). Thus the set-valued mapping H = F1 ∩ F2 : (T, ̺) →
2R

n\{∅} is continuous in the Hausdorff metric.

For any point t = t0 ∈ T the set H(t0) is a strictly(=uniformly) convex compactum
from R

n with some modulus of convexity δt0 . By Theorem 2.7 we have

ρ(H(t), H(t0)) ≤ max

{

h(H(t), H(t0)) + δ−1
t0
(h(H(t), H(t0)));

(

1 +
diamH(t0)

∆

)

h(H(t), H(t0))

}

→
t→t0

0,
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where ∆ = δt0(diamH(t0)). If H(t0) is a singleton then ρ(H(t), H(t0)) = h(H(t),
H(t0))→t→t0 0.

3. Applications

3.1. We prove a theorem about smooth approximation of the extremal problem.

Theorem 3.1. Let F : (T, ̺) → 2R
n\∅ be a continuous set-valued mapping with

compact convex images and suppose that there exists r > 0 such that for all t ∈ T
F (t) ⊂ Br(a(t)) for some a(t) ∈ R

n. Let diamF (t) ≥ d > 0 for all t ∈ T .

For any t ∈ T and p ∈ R
n, ‖p‖ = 1, consider the following problem

max{(p, x) | x ∈ F (t)}. (9)

Then for any ε ∈ (0, 1) there exists an approximation Fε : (T, ̺) → 2R
n\∅, F (t) ⊂

Fε(t) for all t ∈ T , h(F (t), Fε(t)) ≤ ε for all t ∈ T , such that for each t ∈ T and
p ∈ R

n, ‖p‖ = 1, the following problem

max{(p, x) | x ∈ Fε(t)} (10)

has a unique solution Fε(t, p) = {fε(t, p)} = argmaxx∈Fε(t)(p, x) which is Hölder
continuous with the power 1

2
with respect to h(F (t1), F (t2)) for all t1, t2 ∈ T . The

power 1
2
is the best possible in the general case.

Proof. Fix ε ∈ (0, 1). Let R = max{ r2

ε
, r + 1}. Define Fε(t) as the intersection

of all closed balls of radius R, each of which contains the set F (t). This set is
nonempty because F (t) ⊂ BR(a(t)).

By [2, Formulae (5.7), (5.8)] and [9, Theorem 4.4.7] we have for all t1, t2 ∈ T

h(Fε(t1), Fε(t2)) ≤ C(ε)h(F (t1), F (t2)),

C(ε) = max

{

√

R + r

R− r
, 1 +

r2

R(R− r)

}

.

By [2, Theorem 5.4] and [9, Theorem 4.4.6] we have

h(F (t), Fε(t)) ≤
r2

R
≤ ε, ∀t ∈ T.

By the inequality δFε(t)(s) ≥ RδH
(

s
R

)

, where δH(s) = 1 −
√

1− s2

4
is the modulus

of convexity for the Hilbert space [7, p. 63], we get

δFε(t)(s) ≥
s2

8R
, ∀s ∈ (0, diamFε(t)),

and by Theorem 2.7 we obtain for any p ∈ ∂ B1(0) that

‖fε(t1, p)− fε(t2, p)‖

≤ max

{

C(ε)h(F (t1), F (t2)) +
√

8RC(ε)h(F (t1), F (t2));

(

1 +
2r

∆

)

h(F (t1), F (t2))

}

,
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where ∆ = RδH
(

d
R

)

. On the other hand, we have for any convex compact set
A ⊂ R

n that for some constant C > 0 the inequality δA(ε) ≤ Cε2 holds for all
ε ∈ (0, diamA) (see [3]). Taking into account also Example 2.8, we see that the
power 1

2
is the best possible.

3.2. We consider Lipschitz selections and parametrizations of (strictly) convex
compact sets with metric ρ.

With any convex compact set A ⊂ R
n we can associate the Steiner point

s(A) =
1

v1

∫

‖p‖=1

s(p,A)p dµn−1, v1 = µnB1(0),

where µn is the Lebesgue measure in R
n.

It is well known that the Steiner point is a Lipschitz selection of convex compacta
in R

n with the Hausdorff metric, i.e. for any convex compacta A,B ⊂ R
n we have

s(A) ∈ A and

‖s(A)− s(B)‖ ≤ 2√
π

Γ
(

n
2
+ 1

)

Γ
(

n+1
2

) h(A,B).

The Lipschitz constant (of the order
√
n) above is the best possible [11]. See also

[14, p. 53], [12], [9, Theorem 2.1.2] for details.

Using the Gauss-type formula (see [9, formula (2.1.15)], [12, formula (3.1)]) we
obtain that

1

v1

∫

‖p‖=1

s(p,A)p dµn−1 =
1

v1

∫

‖p‖≤1

∇s(p,A) dµn.

Note that ∇s(p,A) exists a.e. on the ball B1(0).

For any convex compactum A ⊂ R
n define U(A) = {p ∈ B1(0) | ∃∇s(p,A)}. The

function s(p,A) is Lipschitz continuous hence µnU(A) = µnB1(0). Let a(A, p) =
∇s(p,A) for p ∈ U(A) and a(A, p) = 0 for p ∈ B1(0)\U(A).

Let A,B ⊂ R
n be convex compacta and U = U(A) ∩ U(B), µnU = µnB1(0). Then

‖s(A)− s(B)‖ ≤ 1

v1

∫

U

‖a(A, p)− a(B, p)‖ dµn ≤ 1

v1

∫

U

ρ(A,B) dµn = ρ(A,B).

Thus the Steiner point is a Lipschitz selection of convex compacta in R
n with metric

ρ with the Lipschitz constant 1.

Let A be a collection of strictly convex compacta. Then for any p ∈ R
n, ‖p‖ = 1,

the function a(p) = A(p), A ∈ A, is a Lipschitz selection of the family A with the
Lipschitz constant 1 in the metric ρ.

Theorem 3.2. Let a collection of strictly convex compacta A from R
n be uniformly

bounded, i.e. there exists M > 0 such that ‖A‖ = h({0}, A) ≤ M for all A ∈ A.
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Then there exists a family of functions

fλ,p : A → R
n, (λ, p) ∈ [0, 1]× ∂ B1(0), (11)

such that for any A ∈ A we have

A = {fλ,p(A) | λ ∈ [0, 1], p ∈ ∂ B1(0)}

and for any (λ, p) ∈ [0, 1] × ∂ B1(0) the function fλ,p is a Lipschitz selection on
A ∈ A in the metric ρ with Lipschitz constant 1.

Moreover, the function [0, 1] × ∂ B1(0) ∋ (λ, p) → fλ,p(A) is continuous for any
A ∈ A and the function fλ,p is additive: fλ,p(A+B) = fλ,p(A)+ fλ,p(B), A,B ∈ A.

Proof. For any A ∈ A we define fλ,p(A) = λa(p)+ (1−λ)s(A) ∈ A. Let A,B ∈ A.
Then (note, that b(p) = B(p) for any p ∈ ∂ B1(0))

‖fλ,p(A)− fλ,p(B)‖ ≤ λ‖a(p)− b(p)‖+ (1− λ)‖s(A)− s(B)‖
≤ λρ(A,B) + (1− λ)ρ(A,B) = ρ(A,B).

Choose λ1, λ2 ∈ [0, 1] and p1, p2 ∈ ∂ B1(0) and A ∈ A.

‖fλ1,p1(A)− fλ2,p2(A)‖ = ‖λ1a(p1) + (1− λ)s(A)− λ2a(p2)− (1− λ2)s(A)‖
≤ ‖λ1a(p1)− λ2a(p2)‖+ |λ1 − λ2|‖s(A)‖
≤ |λ1 − λ2|‖a(p1)‖+ |λ2|‖a(p1)− a(p2)‖+ |λ1 − λ2|‖s(A)‖
≤ 2|λ1 − λ2|M + ‖a(p1)− a(p2)‖.

The gradient a(p) = ∇s(p,A) for the strictly convex compact set A is uniformly
continuous on the unit sphere (see [3, Lemma 2.2]). So the function [0, 1]×∂ B1(0) ∋
(λ, p) → fλ,p(A) is uniformly continuous.

By the Moreau-Rockafellar theorem [13] for all A,B ∈ A we get A(p) + B(p) =
(A+B)(p) for all p ∈ ∂ B1(0). Using the additive property of the Steiner point [9],
[12], [14] we obtain that fλ,p is an additive selection for all λ ∈ [0, 1] and ‖p‖ = 1.

Remark 3.3. We see from the proof of Theorem 3.2, that the function

(λ, p) → fλ,p(A)

is uniformly continuous for any A ∈ A. More precisely, fλ,p is Lipschitz on λ ∈ [0, 1]
(with Lipschitz constant 2M) and uniformly continuous on p ∈ ∂ B1(0). Note that
fλ,p(A) is Lipschitz on p ∈ ∂ B1(0) if and only if the set A is the intersection of
closed balls of the same fixed radius. The last assertion follows by results of [5] and
by Theorem 4.3.2 of [9]: a set A is the intersection of closed balls of fixed radius
R > 0 in Hilbert space if and only if ‖a(p)−a(q)‖ ≤ R‖p−q‖ for all p, q ∈ ∂ B1(0).
Here a(p) = A(p).
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