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We consider five basic optimality principles for a general multiobjective optimization problem
with convex and nonconvex partial objectives. We introduce a generalization of the concept of
trade-off directions defining them via some optimal surface of appropriate cones. In both cases,
we link optimality and generalized trade-off directions by deriving geometrical optimality condi-
tions in terms of appropriate cones. We scrutinize similarities and differences between the cases.
Combining newly proven facts with some previously known results, we derive four general pat-
terns reflecting structural properties and interconnections of the considered optimality principles.
Additionally, we provide extended characterization of optimality for some peculiar cases.
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1. Introduction

In multiobjective optimization, we typically deal with conflicting (competitive) ob-
jectives, i.e. the improvement in one of them is associated with deterioration in
another of them. The competition between objectives takes place because of lim-
ited resources or other constraints restricting solution feasibility. Then the overall
goal in multiobjective optimization is to find a compromise between several conflict-
ing objectives which is best-fit to the needs of a decision maker. This compromise
is usually refered to as an optimality principle. Various mathematical definitions
of the optimality principle can be derived in several different ways depending on
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the needs of the solution approaches used. In multiobjective optimization, there are
tens various optimality principles, however among them only few which are actually
used in practice, since the use of one definition may be advantageous to the other
due to computational complexity reasons.

The usage of trade-offs as a tool containing essential information about compromise
have been originated from the series of papers (see e.g. [21] and [22]), where certain
scalarizing functions were used to define the concept. Another approach, proposed
in [7] and [8], consists in generating solution satisfying some pre-specified bounds
on trade-off information by means of a scalarizing function. In [6], the concept of
trade-offs has been generalized for convex (including nondifferentiable) problems
into a cone of trade-off directions, which was defined as a Pareto optimal surface of
a contingent (tangent) cone located at the point considered.

In the case of convex optimization, the choice of the cone of feasible directions as
well as contingent cone is the most natural one according to [19]. In the case of
nonconvex optimization, the main obstacle comes up from the fact the two above-
mentioned cones may lose convexity. Giving up convexity naturally means that we
need local instead of global analysis. As suggested in [2], two additional types of
cones are proven to be helpful - tangent cone and cone of local feasible directions.
The last two possess the guaranteed property of convexity, and hence they can
be used to overcome some difficulties which appear in nonconvex optimization.
However in nonconvex case, tangent cones do not necessarily represent the shape
of the set considered even locally and the relation to trade-off directions is vague.
Therefore to define trade-off directions in nonconvex case, we must use nonconvex
contingent cones as it was suggested originally in [9] for smooth problems and later
generalized for not necessarily differentiable problems in [13, 14].

The aim of this paper is to link trade-off directions and optimality by deriving
optimality conditions in terms of appropriate cones for both convex and nonconvex
cases. The paper is organized as follows. In Section 2, we formulate a general
multiobjective problem and introduce five most common optimality principles. For
every optimality principle considered, we define generalized trade-off directions as
optimal surface of some appropriate cones in Section 3. The next Section presents
the main results showing interrelation between optimal solutions and corresponding
generalized trade-off directions. The results are summarized in four patterns: two
of them for convex case (Subsection 4.1) and the other two for nonconvex case
(Subsection 4.2). Section 5 provides extended characterization of optimality and
trade-offs for some peculiar cases. The paper is concluded in Section 6, where the
differences and similarities between two cases are analyzed.

2. Problem formulation and preliminaries

We consider general multiobjective optimization problems of the following form:

min
x∈S

{f1(x), f2(x), . . . , fk(x)} ,

where fi : R
n → R for all i ∈ Ik := {1, . . . , k} are objective functions . The decision

vector x belongs to the nonempty feasible set S ⊂ Rn. The image of the feasible
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set is denoted by Z ⊂ Rk. Elements of Z are termed objective vectors and they are
denoted by z = f(x) = (f1(x), f2(x), . . . , fk(x))

T , so Z := f(S). Additionally, we
assume fi : R

n → R be continuous for all i ∈ Ik.

The Minkowski sum of two sets A1 and A2 is defined by A1 +A2 = {a1 + a2 | a1 ∈
A1, a2 ∈ A2}. The interior, closure, convex hull and complement of a set A are
denoted by intA, clA, convA and AC , respectively.

A set C is a cone if λx ∈ C whenever x ∈ C and λ > 0. We denote the positive
orthant of Rk by Rk

+ = {d ∈ Rk | di ≥ 0 for every i ∈ Ik}. The positive or-
thant is also known as standard ordering cone. The negative orthant Rk

−
is defined

respectively. Note, that Rk
−
and Rk

+ are closed convex cones.

In what follows, the notation z < y for z, y ∈ Rk means that zi < yi for every i ∈ Ik
and, correspondingly, z ≤ y stands for zi ≤ yi for every i ∈ Ik.

Simultaneous optimization of several objectives for multiobjective optimization
problem is not a straightforward task. Contrary to the the single objective case,
the concept of optimality is not unique in multiobjective cases.

Below we give traditional definitions of five well-known and most fundamental prin-
ciples of optimality (see e.g. [3], [11]).

Weak Pareto Optimality. An objective vector z∗ ∈ Z is weakly Pareto optimal if
there does not exist another objective vector z ∈ Z such that zi < z∗i for all
i ∈ Ik.

Pareto optimality or efficiency. An objective vector z∗ ∈ Z is Pareto optimal or
efficient if there does not exist another objective vector z ∈ Z such that zi ≤ z∗i
for all i ∈ Ik and zj < z∗j for at least one index j.

Proper Pareto Optimality. An objective vector z∗ ∈ Z is properly Pareto optimal if
there exists no objective vector z ∈ Z such that z ∈ C for some convex cone
C, Rk

−
\ {0} ⊂ int C, attached to z∗.

Strong Efficiency. An objective vector z∗ ∈ Z is strongly Pareto optimal if for all
i ∈ Ik there exists no objective vector z ∈ Z such that zi < z∗i or in other
words z∗ ∈ Z optimizes all objectives zi, i ∈ Ik.

Lexicographic Optimality. An objective vector z∗ ∈ Z is lexicographically optimal if
for all other objective vector z ∈ Z one of the following two conditions holds:
1) z = z∗

2) ∃ i ∈ Ik : (z∗i < zi) ∧ (∀j ∈ Ii−1 : z∗j = zj), where I0 = ∅.

A solution is Pareto optimal if improvement in some objectives can only be ob-
tained at the expense of some other objective(s) (see e.g. [3], [11]). The set of
weakly Pareto optimal solutions contains the Pareto optimal solutions together
with solutions where all the objectives cannot be improved simultaneously (see,
e.g. [3], [11]). The set of improperly Pareto optimal solutions represents a set of
efficient points with certain abnormal or irregular properties. Henceforth we use
only one of the possible concepts of proper efficiency, which is according to Henig
[5]. This concept uses a convex cone, which interior part must contain an inverse
of standard ordering cone, to prohibit tradeoffs towards directions within the cone.
Strong efficiency is generally referred to the solutions which deliver optimality to
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each objective. Despite feasibility of such solutions is rare, they provide an impor-
tant information on the lower bound for each objective in the Pareto optimal set.
On the other hand, lexicographic optimality principle is generally applied to the sit-
uation where objectives have no equal importance anymore but ordered according
to their significance.

Next we define the five sets of efficient solutions by using appropriate ordering cones.
It is trivial to verify that the definitions of optimality and efficiency formulated
above are equivalent to those following below.

Definition 2.1 (see e.g. [3, 10, 11]). The globally weakly Pareto optimal set is

GWP (Z) :=
{

z ∈ Z | (z + int Rk
−
) ∩ Z = ∅

}

;

the globally Pareto optimal set is

GPO(Z) :=
{

z ∈ Z | (z +Rk
−
\ {0}) ∩ Z = ∅

}

;

the globally properly Pareto optimal set is defined as

GPP (Z) := {z ∈ Z | (z + C \ {0}) ∩ Z = ∅}

for some convex cone C such that Rk
−
\ {0} ⊂ int C;

the globally strongly efficient set is

GSE(Z) :=
{

z ∈ Z | (z + (Rk
+)

C) ∩ Z = ∅
}

;

and the globally lexicographically optimal set is

GLO(Z) :=
{

z ∈ Z | (z + (Ck
lex)

C) ∩ Z = ∅
}

,

where the lexicographic cone is

Ck
lex := {0} ∪

{

d ∈ Rk | ∃ i ∈ Ik such that di > 0 and dj = 0 ∀ j < i
}

.

Let B(x; ε) be an open ball with radius ε > 0 and center x ∈ Rn. The corresponding
local concepts are defined in the following. Naturally, in a convex case, local and
global concepts are equal.

Definition 2.2 (see e.g. [3, 10, 11]). The locally weakly Pareto optimal set with
z = f(x) ∈ Z is given as

LWP (Z) :=
⋃

δ>0

{

z ∈ Z | (z + int Rk
−
) ∩ Z ∩ f(B(x; δ)) = ∅

}

;

the locally Pareto optimal set as

LPO(Z) :=
⋃

δ>0

{

z ∈ Z | (z +Rk
−
\ {0}) ∩ Z ∩ f(B(x; δ)) = ∅

}

;

the locally properly Pareto optimal set as

LPP (Z) :=
⋃

δ>0

{z ∈ Z | (z + C \ {0}) ∩ Z ∩ f(B(x; δ)) = ∅}
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for some convex cone C such that Rk
−
\ {0} ⊂ int C;

the locally strongly efficient set with z = f(x) is defined as

LSE(Z) :=
⋃

δ>0

{

z ∈ Z | (z + (Rk
+)

C) ∩ Z ∩ f(B(x; δ)) = ∅
}

;

and the locally lexicographically optimal set with z = f(x) is

LLO(Z) :=
⋃

δ>0

{

z ∈ Z | (z + (Ck
lex)

C) ∩ Z ∩ f(B(x; δ)) = ∅
}

.

It is evident that we have the following relationships between the different optimality
principles – see Figures 2.1 and 2.2.

GSE(Z) ⊂ GPP (Z) ⊂ GPO(Z) ⊂ GWP (Z)
⋂ ⋂ ⋂ ⋂

LSE(Z) ⊂ LPP (Z) ⊂ LPO(Z) ⊂ LWP (Z)

Figure 2.1: Collection of the relationships between local and global strong, weak,
proper Pareto optimality and efficiency.

GSE(Z) ⊂ GLO(Z) ⊂ GPO(Z) ⊂ GWP (Z)
⋂ ⋂ ⋂ ⋂

LSE(Z) ⊂ LLO(Z) ⊂ LPO(Z) ⊂ LWP (Z)

Figure 2.2: Collection of the relationships between local and global efficiency, strong
efficiency, lexicographic and weak Pareto optimality.

3. Generalized trade-off directions

The concept of trade-offs in multiobjective optimization is a key point to define com-
promise between conflicting objectives. It can be used to describe solutions which
linearly approximate the feasible region and which are mutually non-dominated
with respect to the given optimality principle. The trade-off directions can be used
in many algorithms which requires specifying directions which may lead fast to the
solution that is most preferred by the decision maker (see e.g. [1], [11]). Next we
define several geometrical basic cones (see e.g. [19]).

Definition 3.1. The contingent cone of a set Z ⊂ Rk at z ∈ Z is defined as

Kz(Z) :=
{

d ∈ Rk | there exist tj ց 0 and dj → d such that z + tjdj ∈ Z
}

.

Definition 3.2. The cone of globally feasible directions of a set Z ⊂ Rk at z ∈ Z
is denoted by

Dz(Z) :=
{

d ∈ Rk | there exists t > 0 such that z + td ∈ Z
}

.
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The following definition provides regularity condition for Z at z ∈ Z.

Definition 3.3. The set Z is called regular at z ∈ Z if Dz(Z) = Kz(Z).

The definitions of contingent cones Kz(Z) and cones of globally feasible directions
Dz(Z) are equally valid for both convex and nonconvex sets. Note, however, that
the cone convexity, which holds for convex sets, is not guaranteed in nonconvex
case. Since the contingent cones linearly approximates the shape of the feasible
set, equally well in both convex (global approximation) and nonconvex (local ap-
proximation) cases, it can be used to define the generalized trade-off directions. A
(weakly) Pareto surface of the contingent cone serves for that purposes.

In nonconvex case, the cone of feasible directions Dz(Z) does not describe the shape
of Z locally. Thus, we introduce a cone of locally feasible directions, which reflects
the shape of Z locally (see e.g. [15]).

Definition 3.4. The cone of locally feasible directions of a set Z ⊂ Rk at z ∈ Z is
denoted by

Fz(Z) :=
{

d ∈ Rk | there exists t > 0 such that z + τd ∈ Z for all τ ∈ (0, t]
}

.

The following definition provides local regularity condition for Z at z ∈ Z.

Definition 3.5. The set Z is called locally regular at z ∈ Z if Fz(Z) = Kz(Z).

For nonconvex cases, Clarke [2] defined a convex tangent cone in the following way.

Definition 3.6. The tangent cone of a set Z ⊂ Rk at z ∈ Z is given by the formula

Tz(Z) :=
{

d ∈ Rk | for all tj ց 0 and zj → z with zj ∈ Z,

there exists dj → d with zj + tjdj ∈ Z
}

.

The normal cone of Z at z ∈ Z is the polar cone of the tangent cone, that is,

Nz(Z) := Tz(Z)
◦ =

{

y ∈ Rk | yTd ≤ 0 for all d ∈ Tz(Z)
}

.

Due to polarity and tangent cone convexity, the cone Nz(Z) is always convex and
contains zero.

The following basic relations can be derived from the definitions of the concepts
used and from [15], [20].

Lemma 3.7. For the cones Kz(Z), Dz(Z), Tz(Z) and Fz(Z) we have the following

a) Kz(Z) and Tz(Z) are closed and Tz(Z) is convex.

b) 0 ∈ Kz(Z) ∩Dz(Z) ∩ Tz(Z) ∩ Fz(Z).

c) Z ⊂ z +Dz(Z).

d) clFz(Z) ⊂ Kz(Z) ⊂ clDz(Z).

e) Tz(Z) ⊂ Kz(Z).

f) If Z is convex, then clFz(Z) = Tz(Z) =Kz(Z) = clDz(Z). Moreover Fz(Z) =
Dz(Z).
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Note that, under convexity assumption, for any z ∈ Z we have clFz(Z) = Kz(Z),
i.e. local regularity defines a bit stronger requirement on a local structure of a
set than the convexity assumption. At the same time local regularity does not
necessarily imply that clDz(Z) = Kz(Z), the condition which is guaranteed under
convexity assumption.

In addition to previous lemma, later we will use the following technical result which
is easy to prove.

Lemma 3.8. Let C be a convex cone. Then λx + µy ∈ C for all x, y ∈ C and
λ, µ > 0.

Even though contingent cones are generally nonconvex, their convexity is guaran-
teed under special circumstances.

Definition 3.9. The set Z is called tangentially regular at z ∈ Z if Tz(Z) = Kz(Z).

Trivially, we can see that e.g. convex sets are always tangentially regular. Note that
in order to formulate some of optimality conditions we use four different assumptions
about structural properties of Z - convexity, tangent regularity, regularity and local
regularity. In general all these are different and does not directly imply each others.
The interconnection between the four regularity assumptions are presented in Figure
3.1.

clDz(Z) = Kz(Z) ⇐ Regularity
⇑

Convexity ⇒ Tangent Regularity
⇓

clFz(Z) = Kz(Z) ⇐ Local Regularity

Figure 3.1: Interconnection between various types of regularity.

The sets of generalized trade-off directions can be defined as follows

Definition 3.10. The set of generalized trade-off directions is defined as:

- in case of weak Pareto optimality:

GW (Z) := GWP (Kz(Z));

- in case of Pareto optimality (efficiency):

GP (Z) := GPO(Kz(Z));

- in case of strong efficiency:

GS(Z) := GSE(Kz(Z));

- in case of lexicographic optimality:

GL(Z) := GLO(Fz(Z)).
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It is easy to see that in convex case GLO(Fz(Z)) = GLO(Dz(Z)) and GSE(Kz(Z))
= GSE(Dz(Z)). These results follow directly from the definitions and Lemma 3.7.

Notice that, since two solutions are considered to be mutually lexicographically non-
dominated if they have the same objective vectors, we have to use the cone of locally
feasible directions in the definition of the set of generalized trade-off directions in
case with lexicographic optimality. Indeed, the set of generalized trade-off directions
in case with local lexicographic optimality is either empty or one point 0 (origin of
Fz(Z)) only, so it becomes indifferent if Fz(Z) is closed or open, what is not true
in cases with other types of local optimality.

The following proposition specifies relations between generalized trade-offs for dif-
ferent optimality principles.

Proposition 3.11. The following inclusions are true

GS(Z) ⊂ GL(Z) ⊂ GP (Z) ⊂ GW (Z).

Proof. The chain GL(Z) ⊂ GP (Z) ⊂ GW (Z) follows straightforward from the
definition of generalized trade-offs and relations specified in Figure 2.2. So, it re-
mains to prove that GS(Z) ⊂ GL(Z). From the definition of GS(Z), it is clear
that GS(Z) = ∅ or GS(Z) = {0}. If GS(Z) = ∅, there is nothing to prove. So
suppose that GS(Z) = {0}. Then 0 ∈ GSE(Kz(Z)) as well as 0 ∈ GLO(Kz(Z)).
Since according to Lemma 3.7 (d), clFz(Z) ⊂ Kz(Z), we have 0 ∈ GLO(Fz(Z)),
i.e. 0 ∈ GL(Z). Thus we get the result.

4. Main results

4.1. Convex case

Here we formulate and prove the basic results concerning relations between opti-
mality and corresponding set of generalized trade-off directions in convex case.

Proposition 4.1. Let Z be convex. Then the following statements are true.

1. GS(Z) = {0} if and only if

Kz(Z) ∩Rk
+ = Kz(Z).

2. GP (Z) 6= ∅ if and only if

Kz(Z) ∩Rk
−
\{0} = ∅.

3. If GP (Z) 6= ∅, then Dz(Z) ∩ Rk
−
\{0} = ∅. The sufficiency holds under the

assumption that Z is regular.

4. GW (Z) 6= ∅ if and only if

Dz(Z) ∩ int Rk
−
= ∅.

5. GL(Z) = {0} if and only if

Dz(Z) ∩ Ck
lex = Dz(Z).
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Proof. First, we give the proof of statement 1. Obviously, we have

Kz(Z) ∩Rk
+ = Kz(Z) ⇐⇒ (Rk

+)
C ∩Kz(Z) = ∅,

which is in turn equivalent to 0 ∈ GSE(Kz(Z)) = GS(Z). The last holds if and
only if GS(Z) = {0} (see [18], Theorem 4), and hence we proved the statement.

Then we give the proof of statement 2. Indeed, Kz(Z)∩Rk
−
\{0} = ∅ is true if and

only if 0 ∈ GPO(Kz(Z)), i.e. GPO(Kz(Z)) 6= ∅. Now it remains to show that if
GP (Z) 6= ∅, then 0 ∈ GP (Z). Assume that there exists y ∈ GP (Z). Then we get
Kz(Z)∩ (y +Rk

−
\{0}) = ∅. Obviously (due to sharpness of Kz(Z) in convex case),

we have Kz(Z) ∩ (0 +Rk
−
\{0}) = ∅, i.e. 0 ∈ GP (Z).

Now we prove statement 3. Since Dz(Z) ⊂ Kz(Z) the necessity follows from the
previous statement. If Z is regular, then from Dz(Z) ∩Rk

−
\{0} = ∅ it follows that

Kz(Z) ∩Rk
−
\{0} = ∅, thus GP (Z) 6= ∅.

We proceed with the proof of statement 4. In convex case Kz(Z) = clDz(Z), so
Dz(Z) ∩ int Rk

−
= ∅ is equivalent to (see Theorem 3, [12]) Kz(Z) ∩ int Rk

−
= ∅,

which is true if and only if 0 ∈ GWP (Kz(Z)), i.e. GW (Z) 6= ∅.

Finally, we show that statement 5. is true. Indeed, Dz(Z) ∩ Ck
lex = Dz(Z) is

equivalent to Dz(Z) ∩ (Ck
lex)

C = ∅, which is true if and only if 0 ∈ GLO(Dz(Z)),
which is equivalent to GL(Z) = {0} (see Theorem 5, [18]), because in convex case
Dz(Z) = Fz(Z) (see Lemma 3.7 (f)).

The following proposition can be obtained in convex case.

Proposition 4.2. Let Z be convex. Then the following statements are true.

1. GS(Z) = {0} if and only if

Nz(Z) ∩Rk
−
= Rk

−
.

2. GP (Z) 6= ∅ if and only if

Nz(Z) ∩ int Rk
−
6= ∅.

3. If Nz(Z) ∩Rk
−
\ {0} 6= ∅, then GW (Z) 6= ∅.

Proof. First, we prove statement 1. From Proposition 4.1 (statement 1.), GS(Z) =
{0} if and only if Kz(Z)∩Rk

+ = Kz(Z). Using the properties of the polar cone (see
Theorem 16.4.2 in [19], as well as Lemma 2.1(b) and Lemma 3.1(a) of [16]), we get

(Kz(Z) ∩Rk
+)

◦ = cl(Kz(Z)
◦ + (Rk

+)
◦) = cl(Nz(Z) +Rk

−
) = Nz(Z) +Rk

−
.

Furthermore, Nz(Z) ∩Rk
−
= Rk

−
if and only if Rk

−
⊂ Nz(Z). So we need to prove

that Nz(Z) + Rk
−
= Nz(Z) if and only if Rk

−
⊂ Nz(Z). If Nz(Z) + Rk

−
= Nz(Z),

since 0 ∈ Nz(Z), we have Rk
−

⊂ Nz(Z). On the other hand, if Rk
−

⊂ Nz(Z),
then Nz(Z) + Rk

−
⊆ Nz(Z), (if a, b ∈ Nz(Z), then a + b ∈ Nz(Z)), and since

Nz(Z) ⊆ Nz(Z) +Rk
−
is always true, this ends the proof.
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Statement 2. follows directly from Proposition 4.1 (statement 2.), Lemma 3.7(f)
and definition of the normal cone.

Finally we show that statement 3. is true. Indeed, we have Kz(Z) ∩ int Rk
−
= ∅,

which is equivalent to (see Theorem 3 in [12])Dz(Z)∩int Rk
−
= ∅, and from this with

Proposition 4 it follows that GW (Z) 6= ∅. Let us assume that y ∈ Nz(Z)∩Rk
−
\{0}.

If there exists x ∈ Kz(Z) ∩ int Rk
−
, then yTx > 0, and this is in contradiction with

the definition of the polar cone.

The following basic result gives conditions connecting various optimality and gene-
ralized trade-offs in convex case.

Theorem 4.3. Let Z be convex. Then the following statements are true.

1. GS(Z) = {0} if and only if z ∈ GSE(Z).

2. GP (Z) 6= ∅ if and only if z ∈ GPP (Z).

3. If GP (Z) 6= ∅, then z ∈ GPO(Z). The sufficiency holds under assumption
that Z is regular.

4. GW (Z) 6= ∅ if and only if z ∈ GWP (Z).

5. GL(Z) = {0} if and only if z ∈ GLO(Z).

Proof. Statement 1. follows directly from Proposition 4.1 (statement 1.) and the
fact that z ∈ GSE(Z) if and only if Kz(Z) ∩Rk

+ = Kz(Z) (see Theorem 3.1, [16]).

Statement 2. follows directly from Proposition 4.1 (statement 2.) and the fact that
z ∈ GPP (Z) if and only if Kz(Z) ∩Rk

−
\{0} = ∅ (see Theorem 2.1, [16]).

Statement 3. follows directly from Proposition 4.1 (statement 3.) and the fact that
z ∈ GPO(Z) if and only if Dz(Z) ∩Rk

−
\{0} = ∅ (see Theorem 2.1, [16]).

Statement 4. follows directly from Proposition 4.1 (statement 4.) and the fact that
z ∈ GWP (Z) if and only if Dz(Z) ∩ int Rk

−
= ∅ (see Theorem 2.1, [16]).

Statement 5. follows directly from Proposition 4.1 (statement 5.) and the fact that
z ∈ GLO(Z) if and only if Dz(Z) ∩ Ck

lex = Dz(Z) (see Theorem 4.1, [16]).

4.2. Nonconvex case

In this section we additionally assume f(B(x; ε)) to be open for all x ∈ S and
ε > 0. Here we formulate and prove the basic results concerning relations between
optimality and corresponding set of generalized trade-off directions in nonconvex
case.

Proposition 4.4. The following statements are true.

1. GS(Z) = {0} if and only if Kz(Z) ∩Rk
+ = Kz(Z).

2. If Kz(Z) ∩ Rk
−
\{0} = ∅, then GP (Z) 6= ∅. The sufficiency holds under as-

sumption that Z is tangentially regular.

3. If Fz(Z) ∩Rk
−
\{0} = ∅, then GP (Z) 6= ∅ under assumption that Z is locally

regular. The sufficiency holds under assumption that Z is both tangentially
and locally regular.

4. GW (Z) 6= ∅ if and only Kz(Z) ∩ int Rk
−
= ∅.

5. GL(Z) = {0} if and only if Fz(Z) ∩ Ck
lex = Fz(Z).
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Proof. The proof of statement 1. is analogous to the proof of statement 1. in
Proposition 4.1.

Now we prove statement 2. The necessity follows similarly to convex case. As
far as sufficiency is concerned, let us assume that GP (Z) 6= ∅. Then from the
definition of GP (Z) it follows that there exists y ∈ GPO(Kz(Z)). If there exists
x ∈ Kz(Z) ∩ Rk

−
\{0}, using that Kz(Z) is a convex cone because of the tangent

regularity and Lemma 3.8, we get: y + x ∈ Kz(Z). But y + x ≤ y, and since
x 6= 0, there exists i, such that yi + xi < yi, i.e. y is not Pareto optimal, and thus
y 6∈ GPO(Kz(Z)), and this is a contradiction.

Statement 3. follows directly. Indeed, local regularity means that Fz(Z) = Kz(Z),
with this assumption the result follows from the previous statement.

In statement 4., necessity is also straightforward. Indeed,Kz(Z)∩int Rk
−
= ∅ is true

if and only if 0 ∈ GWP (Kz(Z)), i.e. GW (Z) 6= ∅. As far as sufficiency is concerned,
let us assume that GW (Z) 6= ∅. Then from the definition of GW (Z) it follows that
there exists y ∈ GWP (Kz(Z)). Suppose that there exists x ∈ Kz(Z) ∩ int Rk

−
.

Obviously, multiplying by an arbitrary large µ > 0, we can guarantee that µ ·x < y
(i.e. µ · xi < yi for all indices i) and at the same time µ · x ∈ Kz(Z), i.e. y is not
weakly Pareto optimal, and thus y 6∈ GWP (Kz(Z)), so the last is a contradiction.

To prove the last statement it is enough to notice that Fz(Z) ∩ Ck
lex = Fz(Z) is

equivalent to Fz(Z)∩(Ck
lex)

C = ∅, which is true if and only if 0 ∈ GLO(Fz(Z)). From
the last it follows thatGL(Z) 6= ∅. Now it remains to show, that if y ∈ Fz(Z), y 6= 0,
then y 6∈ GL(Z). Indeed, if y ∈ Fz(Z), y 6= 0, then (y + (Ck

lex)
C) ∩ Fz(Z) 6= ∅ and

then y 6∈ GL(Z)

The following corollaries can be obtained in nonconvex case.

Proposition 4.5. The following statements are true.

1. If GS(Z) = {0}, then
Nz(Z) ∩Rk

−
= Rk

−
.

The sufficiency holds under assumption that Z is tangentially regular.

2. Let Z be tangentially regular. Then GP (Z) 6= ∅ if and only if

Nz(Z) ∩ int Rk
−
6= ∅.

3. If Nz(Z) ∩ Rk
−
\ {0} 6= ∅, then GW (Z) 6= ∅ under assumption that Z is

tangentially regular.

Proof. The proof of statement 1. is similar to the proof of statement 1. in Propo-
sition 4.2 using tangent regularity in case of sufficiency. For the necessity part, we
do not need this assumption, since from Proposition 4.4 (statement 1.) we know
that if GS(Z) = {0} then Kz(Z) ∩Rk

+ = Kz(Z), thus Tz(Z) ⊂ Kz(Z) ⊂ Rk
+. We

know that if C1, C2 are convex cones such that C1 ⊂ C2, then C◦

2 ⊂ C◦

1 . Thus from
Tz(Z) ⊂ Rk

+ it follows that Rk
−
⊂ Nz(Z).

The proof of statement 2. is identical to the proof of statement 2. in Proposition
4.2 using that Kz(Z) = Tz(Z).
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To prove statement 3., we notice that Kz(Z)∩ int Rk
−
= ∅ together with statement

4. in Proposition 4.4 imply GW (Z) 6= ∅. Let us assume that y ∈ Nz(Z)∩Rk
−
\ {0}.

If there exists x ∈ Kz(Z) ∩ int Rk
−
, then yTx > 0, and this is in contradiction with

the definition of the polar cone.

The following basic results give conditions connecting various optimality and gene-
ralized trade-offs in nonconvex case.

Theorem 4.6. The following statements are true.

1. If z ∈ LSE(Z), then GS(Z) = {0}.
2. If z ∈ LPP (Z), then GP (Z) 6= ∅. The sufficiency holds under assumption

that Z is tangentially regular.

3. If z ∈ LPO(Z), then GP (Z) 6= ∅ under assumption that Z is locally regular.
The sufficiency holds under assumption that Z is both locally and tangentially
regular.

4. If z ∈ LWP (Z), then GW (Z) 6= ∅.
5. If z ∈ GLO(Z), then GL(Z) = {0}.

Proof. First we prove statement 1. Indeed, if z ∈ LSE(Z), then Kz(Z) ∩Rk
+ =

Kz(Z). (for the proof see Theorem 3 of [17]). Now taking into account statement
1. of Proposition 4.4, we get the correctness of statement 1.

Statement 2. follows directly from Proposition 4.4 (statement 2.) and the fact that
z ∈ LPP (Z) if and only if Kz(Z) ∩Rk

−
\{0} = ∅ (see Theorem 2, [13]).

Now we show the correctness of statement 3. Indeed, if Fz(Z) ∩Rk
−
\ {0} = ∅ and

Z is locally regular at z, then z ∈ LPO(Z) (for the proof see Theorem 2 of [17]).
Now taking into account statement 3. of Proposition 4.4, we get the result.

Statement 4. follows directly form statement 4. of Proposition 4.4 and the fact that
if z ∈ LWP (Z), then Kz(Z) ∩ int Rk

−
= ∅ (see Theorem 7, [12]).

Finally, we show the correctness of statement 5. Indeed, if z ∈ LLO(Z), then
Fz(Z) ∩ Ck

lex = Fz(Z) (see Theorem 5 of [17]). Now taking into account statement
5. of Proposition 4.4, we get the statement.

The results related to the four optimality concepts involving proper Pareto optimal-
ity and different cones are collected in Table 6.1, in the case if Z is convex, and in
Table 6.3, otherwise. The results related to the four optimality concepts involving
lexicographic optimality and different cones are collected in Table 6.2, in the case if
Z is convex, and in Table 6.4, otherwise. In these tables tangent regularity is noted
by ∗, local regularity is noted by ∗∗, and regularity is noted by ∗ ∗ ∗.

Now we shortly analyze the similarity and difference between the results in two cases
- convex and nonconvex. As it can be seen from the results above, some optimality
conditions, which are necessary and sufficient in convex case, are transformed into
necessary but not sufficient ones for corresponding local optimality in nonconvex
case. For example, GW (Z) 6= ∅, being a necessary and sufficient condition in convex
case for weak Pareto optimality, becomes only necessary condition for local weak
Pareto optimality. The loss of sufficiency can be explained by the fact that the
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above-mentioned conditions use the contingent cone, which may have "bad" direc-
tions towards no feasibility in nonconvex case due to the loss of own property of
being convex. The same situation is also true with the conditions GS(Z) = {0}
and GL(Z) = {0}. Here the loss of sufficiency can be explained by the fact that in
nonconvex case the cone of locally feasible directions similar to the contingent cone
may also have "bad" directions towards no feasibility which prohibits sufficiency of
the corresponding optimality condition to be proven in general case. Imposing tan-
gent regularity helps to sustain sufficiency in the nonconvex cases with Pareto and
proper Pareto optimality, however it is not useful with the other three optimality
principles.

5. Characterization of generalized trade-offs

Next we show how the concept of generalized trade-offs can be characterized by
normal cones and vectors. Before we need some lemmas.

Lemma 5.1. If Z = z + C, where C is a cone, then Fz(Z) = C (in other words
Z = z + Fz(Z)).

Proof. Suppose d ∈ Fz(Z). Then there exists t > 0 such that z + τd ∈ Z = z +C
for all τ ∈ (0, t]. It implies that τd ∈ C, and hence d ∈ C. The last implies
Fz(Z) ⊆ C. Now suppose d ∈ C. Choose t := 1. Then z + τd ∈ z + C = Z for all
τ ∈ (0, 1]. It implies that d ∈ Fz(Z), i.e. C ⊆ Fz(Z).

Lemma 5.2. If Z = z+C,where C is a cone, then clFz(Z)=Kz(Z)= clDz(Z)= clC.

Proof. From Lemma 3.7, it follows that clFz(Z) ⊆ Kz(Z) ⊆ clDz(Z). Let d ∈
Dz(Z), then there exists dj → d such that dj ∈ Dz(Z) for all j. It implies that there
exists tj > 0 such that z + tjdj ∈ Z = z + C, i.e. tjdj ∈ C for all j. Hence dj ∈ C
for all j. Since Z = z + C, by Lemma 5.1 we have dj ∈ Fz(Z) for all j. Therefore
dj → d ∈ clFz(Z) for all j. The last implies clDz(Z) ⊆ clFz(Z), and finally taking
into account Lemma 5.1, we deduce clFz(Z) = Kz(Z) = clDz(Z) = clC. The last
ends the proof.

Theorem 5.3. If Z = z + C, where C is a closed cone, then

GPP (Z) = LPP (Z) = LPO(Z) = GPO(Z).

Proof. Evidently,
GPP (Z) ⊆ LPP (Z)

⋂

|
⋂

|
GPO(Z) ⊆ LPO(Z)

.

We first show that LPO(Z) ⊆ LPP (Z). Indeed, if z ∈ LPO(Z), then by Theorem
8 in [12] Fz(Z)∩Rk

−
\{0} = ∅. Hence by Lemma 5.1 C∩Rk

−
\{0} = ∅, and since C is

closed, clC∩Rk
−
\{0} = ∅. Again applying Lemma 5.1 we get clFz(Z)∩Rk

−
\{0} = ∅.

By Lemma 3.7, we deduce Kz(Z)∩Rk
−
\ {0} = ∅, and finally by Theorem 6 in [12]

we get z ∈ LPP (Z).
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Next we show that LPP (Z) ⊆ GPP (Z). Indeed, if z ∈ LPP (Z), then by Theorem
6 in [12] Kz(Z)∩Rk

−
\ {0} = ∅, and hence by Lemma 5.2 clDz(Z)∩Rk

−
\ {0} = ∅.

Finally, according to Theorem 1 in [17], we conclude z ∈ GPP (Z).

Combined all what has been proven above we obtain that GPP (Z) = LPP (Z) =
LPO(Z) = GPO(Z). This ends the proof.

Theorem 5.4. Let Z be tangentially regular. If d ∈ GP (Z), then dTy ≤ 0 for all
y ∈ Nz(Z) and dTy = 0 for some y ∈ Nz(Z) ∩ int Rk

−
.

Proof. Let d ∈ GP (Z). Using tangent regularity, we get

GP (Z) = GPO(Kz(Z)) = GPO(Tz(Z)) ⊆ Tz(Z).

Hence, dTy ≤ 0 for all y ∈ Nz(Z). For any λ ≥ 0,
∑n

i=1 λi = 1 consider the
following problem

min
δ∈Tz(Z)

λT δ. (1)

Using consequently tangent regularity and the fact that Tz(Z) is a closed cone, it
follows from Theorem 5.3 that

d ∈ GP (Z) = GPO(Tz(Z)) = GPP (Tz(Z)),

i.e. d is properly Pareto optimal with respect to Tz(Z). Since Tz(Z) is convex, due
to the classical result of Theorem 2 in [4], there exists λ > 0 such that d is the
solution of (1). Then it follows that λTd ≥ 0, otherwise the problem (1) would have
an unbounded solution, since Tz(Z) is unbounded. Thus we get 0 ≤ λTd ≤ λT δ for
all δ ∈ Tz(Z). Since 0 ∈ Tz(Z), we get 0 ≤ λTd ≤ λT · 0 = 0, i.e. λTd = 0. By
choosing y := −λ, we get dTy = 0, and y ∈ Nz(Z) ∩ int Rk

−
.

Note that the result of Theorem 5.4 is stronger than the result of Theorem 5 in
[13]. The following theorem states similar result for weakly Pareto trade-offs.

Theorem 5.5. Let Z be tangentially regular. If d ∈ GW (Z), then dTy ≤ 0 for all
y ∈ Nz(Z) and dTy = 0 for some y ∈ Nz(Z) ∩Rk

−
\{0}.

Proof. We follow the proof scheme of Theorem 5.4 performing minor changes re-
flecting the specific of the case considered. Let d ∈ GW (Z). Using tangent regular-
ity, we get

GW (Z) = GWP (Kz(Z)) = GWP (Tz(Z)) ⊆ Tz(Z).

Hence, dTy ≤ 0 for all y ∈ Nz(Z). For any λ ≥ 0,
∑n

i=1 λi = 1 consider again
problem (1). Since d is weakly Pareto optimal with respect to Tz(Z) and Tz(Z) is
convex, due to the classical result connecting the weakly Pareto optimal solutions
and the solutions of weighted sum scalarization (see e.g. Proposition 3.10 in [3]),
there exists λ ≥ 0, λ 6= 0 such that d is the solution of (1). Then it follows that
λTd ≥ 0, otherwise the problem (1) would have an unbounded solution, since Tz(Z)
is unbounded. Thus we get 0 ≤ λTd ≤ λT δ for all δ ∈ Tz(Z). As a remark, notice
also that λTd = λT δ for all δ ∈ Tz(Z) with δi = k · di for any collection of indices i
such that λi = 0 and δi = di for the remaining i, where k is an arbitrary multiplier.
Since 0 ∈ Tz(Z), we get 0 ≤ λTd ≤ λT · 0 = 0, i.e. λTd = 0. By choosing y := −λ,
we get dTy = 0, and y ∈ Nz(Z) ∩Rk

−
.
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As noted in Theorem 5.4 and Theorem 5.5, generalized trade-off directions can be
characterized with the help of normal vectors in a tangentially regular case. In [13]
(see Theorem 6 therein), some optimality conditions related to normal vectors were
obtained in the case of local proper Pareto optimality. Here we present one more
result of that kind related to local weak Pareto optimality.

In what follows, we assume the feasible region to be of the form

S = {x ∈ R
n | (g1(x), g2(x), . . . , gm(x))

T ≤ 0},

where each gi : R
n → R is locally Lipschitz continuous. The Cottle constraint quali-

fication is valid at x if either gs(x) < 0 for all s = 1, . . . ,m, or 0 /∈ conv {∂gs(x) |
gs(x) = 0}. For any given y ∈ R

k
−
, denote I := {1, 2, ..., k} = I<(y) ∪ I=(y), where

I<(y) := {i| yj < 0} and I=(y) := {i| yj = 0}.

Theorem 5.6. Let z = f(x) ∈ LWP (Z) and let x ∈ S satisfy the Cottle constraint
qualification. If there exists y ∈ Nz(Z) ∩ Rk

−
\{0}, then there exists 0 ≤ λ ∈ Rk,

λ 6= 0, and 0 ≤ µ ∈ Rm such that µsgs(x) = 0 for every s = 1, . . . ,m, and

0 ∈
∑

i∈I<(y)

−
λi

yi
∂fi(x) +

∑

j∈I=(y)

λj∂fj(x) +
m
∑

s=1

µj∂gj(x).

Proof. As a guideline we follow the proof scheme of Theorem 6 in [13]. Since
z ∈ LWP (Z), there exists a radius δ > 0 such that z is globally weakly Pareto
optimal in Z ∩ f(B(x; δ)). The assumption y ∈ Nz(Z) ∩ Rk

−
\{0} means that

yi ≤ 0 for every i = 1, . . . , k and yj < 0 for some j. Notice that I<(y) 6= ∅ for all
y ∈ Nz(Z) ∩Rk

−
\{0}.

Let us define for every x ∈ S a function

F (x) = max
i∈I

Fi(x),

where

Fi(x) =











−
1

yi
(fi(x)− zi − yi), i ∈ I<(y);

fi(x)− zi + 1, i ∈ I=(y).

This function attains its local minimum at x ∈ S∩B(x; δ). If this was not the case,
there would exist x◦ ∈ S ∩B(x; δ) such that

F (x◦) = max
i∈I

Fi(x
◦) =max

{

max
i∈I<(y)

[

−
1

yi
(fi(x

◦)− zi − yi)

]

, max
j∈I=(y)

(fj(x
◦)− zj + 1)

}

< F (x) = max

{

max
i∈I<(y)

[

−
1

yi
(fi(x)− zi − yi)

]

, max
j∈I=(y)

(fj(x)− zj + 1)

}

= 1.

This means that − 1
yi
(fi(x

◦)− zi−yi) < 1 for every i ∈ I<(y), and fj(x
◦)− zj+1 < 1

for every j ∈ I=(y). In other words, fi(x
◦) < zi for every i ∈ I, which contradicts

the local weak Pareto optimality of z.
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Now we know that F (x) ≤ F (x) for every x ∈ S ∩B(x; δ). According to necessary
Karush-Kuhn-Tucker optimality conditions (see e.g. Corollary 5.3.5 in [15]) there
exists 0 ≤ µ ∈ Rm such that µsgs(x) = 0 for every s = 1, . . . ,m and

0 ∈ ∂F (x) +
m
∑

s=1

µs∂gs(x).

According to Propositions 2.3.1, 2.3.3 and 2.3.12 in [2] we have

∂F (x)

⊂ conv

{

∂
(

−
1

yi
(fi(x)− zi − yi)

)

, ∂
(

fj(x)− zj + 1
)

| i ∈ I<(y), j ∈ I=(y)

}

⊂ conv

{

−
1

yi
∂(fi(x)− zi − yi), ∂(fj(x)− zj + 1) | i ∈ I<(y), j ∈ I=(y)

}

⊂ conv

{

−
1

yi
∂fi(x), ∂fj(x) | i ∈ I<(y), j ∈ I=(y)

}

.

From the definition of convex hulls we know that there exists 0 ≤ λ ∈ Rk such that
∑

i∈I λi = 1 and

∂F (x) ⊂
∑

i∈I<(y)

−
λi

yi
∂fi(x) +

∑

j∈I=(y)

λj∂fj(x).

6. Concluding remarks

In this paper we have generalized the concept of trade-off directions by defining them
as an optimal surface of the appropriate cone. For both convex and nonconvex cases,
we derived optimality conditions linking trade-offs and corresponding efficiency. We
noticed that in the case of lexicographic and strong efficiency, the set of generalized
trade-off directions is either empty or it contains zero vector only. This reflects
the fact that these two optimality principles do not contain non-zero trade-offs,
i.e. there is no meaningful compromise between objectives in these cases. Indeed,
the lexicographic optimality principle involves sequential optimization, and strong
efficiency is a kind of parallel optimization, whose ideas are closer to single objective
than to multiple objective optimization. Despite this, non-emptiness of the set of
generalized trade-offs is quite informative itself, and therefore generalized trade-
offs can be seen as an alternative advance tool to describe the given optimality
conditions for all five optimality principles considered in the paper.
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Dz(Z) ∩Rk
+ = Dz(Z)
m

z ∈ GSE(Z) ⇔ Kz(Z) ∩Rk
+ = Kz(Z) ⇔ Nz(Z) ∩Rk

−
= Rk

−
⇔ GS(Z) = {0}

⇓ ⇓ ⇓ ⇓

z ∈ GPP (Z) ⇔ Kz(Z) ∩Rk
−
\ {0} = ∅ ⇔ Nz(Z) ∩ int Rk

−
6= ∅ ⇔ GP (Z) 6= ∅

m∗∗∗ m∗∗∗ ⇓ m

z ∈ GPO(Z) ⇔ Dz(Z) ∩Rk
−
\ {0} = ∅ ⇔ ⇔∗∗∗ GP (Z) 6= ∅

⇓ ⇓ ⇓ ⇓

z ∈ GWP (Z) ⇔ Dz(Z) ∩ int Rk
−
= ∅ ⇔ Nz(Z) ∩Rk

−
\ {0} 6= ∅ ⇔ GW (Z) 6= ∅

m
Kz(Z) ∩ int Rk

−
= ∅

Table 6.1: Collection of the relationships in convex case with proper Pareto optimality
(∗ - tangent regularity , ∗∗ - local regularity, ∗ ∗ ∗ - regularity).
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10
9

Dz(Z) ∩Rk
+ = Dz(Z)
m

z ∈ GSE(Z) ⇔ Kz(Z) ∩Rk
+ = Kz(Z) ⇔ Nz(Z) ∩Rk

−
= Rk

−
⇔ GS(Z) = {0}

⇓ ⇓ ⇓ ⇓

z ∈ GLO(Z) ⇔ Dz(Z) ∩ Ck
lex = Dz(Z) ⇔ ⇔ GL(Z) = {0}

⇓ ⇓ ⇓ ⇓

z ∈ GPO(Z) ⇔ Dz(Z) ∩Rk
−
\ {0} = ∅ ⇔ ⇔∗∗∗ GP (Z) 6= ∅

⇓ ⇓ ⇓ ⇓

z ∈ GWP (Z) ⇔ Dz(Z) ∩ int Rk
−
= ∅ ⇔ Nz(Z) ∩Rk

−
\ {0} 6= ∅ ⇔ GW (Z) 6= ∅

m
Kz(Z) ∩ int Rk

−
= ∅

Table 6.2: Collection of the relationships in convex case with lexicographic optimality
(∗ - tangent regularity , ∗∗ - local regularity, ∗ ∗ ∗ - regularity).
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∗ ⇔ Nz(Z) ∩Rk
−
= Rk

−

Dz(Z) ∩Rk
+ = Dz(Z) ⇔ z ∈ GSE(Z) ⇒ z ∈ LSE(Z) ⇒ Kz(Z) ∩Rk

+ = Kz(Z) m∗

⇔ GS(Z) = {0}

⇓ ⇓ ⇓ ⇓

∗ ⇔ Nz(Z) ∩ int Rk
−
6= ∅

cl Dz(Z) ∩Rk
−
\{0} = ∅ ⇔ z ∈ GPP (Z) ⇒ z ∈ LPP (Z) ⇔ Kz(Z) ∩Rk

−
\ {0} = ∅ m∗

∗

∗ ⇔ GP (Z) 6= ∅
m∗∗∗ m∗∗∗ m∗∗ m∗∗

∗∗,∗ ⇔∗∗ Nz(Z) ∩ int Rk
−
6= ∅

Dz(Z) ∩Rk
−
\ {0} = ∅ ⇔ z ∈ GPO(Z) ⇒ z ∈ LPO(Z) ∗∗ ⇔ Fz(Z) ∩Rk

−
\ {0} = ∅ m∗

∗

∗∗,∗ ⇔∗∗ GP (Z) 6= ∅
⇓ ⇓ ⇓ ⇓

∗ ⇔ Nz(Z) ∩Rk
−
\ {0} 6= ∅

Dz(Z) ∩ int Rk
−
= ∅ ⇔ z ∈ GWP (Z) ⇒ z ∈ LWP (Z) ⇒ Kz(Z) ∩ int Rk

−
= ∅ m∗

⇔ GW (Z) 6= ∅

Table 6.3: Collection of the relationships in nonconvex case with proper Pareto optimality
(∗ - tangent regularity , ∗∗ - local regularity, ∗ ∗ ∗ - regularity).
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11
1

∗ ⇔ Nz(Z) ∩Rk
−
= Rk

−

Dz(Z) ∩Rk
+ = Dz(Z) ⇔ z ∈ GSE(Z) ⇒ z ∈ LSE(Z) ⇒ Kz(Z) ∩Rk

+ = Kz(Z) m∗

⇔ GS(Z) = {0}

⇓ ⇓ ⇓ ⇓

Dz(Z) ∩ Ck
lex = Dz(Z) ⇔ z ∈ GLO(Z) ⇒ z ∈ LLO(Z) ⇒ Fz(Z) ∩ Ck

lex = Fz(Z) ⇔ GL(Z) = {0}

⇓ ⇓ ⇓ ⇓

∗∗,∗ ⇔∗∗ Nz(Z) ∩ int Rk
−
6= ∅

Dz(Z) ∩Rk
−
\ {0} = ∅ ⇔ z ∈ GPO(Z) ⇒ z ∈ LPO(Z) ∗∗ ⇔ Fz(Z) ∩Rk

−
\ {0} = ∅ m∗

∗

∗∗,∗ ⇔∗∗ GP (Z) 6= ∅
⇓ ⇓ ⇓ m

∗ ⇔ Nz(Z) ∩Rk
−
\ {0} 6= ∅

Dz(Z) ∩ int Rk
−
= ∅ ⇔ z ∈ GWP (Z) ⇒ z ∈ LWP (Z) ⇒ Kz(Z) ∩ int Rk

−
= ∅ m∗

⇔ GW (Z) 6= ∅

Table 6.4: Collection of the relationships in nonconvex case with lexicographic optimality
(∗ - tangent regularity , ∗∗ - local regularity, ∗ ∗ ∗ - regularity).


