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Università Bocconi, Via Sarfatti 25, 20136 Milano, Italy

Luigi Montrucchio

Department of Statistics and Applied Mathematics and Collegio Carlo Alberto,
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1. Introduction

The analysis of asymptotic properties of sets and functions plays an important role
in the study of existence of optima for noncoercive functions on normed spaces, that
is, functions with unbounded level sets. For instance, in [17] we have introduced
finitely well-positioned sets, a class of suitably asymptotically “narrow� sets that
generalize the well-positioned sets recently investigated by Adly, Ernst and Théra
in [1] and [3]. Using this notion, in [17] we have established necessary and sufficient
conditions for optima of noncoercive functionals on reflexive spaces.

In the present paper we investigate in depth this class of sets and their relationships
with well-positioned sets, as well as with Krasnoselskii’s plastering property, as
defined in [13]. We will also show that our notion is closely related to some notions
of asymptotic compactness recently introduced in the literature.

Specifically, following [13] we say that a set C of a normed space V allows plastering
if a uniformly positive continuous linear functional exists over C, that is, if there is
0 6= x∗ ∈ V ∗ such that 〈x∗, x〉 ≥ ‖x‖ for all x ∈ C, where V ∗ is the topological dual
of V . By defining the Bishop-Phelps cone Kx∗ = {x : 〈x∗, x〉 ≥ ‖x‖}, a set C allows
plastering if and only if C ⊆ Kx∗ for some x∗ ∈ V ∗. For example, the positive cone
of L1 allows plastering, while that of Lp with p > 1 does not.

Though C can be any set, closed convex cones are the natural domain for this
concept. In fact, a set allows plastering if and only if its closed conical hull does.1

1We refer to [13] for other properties related to this notion.
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Recently, articles [1] and [3] have reconsidered this property under a different name.
In particular, they call a set C well-positioned if there are x0 ∈ V and x∗ ∈ V ∗

such that 〈x∗, x− x0〉 ≥ ‖x− x0‖ for all x ∈ C. This amounts to require that the
translated set C − {x0} allows plastering. Equivalently, C ⊆ x0 +Kx∗ . Many nice
properties of well-positioned convex sets in reflexive spaces are studied in [1] and
[3].

In this paper we study the following natural generalization of well-positioned sets,
whose interest will become apparent through the properties addressed in the present
paper.

Definition 1.1. A set C is said to be finitely well-positioned if C ⊆
⋃n

i=1 Ci, where
each Ci is well-positioned.

2

A set C is well-positioned if and only if its closed convex hull is, while C is finitely
well-positioned if and only its closure is. This is a first basic difference between
well-positioned sets and our generalization that shows that while closed convex sets
are the relevant class of sets for well-positionedness, this is no longer the case for
finite well-positionedness, whose interest goes beyond convex sets. As the paper
will show, this natural generalization actually turns out to extend substantially the
scope of well-positionedness.

The class of finitely well-positioned sets is obviously wider than that of the sets
that are merely well-positioned. For instance, we will see momentarily that finite-
dimensional vector subspaces (and so all their subsets) are finitely well-positioned,
but not well-positioned. Our extension thus becomes relevant in infinite dimensional
spaces, as discussed at length in the paper.

The paper is organized as follows. Section 3 establishes some of the main properties
of finite well-positionedness. In particular, Theorem 3.6 characterizes this property
in reflexive spaces in terms of asymptotic directions by showing that a set C is
finitely well-positioned when there are no unbounded sequences {xn} ⊆ C such
that xn/ ‖xn‖ ⇀ 0. This characterization implies that, as already mentioned, finite
dimensional sets are finitely well-positioned. But, more importantly, it shows that
finitely well-positioned sets feature in reflexive spaces a key convergence property
of finite dimensional sets. This property will play an important role in many results
of the paper and shows that finite well-positionedness can be viewed as a notion
with a strong finite dimensional flavor.

Section 4 relates finite well-positionedness with some notions of asymptotic com-
pactness studied by several authors. We show their equivalence in reflexive normed
spaces. Section 5 studies in more detail convex sets by extending earlier results that
papers [1] and [3] have proved for well-positioned sets.

Scalar functions feature some well known relevant sets, such as epigraphs and sub-
level sets. Through them in Section 6 we introduce and study finitely well-positioned
functions and other related concepts. They extend the notion of well-positioned
functions introduced by [1] and [3].

2Since C =
⋃n

i=1 (Ci ∩ C) and each Ci ∩ C is well-positioned, in this definition we could have
equivalently used the equality.
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Finally, notice that some of our results can be generalized by considering dual pairs
〈V,W 〉, with V normed. Here the Bishop-Phelps cones areKw = {x : 〈w, x〉 ≥ ‖x‖}
with w ∈ W . The two cases 〈V, V ∗〉 and 〈V ∗, V 〉 give rise to interesting results.
For convenience in the paper we focus on 〈V, V ∗〉, that is, on the weak topology.
Though for brevity we omit details, most of the results that we establish in the
paper hold also for the dual pair 〈V ∗, V 〉, typically under the assumption that V is
separable.

2. Notation and Preliminaries

Unless otherwise specified, throughout the paper we consider subsets of a normed
vector space V with norm ‖·‖. We denote by BV its unit ball {x ∈ V : ‖x‖ ≤ 1} and
by SV = {x ∈ V : ‖x‖ = 1} its unit sphere. The pairing of V with its topological
dual V ∗ is usually denoted by 〈x∗, x〉, with x ∈ V and x∗ ∈ V ∗. Norm convergence
of a sequence will be denoted by xn → x, while the familiar notation xn ⇀ x
indicates weak convergence.

Given a function f : V →R, we denote by (f ≤ λ) the sublevel set {x∈ V : f (x)≤ λ}.
A function f : V → (−∞,∞] is:

(i) sw-lower semicontinuous if all (f ≤ λ) are sw-closed;3

(ii) lower semicontinuous if all (f ≤ λ) are norm closed;

(iii) coercive if there is a nonempty sublevel set (f ≤ λ) that is norm bounded.4

We denote by riC the relative interior of a convex set C, that is, the interior of
C relative to affC, the closed affine hull of C. In infinite dimensional spaces some
other weaker notions may be adopted (see [9]). To avoid any ambiguity we will
often write riH C to denote the interior of C relative to a linear space H containing
C.

Throughout the paper Kx∗ will denote the cone {x : 〈x∗, x〉 ≥ ‖x‖}. Since Kλx∗ ⊇
Kx∗ for λ > 1, it is not restrictive to assume ‖x∗‖ > 1. This guarantees that Kx∗ is
sufficiently “large�. In this case, Kx∗ has nonempty interior because the open cone
{x : 〈x∗, x〉 > ‖x‖} is nonempty.

We will need a few asymptotic notions for sets. The (weak) asymptotic cone C∞ is
defined by

C∞ =

{
x ∈ V : ∃tn → ∞ and {xn} ⊆ C such that

xn

tn
⇀ x

}
.

It is well-known that C∞ reduces to the recession cone

RC = {y ∈ V : x+ ty ∈ C for any x ∈ C and all t ≥ 0}

when C is closed and convex. The lineality space LC of C is

LC = {y ∈ V : x+ ty ∈ C for any x ∈ C and all t ∈ R} .
3We use “sw” in place of sequentially weakly for short.
4This notion is weaker than the standard one. Our definition implies that f + χ(f≤λ) is coercive
in the usual sense (at least in the reflexive case).
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Clearly, LC = RC ∩ (−RC) = RC ∩R−C .

The following modification of the asymptotic cone, with normalized asymptotic
directions, will play an important role in the paper

BC =

{
d ∈ V : ∃ {xn} ⊆ C with ‖xn‖ → ∞ and

xn

‖xn‖
⇀ d

}
.

The vectors d ∈ BC are not always of norm one, with possibly d = 0.

Clearly, BC = ∅ when C is bounded, while BC 6= ∅ when C is an unbounded set
of a reflexive space. Moreover, coneBC ⊆ C∞ since BC ⊆ C∞. Next we collect
some other useful technical properties on asymptotic cones that we will need in the
paper.

Proposition 2.1.

(i) C∞ = coneBC if BC 6= ∅ and C∞ = {0} if BC = ∅;

(ii) BC is weakly closed, provided V is either reflexive or with a separable dual;

(iii) BC and C∞ are sw-closed;

(iv) if xn/tn ⇀ d 6= 0, with tn → ∞ and {xn} ⊆ C, then there is an unbounded
subsequence {xnk

} and a scalar λ > 0 such that xnk
/ ‖xnk

‖ ⇀ λd.

Proof. (i) Let 0 6= d ∈ C∞. This implies xn/tn ⇀ d, with xn ∈ C and tn → +∞.
We know that lim infn ‖xn‖ /tn ≥ ‖d‖ > 0. Hence, a subsequence {xnk

} exists such
that limk ‖xnk

‖ /tnk
= λ > 0. Notice that ‖xnk

‖ → ∞. Consequently,

xnk

‖xnk
‖
=

xnk

tnk

tnk

‖xnk
‖
⇀

d

λ
∈ BC . (1)

Hence, BC ⊆ {0} implies C∞ = {0}. In particular, if BC = ∅, then C∞ = {0},
while if BC = {0} then C∞ = coneBC = {0}. Moreover, if BC 6= ∅ and BC 6= {0},
then C∞ 6= {0}, since C∞ ⊇ BC . Consequently, coneBC = C∞ by (1).

(ii) Let us first prove that BC is weakly closed if V ∗ is separable. Recall that
B

w

C ⊂ BV , and pick d ∈ B
w

C . A metric δ on V exists for which the weak topology on
every norm bounded subset D of V coincides with the topology induced on D by δ
(see, e.g., [5, Theorem 3.35]). This ensures the existence of a sequence {dn} ⊆ BC

such that δ (dn, d) → 0. Passing to a subsequence if necessary, we can suppose
δ (dn, d) ≤ n−1. Since dn ∈ BC , there is xn ∈ C for which δ (xn/ ‖xn‖ , dn) ≤ n−1

and ‖xn‖ ≥ n. It follows

δ

(
xn

‖xn‖
, d

)
≤ δ

(
xn

‖xn‖
, dn

)
+ δ (d, dn) ≤

2

n
.

Namely, δ (xn/ ‖xn‖ , d) → 0 and so xn/ ‖xn‖ ⇀ d ∈ BC with ‖xn‖ → ∞. Hence,
BC is weakly closed.

Suppose that V reflexive and d ∈ B
w

C . By Day’s Lemma (see [18, Lemma 2.8.5
and Corollary 2.8.7]), a sequence dn ⇀ d exists with {dn} ⊆ BC . Hence, sequences
{xn

m} ⊆ C exist such that xn
m/ ‖x

n
m‖ ⇀ dn and ‖xn

m‖ → ∞ as m → ∞. With-
out loss of generality (wlog for short), we can suppose that ‖xn

m‖ ≥ n for all m.
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Consider the separable linear subspace W = span {xn
m/ ‖x

n
m‖}n,m. The σ (W,W ∗)

convergence of sequences in W is equivalent to their σ (V, V ∗) convergence (see,
e.g., [18, Proposition 2.5.22]). Since W ∗ is separable, an argument similar with
the previous one implies the existence of a sequence xnk

mk
/
∥∥xnk

mk

∥∥ ⇀ d as k → ∞.

Clearly,
∥∥xnk

mk

∥∥ → ∞ because
∥∥xnk

mk

∥∥ ≥ nk, and so d ∈ BC .

(iii) Similar arguments apply for spaces not necessarily reflexive. But, only the
sequentially weakly closure of BC can be proved. We omit details. As to C∞,
suppose that V ∗ is separable and that dn ⇀ d, with dn ∈ C∞. Consequently
there are sequences {xn

m/t
n
m}m for all n such that xn

m/t
n
m ⇀ dn as m → ∞. Fix

x∗ ∈ BV ∗ . As 〈x∗, dn〉 → 〈x∗, d〉, there is a scalar A such that |〈x∗, dn〉| ≤ A.
Fix n. As 〈x∗, xn

m/t
n
m〉 → 〈x∗, xn

m/t
n
m〉 as m → ∞, there is m = m (n) so that

|〈x∗, xn
m/t

n
m〉| ≤ 2A for all n and m ≥ m (n). By the Banach-Steinhaus Theorem,

there is a scalar K such that ‖xn
m/t

n
m‖ ≤ K for all n and m ≥ m (n). Since

V ∗ is separable, the weak-topology is metrizable on the ball ‖x‖ ≤ K. Let δ
be such a metric. For all k, we pick δ (d, dnk

) < 1/k. Moreover, we select a
point xnk

mk
/tnk

mk
for which δ

(
dnk

, xnk

mk
/tnk

mk

)
< 1/k, mk ≥ m (nk) and tnk

mk
≥ k. This

implies that xnk

mk
/tnk

mk
⇀ d and thus d ∈ C∞. With the standard technique we

can extend this argument to general spaces by considering the separable subspace

W = span
(
{xn

m/t
n
m}n,m

)
.

(iv) This has been already proved in point (i).

Example 2.2. The hypotheses on V in Proposition 2.1(iv) are necessary. Indeed,
let C = l1. Clearly, C∞ = l1 and BC = Sl1 thanks to the Schur property of l1.
On the other hand, Sl1 is sequentially weakly closed, but not weakly closed, as it is
well-known that there is a net {xα} ⊆ Sl1 such that xα ⇀ 0. Notice that the space
l1 is not reflexive and its dual is not separable.

Remark 2.3. If C is finitely well-positioned, then its asymptotic cone C∞ is clearly
finitely well-positioned. Actually, from C ⊆

⋃n

i=1

(
Kx∗

i
+ xi

)
it follows C∞ ⊆⋃n

i=1 Kx∗

i
. In fact, C∞ turns out to be the reunion of a finite number of cones

that allow plastering, since C∞ =
⋃n

i=1

(
Kx∗

i
∩ C∞

)
.

3. General Results

Consider the closed convex sets

Kx∗ (m) = {x ∈ V : 〈x∗, x〉 ≥ ‖x‖ −m}

associated with Kx∗ and m ∈ R. They are all well-positioned sets (see point (iii)
below). Moreover Kx∗ (m) ⊇ Kx∗ if m ≥ 0 and Kx∗ (m) ⊆ Kx∗ if m ≤ 0.

Proposition 3.1.

(i) A cone K is well-positioned if and only if it allows plastering.

(ii) An unbounded set C is well-positioned if and only if the set C ∩ {‖x‖ ≥ ρ}
allows plastering for ρ large enough.

(iii) C is well positioned if and only if C ⊆ Kx∗ (m) for some x∗ ∈ V and m ∈ R.
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Proof. (i) We omit the simple proof.

(ii) Let C be well-positioned, i.e., 〈x∗, x− x0〉 ≥ ‖x− x0‖ for all x ∈ C. Then,

〈x∗, x〉 = 〈x∗, x− x0〉+ 〈x∗, x0〉 ≥ ‖x‖

(∥∥∥∥
x

‖x‖
−

x0

‖x‖

∥∥∥∥+

〈
x∗,

x0

‖x‖

〉)
.

We have 〈x∗, x0/ ‖x‖〉 → 0 and ‖x/ ‖x‖ − x0/ ‖x‖‖ → 1, when ‖x‖ → ∞. There-
fore, 〈x∗, x〉 ≥ (1− η) ‖x‖ for ‖x‖ ≥ ρ large enough. Hence, C ∩ {‖x‖ ≥ ρ} allows
plastering.

As to the converse, suppose that C ∩ (ρB)c allows plastering, where ρB is the open
ball of radius ρ. That is, C ∩ (ρB)c ⊆ Kx∗ . We can assume ‖x∗‖ > 1 so that
Kx∗ has a nonempty interior. Fix d ∈ intKx∗ . Clearly, d is a recession direction
of Kx∗ . Hence, Kx∗ + λd ⊆ Kx∗ , which implies Kx∗ ⊆ Kx∗ − λd. Therefore,
C ∩ (ρB)c ⊆ Kx∗ − λd for all λ ≥ 0. On the other hand, ρB + λd ⊆ Kx∗ for λ
large enough.5 It follows that ρB ⊆ Kx∗ − λd, and so C ∩ ρB ⊆ Kx∗ − λd. As
C∩(ρB)c ⊆ Kx∗ −λd, we conclude that C ⊆ Kx∗ −λd if λ is large enough. Namely,
C is well-positioned.

(iii) If C is well positioned, C ⊆ Kx∗ + x0. It is easy to check that Kx∗ + x0 ⊆
Kx∗ (m), with m = 〈x∗, x0〉 − ‖x0‖. Conversely, suppose C ⊆ Kx∗ (m). If m ≤ 0,
then Kx∗ (m) ⊆ Kx∗ and so C allows plastering. Let C ⊆ Kx∗ (m) with m > 0 and
consider any point x of C with ‖x‖ ≥ αm and α > 1. Then,

〈x∗, x〉 ≥ ‖x‖ −m ≥ ‖x‖ − α−1 ‖x‖ = α−1 (α− 1) ‖x‖ .

By point (ii), C is well-positioned.

As well known, bounded sets are well-positioned (see [1], [3], and [13]). For later
reference we report this property, which is here derived from Proposition 3.1(iii).

Corollary 3.2. Bounded sets are well-positioned.

Proof. Suppose C is bounded, say C ⊆ ρBV for some ρ > 0. Then, for any x∗ ∈ V ∗

it holds 〈x∗, x〉 ≥ α for all x ∈ C. If x ∈ C, then 〈x∗, x〉 ≥ α = α−ρ+ρ ≥ α−ρ+‖x‖
and so C ⊆ Kx∗ (α− ρ).

By Proposition 3.1(ii), a set C is well-positioned if C = C0 ∪ C1, where C0 is
bounded and C1 allows plastering. Hence, a set C is finitely well-positioned if
C = C0 ∪ (

⋃n

i=1 Ci), where C0 is bounded and each Ci allows plastering. The next
useful properties are other implications of Proposition 3.1 (more general results will
be seen later in the paper).

Proposition 3.3.

(i) Let C ⊆ H, where H is a linear subspace of V . If C is well-positioned in H,
then C is well-positioned also as subset of V .

(ii) Let T : V −→ W be a linear isomorphism between two normed spaces. If
C ⊆ V is well-positioned, then its image T (C) is well-positioned.

5This is actually equivalent to (ρ/λ)B + d ⊆ Kx∗ , which is true if d ∈ intKx∗ .
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This result still holds if we replace well-positioned sets with finitely well-positioned
ones.

Proof. (i) Use Proposition 3.1(iii) and the Hahn-Banach Theorem.

(ii) Use Proposition 3.1(iii) and the fact that the image T (Kx∗) of the cone Kx∗

is a cone of V1 that allows plastering. More specifically, T (Kx∗ (m)) ⊆ {y ∈ V1 :〈
(T−1)

∗
x∗, y

〉
≥ ‖T‖−1 ‖y‖ −m

}
.

The next lemma is a key element for the present theory and will entail several
important consequences. In reading it recall that in the applications that we have
in mind C will be a portion of the unit sphere.

Lemma 3.4. Let C be a bounded set with 0 /∈ C. Then:

(i) 0 /∈ C
w
if and only if C =

⋃n

i=1 Ci, where each Ci allows plastering;

(ii) 0 /∈ coC if and only if C allows plastering.

If, in addition, V is reflexive or with separable dual, in (i) we can replace weak
closure with sw-closure.

Proof. (i) Suppose that C =
⋃n

i=1 Ci, where each Ci allows plastering. Let d ∈ C
w
.

As C
w
= (

⋃n

i=1 Ci)
w
=

⋃n

i=1 Ci

w
, it follows that d ∈ Ci

w
for some i. Let xα ⇀ d be

a net with {xα} ⊆ Ci. Since Ci allows plastering, 〈u
∗, xα〉 ≥ ‖xα‖ for some u∗ ∈ V ∗.

As 0 /∈ C, ‖xα‖ ≥ η > 0. Taking the limit we get 〈u∗, d〉 ≥ η > 0. Hence, d 6= 0
and so 0 /∈ C

w
.

Conversely, suppose that 0 /∈ C
w
. There will be a weak neighborhood of zero that

does not meet C. In other words, there is ε > 0 and a finite sequence {x∗
i }

n

i=1 of
elements of V ∗ such that |〈x, x∗

i 〉| < ε for each i implies x /∈ C. Equivalently, x /∈ C if
〈x,±x∗

i 〉 < ε for each i. Consider the finite set D = {±x∗
i : i = 1, ..., n}. The above

property can then be equivalently described as: for each x ∈ C there is u∗ ∈ D
such that 〈u∗, x〉 ≥ ε. Define the possibly empty sets Cu∗ = C ∩ {x : 〈u∗, x〉 ≥ ε}
for each u∗ ∈ D. The above arguments imply C =

⋃
u∗∈D Cu∗ . It remains to check

that every Cu∗ 6= ∅ allows plastering. In fact, 〈u∗, x〉 ≥ ε for all x ∈ Cu∗ . Since C
is bounded, ‖x‖ ≤ N for x ∈ Cu∗ . Hence, 〈u∗, x〉 ≥ ε = (ε/N) · N ≥ (ε/N) ‖x‖,
which shows that Cu∗ allows plastering.

(ii) Let 0 /∈ coC. By a separation argument, there is x∗ ∈ V ∗ such that 〈x, x∗〉 ≥
ε > 0 for all x ∈ coC. As C is bounded, say ‖x‖ ≤ N for x ∈ C, then 〈x, x∗〉 ≥
ε = (ε/N) · N ≥ (ε/N) ‖x‖ for all x ∈ C, and so C allows plastering. Conversely,
suppose C allows plastering. Hence, 〈x, x∗〉 ≥ ‖x‖ for all x ∈ C. Moreover, 0 /∈ C,
and so there is a positive number ε such that ‖x‖ ≥ ε for all x ∈ C. It follows
〈x, x∗〉 ≥ ‖x‖ ≥ ε for all x ∈ coC. Therefore, 0 /∈ coC.

The proof is completed by noticing that C
seqw

= C
w
under our hypotheses. For, if

V ∗ is separable, the bounded sets of V are weakly metrizable and thus C
seqw

= C
w
.

If V is reflexive, the C is relatively weakly compact. By Day’s Lemma, if d ∈ C
w
,

there is a sequence in C that converges weakly to d. Also in this case the desired
property thus holds.
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Remark 3.5. (i) Lemma 3.4(i) is closely related to Kadets and Pelczynski’s crite-
rion. They show that in reflexive spaces the condition 0 /∈ C

w
is equivalent to the

fact that C fails to contain a basic sequence (see [4, Theorem 1.5.6] for details).

(ii) It is well-known that S
w

V = BV holds for any infinite dimensional normed
spaces. Hence 0 ∈ S

w

V . Since V = coneSV , infinite dimensional vector spaces are
never finitely well-positioned.

The next key characterization of finitely well-positioned sets is a first notable con-
sequence of Lemma 3.4. Observe that the condition 0 /∈ BC means that there is no
unbounded sequence {xn} ⊆ C such that xn/ ‖xn‖ ⇀ 0.

Theorem 3.6. Let C ⊆ V that is either reflexive or with a separable dual. The
following properties are equivalent:

(i) 0 /∈ BC;

(ii) C is a finitely well-positioned set.

When V is reflexive, (i) and (ii) are equivalent to:

(iii) for any unbounded sequence {xn} ⊆ C, there is a subsequence {xnk
} and a

scalar sequence {tk} such that tk → ∞ and xnk
/tk ⇀ d 6= 0.

A first important consequence of this result is that finite dimensional spaces, and
so all their subsets, are finitely well-positioned.6 As remarked in the Introduction,
this shows that finite well-positionedness is relevant in infinite dimensional spaces.

Proof. The result holds for a bounded set C since BC = ∅ and, by Corollary 3.2,
is well-positioned. We will thus suppose that C is unbounded.

(ii) implies (i). Suppose that C =
⋃n

i=1 Ci, where each Ci is well-positioned and
let ‖xn‖ → ∞ and xn/ ‖xn‖ ⇀ d. Wlog we can suppose {xn} ⊆ Ci0 for some i0.
Moreover, in view of Proposition 3.1(ii), wlog we can suppose that Ci0 allows plas-
tering. Therefore, 〈x∗, xn〉 ≥ ‖xn‖, i.e., 〈x

∗, xn/ ‖xn‖〉 ≥ 1. This implies 〈x∗, d〉 ≥ 1
and so d 6= 0.

(i) implies (ii). Suppose first that the dual V ∗ is separable and that (i) holds. Fix
a radius ρ > 0 and define the nonempty set Sρ = {x/ ‖x‖ : x ∈ C and ‖x‖ ≥ ρ} ⊆
SV . We claim that 0 /∈ S

seqw

ρ for ρ large enough. Suppose not. Then, there is a

sequence ρn ↑ ∞ such that 0 ∈ S
seqw

ρn
for all n. Taking n = 1, there is a sequence

{un} ⊆ Sρ1
for which un ⇀ 0. On the other hand, un = x1

n/ ‖x
1
n‖ with ‖x1

n‖ ≥ ρ1.
By hypothesis, the sequence ‖x1

n‖ is necessarily bounded (otherwise, x1
n/ ‖x

1
n‖ ⇀ 0,

thus contradicting (i)). Therefore, there is some ρn2
such that ‖x1

n‖ < ρn2
for all

n. Iterating the same argument for the set Sρn2
, we obtain a new sequence {x2

n}

having the properties ‖x2
n‖ ≥ ρn2

, x2
n/ ‖x

2
n‖ ⇀ 0, and ‖x2

n‖ < ρn3
, and so on.

Consequently, we get countably many sequences
{
xk
n

}
for which xk

n/
∥∥xk

n

∥∥ ⇀ 0
as n → ∞, and ρnk

≤
∥∥xk

n

∥∥ < ρnk+1
. Since V ∗ is separable, the unit ball of

V is weakly metrizable (see the proof of Lemma 3.4). Denote by δ such a met-

6See Corollary 3.19 for a slightly more general result.
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ric. For all k there is an element xk
nk
/
∥∥xk

nk

∥∥ of the sequence
{
xk
n/

∥∥xk
n

∥∥}
n
such

that δ
(
xk
nk
/
∥∥xk

nk

∥∥ , 0
)
< 1/k. Therefore, by construction, for the the sequence{

xk
nk
/
∥∥xk

nk

∥∥}
k
it holds xk

nk
/
∥∥xk

nk

∥∥ ⇀ 0 as k → ∞ and
∥∥xk

nk

∥∥ → ∞. This contra-

dicts (i). Hence, 0 /∈ S
seqw

ρ for ρ sufficiently large.

By Lemma 3.4(i), Sρ =
⋃n

i=1 Ci where each Ci allows plastering. On the other hand,
we have {x ∈ C : ‖x‖ ≥ ρ} ⊆ coneSρ = cone

⋃n

i=1 Ci =
⋃n

i=1 coneCi. Clearly each
coneCi allows plastering, and thus

C ⊆ (C ∩ ρB) ∪
n⋃

i=1

coneCi.

We conclude that C is finitely well-positioned.

Suppose now that V is reflexive. The proof proceeds in a similar way until the con-
struction of the sequences

{
xk
n

}
. Now consider the linear space W = span {xk

n}n,k,
which is a separable subspace of V . The subspace W is reflexive and its dual W ∗ is
separable. Moreover the σ (W,W ∗) convergence of sequences in W is equivalent to
their σ (V, V ∗) convergence (see, e.g., [18, Proposition 2.5.22]). Therefore, by using
the existing metric on BV ∩W we can extract a sequence

{
xk
nk

}
k
such that xk

nk
⇀ 0

and
∥∥xk

nk

∥∥ → ∞. This leads to a contradiction and the proof proceeds as in the
previous case.

We prove that (iii) is equivalent to (i) provided V is reflexive. Assume (i) and let
{xn} be an unbounded sequence. Consider the sequence xn/ ‖xn‖. As V is reflexive,
there is a convergent subsequence xnk

/ ‖xnk
‖ ⇀ d and d does not vanish by (i).

Now assume (iii) and let {xn} ⊆ C with ‖xn‖ → ∞ and xn/ ‖xn‖ ⇀ d. By
(iii) there is a subsequence {xnk

} and a sequence {tk} for which tk → ∞ and
xnk

/tk ⇀ d1 6= 0. By Proposition 2.1(iv), there is a subsequence
{
xnkr

}
for which

xnkr
/
∥∥xnkr

∥∥ ⇀ λd1 6= 0. Hence xn/ ‖xn‖ ⇀ d 6= 0 and (i) holds.

In Theorem 3.6 condition (ii) implies (i) without any assumption on V . Something
more can be actually said.

Proposition 3.7. If C is finitely well-positioned, then 0 /∈ B
w

C and there is no net
{xα} ⊆ C such that xα/ ‖xα‖ ⇀ 0 and ‖xα‖ → ∞.

Similarly, it can be proved that 0 /∈ coBC , provided C is well-positioned.

Proof. Let C 6= ∅ be finitely well-positioned. As remarked above, Theorem 3.6
implies 0 /∈ BC even without the assumption of reflexivity on the space. By Propo-
sition 2.1(iii), BC is norm closed, and so 0 /∈ BC . Moreover, BC is norm bounded
and BC ⊆ C∞. On the other hand, if C is finitely well-positioned, C∞ is a reunion
of finitely many sets that allow plastering (see Remark 2.3). The same is true for its
subset BC . Therefore, by applying Lemma 3.4(i) to the set BC , we get the desired
result 0 /∈ B

w

C .

Now suppose that {xα} ⊆ C, with α ∈ Λ, is a net such that xα/ ‖xα‖ ⇀ d
and ‖xα‖ → ∞. Since C is finitely well positioned, C ⊆

⋃n

i=1 Kx∗

i
(mi). Set
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Λi =
{
α ∈ Λ : xα ∈ Kx∗

i
(mi)

}
. Clearly, for some i ∈ {1, 2, ..., n} the restriction

α ∈ Λi is a subnet of Λ. Hence, xα/ ‖xα‖ ⇀ d and ‖xα‖ → ∞ (α ∈ Λi). From〈
xα, x

∗
i

〉
≥ ‖xα‖ −mi for α ∈ Λi, by dividing by ‖xα‖ and taking the limit, we get〈

d, x∗
i

〉
≥ 1, which implies d 6= 0.

Bounded sets have trivial asymptotic cones and, by Corollary 3.2, are well-posi-
tioned. The next remarkable consequence of Theorem 3.6 shows that under finite
well-positionedness the converse holds. That is, finite well-positionedness turns out
to be the property that characterizes bounded sets among the sets that have trivial
asymptotic cones.

Corollary 3.8. A subset C of a reflexive space V is bounded if and only if C is
finitely well-positioned and C∞ = {0}.

Proof. We prove the “if� part, the converse being trivial. Let C be finitely well-
positioned with C∞ = {0}. Suppose per contra that C is unbounded. As V is
reflexive, BC 6= ∅. Hence, BC = C∞ = {0}. By Theorem 3.6, this is a contradiction.

A consequence of this characterization is that in reflexive spaces, unbounded convex
sets that are linearly bounded are never finitely well-positioned.

Example 3.9. Corollary 3.8 may fail if V is not reflexive. Consider the positive
cone l+1 of l1. Let e = (1, 1, ...) ∈ l∞. For any x ∈ l+1 , 〈x, e〉 =

∑∞

i=1 xi = ‖x‖ . Hence
l+1 allows plastering. Set C = {x ∈ l1 : 0 ≤ xi ≤ αi for each i}, with

∑∞

i=1 αi = ∞.
The closed and convex set C is unbounded because xn = (α1, ..., αn, 0, 0, ...) ∈ C
for all n and ‖xn‖ =

∑n

i=1 αi → ∞. It is also linearly bounded, and so C∞ = {0},
since for each 0 6= x ∈ l+1 it holds tx /∈ C for t > 0 large enough. On the other
hand, C ⊆ l+1 allows plastering. Notice that BC = ∅.

Example 3.10. Whether a given set is well-positioned depends on the considered
dual pair. The positive cone l+1 of l1 is well-positioned with respect to the pair
〈l1, l∞〉, but not with respect to 〈l1, c0〉. For, if {en} ⊆ l+1 is the units’ sequence, we

have en
w∗

⇀ 0. By Theorem 3.6 or Proposition 3.7, l+1 is not finitely well-positioned.

The next result is a further consequence of Lemma 3.4. Unlike Theorem 3.6, no
assumption is made on V . It is a general version of [3, Lemma 2.1]. Set

Sρ =

{
x

‖x‖
: x ∈ C and ‖x‖ ≥ ρ

}
.

Proposition 3.11.

(i) C is well-positioned if and only if 0 /∈ coSρ for ρ large enough.

(ii) C is finitely well-positioned if and only if 0 /∈ S
w

ρ for ρ large enough.

Proof. (i) Suppose that C is well-positioned. By Proposition 3.1(ii), C∩{‖x‖ ≥ ρ}
allows plastering for some ρ. Hence, 〈x∗, x〉 ≥ ‖x‖ for all x ∈ C and ‖x‖ ≥ ρ.
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Namely, 〈x∗, x/ ‖x‖〉 ≥ 1. We conclude that u ∈ Sρ implies 〈x∗, u〉 ≥ 1. Clearly
0 /∈ coSρ.

Conversely, if 0 /∈ coSρ, by Lemma 3.4(ii) Sρ allows plastering. Hence cone (Sρ) ⊇
C ∩ {‖x‖ ≥ ρ} allows plastering. By Proposition 3.1, C allows plastering.

(ii) Let C be finitely well-positioned. By Proposition 3.1(ii), C ∩ {‖x‖ ≥ ρ} is a
finite reunion of sets that allow plastering, when ρ is sufficiently large. Therefore,
there are nonzero {x∗

i }
n

i=1 ⊆ V ∗ such that x ∈ C ∩ {‖x‖ ≥ ρ} implies 〈x∗
i , x〉 ≥ ‖x‖

for some i. Hence, for all u ∈ Sρ, 〈x
∗
i , u〉 ≥ 1 for some i. Consequently, if v ∈ V

is any point such that |〈x∗
i , v〉| ≤ 1/2 for i = 1, 2, .., n, then v /∈ Sρ. On the other

hand, the set of points: |〈x∗
i , x〉| ≤ 1/2 for all i, is a weak neighborhood of 0. Hence,

0 /∈ S
w

ρ .

Conversely, suppose 0 /∈ S
w

ρ for some ρ. Lemma 3.4 implies that Sρ is the union
of finitely many sets that allow plastering. Thus, C ∩ {‖x‖ ≥ ρ} ⊆ coneSρ, where
coneSρ is the finite union of sets that allow plastering. This is enough to conclude
that C is finitely well-positioned.

Corollary 3.12. Suppose that V is reflexive or has a separable dual. A set C ⊆ V
is finitely well-positioned if and only if the same holds for C ∩W , for all closed and
separable subspaces W of V .

Proof. Suppose that all C ∩ W are finitely well-positioned and that, per contra,
C is not. Let ρm ↑ ∞. By Proposition 3.11, we have 0 ∈ S

w

ρm
for all m. By

the assumptions on the space V , we have 0 ∈ S
seqw

ρm
. Hence, there are sequences

{xm
n } such that ‖xm

n ‖ ≥ ρm and xm
n / ‖x

m
n ‖ ⇀ 0, as n → ∞, for each m. Set

W = span {xm
n }. W is a closed and separable subspace. By construction, C ∩W is

not finitely well-positioned, which leads to a contradiction.

3.1. Polyhedral Cuts

We present a useful criterion for finite well-posedness based on the boundedness
of sets’ slices. Specifically, given a set C, a finite set of nonzero functionals D =
{x∗

i }
n

i=1 ⊆ V ∗, and scalars T = {ti}
n

i=1, the set

C (D,T ) = {x ∈ C : 〈x∗
i , x〉 ≤ ti for each i}

is the slice of C determined by D and T .

Definition 3.13. A set C is said to have a (bounded) polyhedral cut if there is a set
of nonzero functionals D = {x∗

i }
n

i=1 ⊆ V ∗ such that, for each collection T = {ti}
n

i=1

of scalars, the slices C (D,T ) are either empty or bounded.

The next result extends the idea behind [3, Lemma 2.2].

Proposition 3.14. A convex set C is finitely well-positioned if and only if it has
a polyhedral cut.

The proof of this result rests on couple of lemmas of some independent interest.
The first one shows that one direction holds even without convexity.
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Lemma 3.15. Finitely well-positioned sets have a polyhedral cut.

Proof. Let C be finitely well-positioned. By Proposition 3.1(ii), there is D =
{x∗

i }
n

i=1 ⊆ V ∗ \ {0} and scalars {mi}
n

i=1 such that x ∈ C implies 〈x∗
i , x〉 ≥ ‖x‖−mi

for some i. Hence, if 〈x∗
i , x〉 ≤ ti for all i, it follows that ‖x‖ ≤ maxi (mi + ti) for

all x ∈ C. Consequently, C (D,T ) are bounded or empty for all T = {ti}
n

i=1.

Next we show that the other direction in Proposition 3.14 holds for a convex set
even if there is only a single nonempty and bounded slice, provided it satisfies a
Slater-type condition.

Lemma 3.16. A convex set C is finitely well-positioned if there is a nonempty and
bounded slice C (D,T ) of C such that, for some x ∈ C (D,T ), it holds 〈x∗

i , x〉 < ti
for all i.

Proof. Suppose that C is convex, that C (D,T ) is nonempty and bounded, and
that 〈x∗

i , x〉 < ti for all i and some x ∈ C (D;T ). By translation, wlog we can set
x = 0. Hence, 0 ∈ C (D,T ) with all ti > 0 in T , and C (D,T ) ⊆ ηBV for some
η > 0. Observe that, if x ∈ C (D,T ) and 〈x∗

i , x〉 = ti for some i, it follows

〈
x∗
i ,

x

‖x‖

〉
=

ti
‖x‖

≥
ti
η
. (2)

Pick now any point x ∈ C ∩{‖·‖ ≥ η + ε} . Clearly, there is some x∗
i ∈ D for which

〈x∗
i , x〉 > ti. Consider the nonempty subset Γ ⊆ D for which 〈x∗

i , x〉 > ti and choose
x∗
j ∈ Γ such that

〈
x∗
j , x

〉
/tj ≥ 〈x∗

i , x〉 /ti for all x
∗
i ∈ Γ. As C is convex and 0 ∈ C,

the points λx ∈ C with λ ∈ [0, 1]. Hence, there is a scalar λ0 such that
〈
x∗
j , λ0x

〉
=

tj. Clearly, 〈x
∗
i , λ0x〉 ≤ ti for all i 6= j. Therefore, λ0x ∈ C (D,T ) and

〈
x∗
j , λ0x

〉
= tj.

By (2),
〈
x∗
j , x/ ‖x‖

〉
≥ tj/η. To conclude, for all x ∈ C ∩ {‖·‖ ≥ η + ε} there is

x∗
j ∈ D such that

〈
x∗
j , x

〉
≥ (tj/η) ‖x‖. That is, C is finitely well-positioned.

Proof of Proposition 3.14. In view of the previous two lemmas, it is enough
to observe that if a nonempty set C (D;T ) does not satisfy the Slater condition
〈x∗

i , x〉 < ti, the set C (D;T + ε) does, where T + ε = {ti + ε}ni=1.

Corollary 3.17. A convex set C is well-positioned if and only if it has a polyhedral
cut with D singleton.

Example 3.18. Convexity in Proposition 3.14 is needed. Let f (x) =
√
‖x‖ be

defined on an infinite dimensional normed space V . Its non-convex epigraph epi f ⊆
V ×R has a polyhedral cut. For instance, if we consider in V ×R the linear functional
(0, 1), the slice {(x, λ) ∈ epi f : λ ≤ t} is bounded in V ×R for every t. Nevertheless,
epi f is not finitely well-positioned, as will be shown later in the paper (see Example
6.2).

Observe that Proposition 3.14 can be formulated in a slightly different equivalent
way by saying that a convex set C is finitely well-positioned if and only if there is
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x∗ ∈ V ∗ and t ∈ R such that the slice {x ∈ C : 〈x∗, x〉 ≤ t} is finitely well-positioned
and 〈x∗, x̄〉 < t for some x̄ ∈ C.

After Theorem 3.6 we observed that finite dimensional subspaces are finitely well-
positioned. Something more is proved in the next result.

Corollary 3.19.

(i) Vector subspaces H ⊆ V are finitely well-positioned if and only if they are
finite dimensional. In this case, dimH+1 is the least number of cones allowing
plastering that cover H.

(ii) More generally, C is not finitely well-positioned if riwH C 6= ∅, with H = spanC
and dimH = ∞.

Proof. (i) We already observed (see Remark 3.5) that H is not finitely well-
positioned when dimH = ∞. Therefore, it remains to prove the second part of
the statement. By Proposition 3.3(ii), wlog we can consider H = R

n. For con-
venience, R

n will be endowed with the sup-norm; i.e., ‖x‖∞ = maxi=1,..,n |xi|.
We first show that R

n can be covered by the n + 1 allowing plastering cones
〈x∗

i , x〉 ≥ ε ‖x‖∞, i = 1, ..., n, and 〈y∗, x〉 ≥ ε ‖x‖∞, where 0 < ε ≤ n−1, 〈x∗
i , x〉 = xi,

and 〈y∗, x〉 = −
∑n

i=1 xi.

Suppose per contra that there is x̄, with ‖x̄‖∞ = 1, such that x̄i < ε for all i
and

∑n

i=1 x̄i > −ε. Set P = {i : x̄i ≥ 0}. If j ∈ P , then |x̄j| < ε ≤ n−1 ≤ 1.
Therefore, if card (P ) = n, we get ‖x̄‖∞ < 1, a contradiction. Suppose then that
card (P ) ≤ n− 1. For every j /∈ P we have

0 > x̄j > −ε+
∑

i6=j

(−x̄i) ≥ −ε+
∑

i∈P

(−x̄i) ≥ −ε− card (P ) ε ≥ −nε ≥ −1.

Once again we get ‖x̄‖∞ < 1, a contradiction.

It remains to prove that n+1 is the least number of cones allowing plastering that
cover Rn. Let 〈x∗

i , x〉 ≥ ‖x‖∞, with i = 1, ...,m, be a family of cones covering R
n.

By the same argument used in the proof of Lemma 3.15, the slices C (D,T ) are
either empty or bounded with D = {x∗

i }
m

i=1 and T = {ti}
m

i=1. In particular, the cone
K = {x ∈ R

n : 〈x∗
i , x〉 ≤ 0 for all i} is bounded. A cone is bounded if and only if

it is trivial. Hence, K = {0}. Consider the linear mapping A : Rn → R
m given by

Ax = (〈x∗
i , x〉)

m

i=1. Clearly, K = A−1
(
R

m
−

)
. If m ≤ n, we have K 6= {0}. Therefore

it must be m ≥ n+ 1 and the proof of (i) is complete.

(ii) Suppose C is finitely well-positioned. By Proposition 3.3(i), C is finitely well-
positioned in H. If x ∈ riwH C, by the arguments used in the proof of Theorem
4.4 to show that (i) implies (v), there is a weak neighborhood U ⊆ H of x that
is norm bounded. By translation, we obtain a weak neighborhood V of 0 that is
norm bounded. Consequently, there exist functionals {x∗

i }
m

i=1 and ε > 0 for which
|〈x∗

i , x〉| < ε for all i implies x ∈ V . Hence,
⋂m

i=1 kerx
∗
i ⊆ V . If y∗ is linearly

independent of {x∗
i }

m

i=1, there is a point x ∈ [
⋂m

i=1 kerx
∗
i ] \ ker y

∗. Hence x 6= 0 and
nx ∈ V for all n. This contradicts the fact that V is norm bounded.
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Corollary 3.19(i) implies that the hypotheses on V made in Theorem 3.6 are needed.
For, consider any infinite dimensional subspaceH of a space with the Schur property
(e.g., l1). Clearly, 0 /∈ BH , but H is not finitely well-positioned. Notice that, inter
alia, we get the well-known result that infinite dimensional spaces with the Schur
property are not reflexive and their duals are not separable.

4. Asymptotic Compactness

In the literature several notions have been recently introduced to describe the
asymptotic behavior of unbounded sets. Here we compare some of them with the
notions that we introduced in the paper. Though many of them have been for-
mulated for sets in Hausdorff topological vector spaces, here we consider normed
spaces endowed with the weak topology.

We begin with the notion of weak asymptotic compactness due to Dedieu [10] and
Zălinescu [20].

Definition 4.1. A set C is weakly asymptotically compact if there is ε > 0 and
a weak neighborhood U of the origin such that [0, ε]C ∩ U is relatively weakly
compact.

The next notion is due to Luc [14].

Definition 4.2. A set C has the weak CB property if a bounded set A exists such
that cone (C \ A) has a weakly compact base.7

Luc and Penot [16] and Luc [15] recently introduced a weaker concept.

Definition 4.3. A set C is weakly recessively compact if, for any unbounded net
{xα}α ⊆ C, there are a subnet {xβ}β and scalars tβ such that limβ tβ = ∞ and
xβ/tβ ⇀ d 6= 0.

Finally, recall that a set C is locally weakly compact if each x ∈ C has a weak
neighborhood that is relatively weakly compact.

The following “omnibus� result establishes the equivalences among finite well-
positionedness and the asymptotic concepts just introduced.8

Theorem 4.4. Let C be a subset of a reflexive space V . Consider the following
properties:

(i) C is finitely well-positioned;

(ii) C is weakly asymptotically compact;

(iii) C has the weak CB property;

(iv) C is weakly recessively compact;

7That is, cone (C \A) = coneB, where B is a weakly compact set that does not contain the origin.
8In other settings the various asymptotic concepts fail to coincide. In particular, recessive com-
pactness seems to be the natural extension of the finite well-positionedness beyond the cases
〈V, V ∗〉 and 〈V ∗, V 〉. To this end one should use the general version of Definition 4.3 for Hausdorff
topological vector space given by [15].
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(v) C is locally weakly compact.

Then,

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) =⇒ (v).

If, in addition, C is convex, then they are all equivalent.

Proof. (i) implies (ii). It is easy to check that [0, ε0]Kx∗ (m) ⊆ Kx∗ (ε0m) holds
for all Kx∗ (m) with m ≥ 0. Therefore, if U is the weak neighborhood U =
{x : |〈x∗, x〉| ≤ 1} of 0, then

x ∈ [0, ε0]Kx∗ (m) ∩ U ⇒ ‖x‖ ≤ 1 + ε0m.

Namely, Kx∗ (m) is weakly asymptotically compact. If we now consider any finitely
well-positioned set C ⊆

⋃n

i=1 Kx∗ (mi), with mi ≥ 0, it follows [0, ε0]C ⊆⋃n

i=1 [0, ε0]Kx∗ (mi). By the neighborhood U = {x : |〈x∗
i , x〉| ≤ 1, i = 1, .., n}, the

set [0, ε0]C ∩ U is norm bounded.

(ii) implies (iv) and (iii) implies (iv) by ([15, Proposition 2.2]).

(iv) implies (i). Let C be recessively weakly compact. Suppose per contra that
C is not finitely well-positioned. By Theorem 3.6 there is an unbounded sequence
{xn} ⊆ C such that xn/ ‖xn‖ ⇀ 0. As C is recessively weakly compact, there is a
subnet {xβ}β ⊆ {xn}n and a net {tβ}β such that limβ tβ = ∞ and xβ/tβ ⇀ d 6= 0.
Hence,

xβ

tβ
=

xβ

‖xβ‖
·
‖xβ‖

tβ
⇀ d.

As a weakly convergent sequence is norm bounded, it follows 0 ≤ ‖xβ‖ /tβ ≤ L.
Passing to a subnet we get ‖xγ‖ /tγ → λ. Moreover, λ 6= 0, since otherwise xβ/tβ ⇀
0. Consequently,

xγ

‖xγ‖
=

xγ

tγ
·

tγ
‖xγ‖

⇀
1

λ
d 6= 0,

a contradiction because xγ/ ‖xγ‖ is a subnet of xn/ ‖xn‖ and thus xγ/ ‖xγ‖ ⇀ 0.

(i) implies (iii). Notice first that if C is a cone that allows plastering, then C
satisfies CB with A = ∅. Actually, if C ⊆ Kx∗ , then B = {x : 〈x∗, x〉 = 1} ∩ C is a
weak compact base of C.

Now, let C be finitely well-positioned. By Proposition 3.1(ii), C ∩ {‖x‖ ≥ ρ} =⋃n

i=1 Ci, where each Ci allows plastering. Set A = {‖x‖ ≤ ρ}. Therefore,
cone (C \ A) = cone (

⋃n

i=1 Ci) =
⋃n

i=1 coneCi. We have seen that each coneCi

has a compact base Bi. Hence coneCi = coneBi. It follows that cone (C \ A) =⋃n

i=1 coneBi = cone (
⋃n

i=1 Bi), as desired.

(i) implies (v). Let C be finitely well-positioned. By Proposition 3.14, there exists
D = {x∗

i }
n

i=1 ⊆ V ∗ that determines a polyhedral cut for C. Let x̄ ∈ C. The weak
neighborhood of x̄

C ∩ {|〈x∗
i , x− x̄〉| ≤ ε for each i}

is norm bounded. Thus, it is relatively weakly compact if V is reflexive.
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(v) implies (i) if C is convex. Pick x̄ ∈ C. There is a weak neighborhood of x̄ that
is relatively weakly compact, and so is bounded. That means that there is ε > 0
and {x∗

i }
n

i=1 such that ‖x‖ ≤ η if x ∈ C and |〈x∗
i , x̄− x〉| ≤ ε for all i. That is, the

functionals {x∗
i }

n

i=1 ∪ {−x∗
i }

n

i=1 determine a polyhedral cut for C. By Proposition
3.14, C is finitely well-positioned.

Notice that in view of Proposition 3.6(iii) and of the equivalence between (i) and
(iv), in Definition 4.3 it is enough to consider sequences in place of nets when the
space is reflexive.

5. Convex Sets

This section is mainly devoted to convex sets. The next lemma provides some
characterizations of convex well-positioned sets. Point (iii), due to [3, Proposition
2.1], says that closed convex sets are well-positioned if and only if they are finitely
well-positioned and do not contain any line. For the sake of brevity we omit the
proof.

Lemma 5.1. Let V be a reflexive space. Then:

(i) A closed convex cone K allows plastering if and only if is pointed and 0 /∈ BK.
9

(ii) A closed convex coneK allows plastering if and only if the setK∩{〈x∗, x〉 = 1}
is bounded for every strictly positive functional x∗ on K.10

(iii) A closed convex set C is well-positioned set if and only if LC = {0} and
0 /∈ BC.

Next we characterize the convex sets that are finitely well-positioned.

Proposition 5.2. Let C be a convex subset of a Banach space V . Consider the
following conditions:

(i) C is finitely well-positioned;

(ii) there is a projection P : V → V with finite codimensional range such that its
image P (C) is well-positioned;

(iii) there is a finite dimensional subspace L of V such that π (C) is well-positioned,
where π : V → V/L.

Then,
(ii) ⇐⇒ (iii) =⇒ (i).

If, in addition, C is closed and V is reflexive, then they are all equivalent. In
particular, C = LC ⊕ C1 with C1 well-positioned.

Notice that the direct sum C = LC ⊕ C1 means that there exists a closed comple-
mentary vector space M to LC that contains C1 (i.e., V = LC ⊕M and C1 ⊆ M).

Proof. (ii) implies (i). P1 = I − P is a projection with finite-dimensional range.
Set L = P1 (V ). Since L is finitely well-positioned, by Proposition 3.14 there exists

9A cone K is pointed if K ∩ −K = {0}.
10That is, 〈x∗, x〉 > 0 for all 0 6= x ∈ K (see [12, Theorem 2.7] and [13]).
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D = {x∗
i }

n

i=1 ⊆ V ∗ \ {0} that determines a polyhedral cut for L. Likewise, by
Corollary 3.17, since P (C) is well-positioned there is a functional y∗ such that
〈y∗, x〉 ≤ t for all t ∈ R is bounded or empty.

We claim that the set of functionals {x∗
i ◦ P1}

n

i=1∪{y∗ ◦ P} determines a polyhedral
cut for C. By the decomposition x = P1x+ Px for all x ∈ V , it actually holds

{x ∈ C : 〈x∗
i ◦ P1, x〉 ≤ ti and 〈y∗ ◦ P, x〉 ≤ τ}

= {x ∈ P1 (C) : 〈x∗
i , x〉 ≤ ti}+ {x ∈ P (C) : 〈y∗, x〉 ≤ τ}

⊆ {x ∈ L : 〈x∗
i , x〉 ≤ ti}+ {x ∈ P (C) : 〈y∗, x〉 ≤ τ} .

From this it easily follows that {x∗
i ◦ P1}

n

i=1 ∪ {y∗ ◦ P} is a polyhedral cut and, in
turn, that C is finitely well-positioned.

The equivalence between (ii) and (iii) easily follows from the fact that M ≃ V/L
if V = M ⊕ L and V is complete.

Finally, suppose that C is closed and finitely well-positioned, with V reflexive. As
the linear space LC is finitely well-positioned, by Corollary 3.19 we have dimLC <
∞. Hence, it is complemented in V . That is, there is a closed subspace M of V
for which LC ⊕M = V . Therefore, it holds the decomposition C = LC ⊕ (C ∩M).
Since C ∩ M ⊆ C, it is finitely well-positioned. Moreover, the lineality space of
C ∩ M is clearly trivial. By Lemma 5.1(iii), C ∩ M is well-positioned. Clearly,
P (C) = C ∩M , where we denote by P the projection with range M .

5.1. Dual Properties

Now we study convex sets by using dual properties. To this end, we need some
standard notation. The negative polar cone M− of a set M is given by

M− = {x∗ : 〈x∗, x〉 ≤ 0 for each x ∈ M} .

If A and B are subsets of V and V ∗ respectively, we define the annihilators by the
formulas

A⊥ = {x∗ ∈ V ∗ : 〈x∗, x〉 = 0 for each x ∈ A}

⊥B = {x ∈ V : 〈x∗, x〉 = 0 for each x∗ ∈ B} .

The support functional σC of a convex set C is given by σC (x∗) = sup {〈x∗, x〉 :
x ∈ C}. The domain of σC is called the barrier cone b (C) of C; i.e., b (C) =
{x∗ : σC (x∗) < ∞}.

As well-known, b (C)− = C∞ if C is closed and convex. By the Bipolar Theorem,

b (C)
w∗

= C−
∞. This is equivalent to b (C) = C−

∞ when V is reflexive.

In the next result the well-positioned set C is not necessarily convex. The result
for convex sets is due to [3].

Proposition 5.3. A set C is well-positioned if and only if int b (C) 6= ∅. Moreover,
when V is reflexive:

(i) intC−
∞ = int b (C);



266 M. Marinacci, L. Montrucchio / Finitely Well-Positioned Sets

(ii) the functionals −x∗ + δC are coercive for all x∗ ∈ intC−
∞;

(iii) the functionals x∗ ∈ intC−
∞ attain the sup when C is sw-closed;

(iv) coC∞ = [coC]∞.

Proof. Suppose that C is well-positioned. Hence, C ⊆ Kx∗ (m). Thus, σC ≤
σKx∗ (m) and so b (C) ⊇ b (Kx∗ (m)). Let us prove that b (Kx∗ (m)) ⊇ −x∗ + BV ∗ ,
so that b (C) has nonempty interior. Let u∗ ∈ BV ∗ . Clearly 〈u∗, x〉 ≤ ‖x‖. Hence,
〈x∗, x〉 ≥ ‖x‖ −m implies 〈x∗, x〉 ≥ 〈u∗, x〉 −m. Namely, m ≥ 〈−x∗ + u∗, x〉 for all
x ∈ Kx∗ (m). That is, −x∗ + u∗ ∈ b (Kx∗ (m)), and so b (Kx∗ (m)) ⊇ −x∗ +BV ∗ .

As to the converse, observe that σC = σcoC and that C is well-positioned if and only
if coC is. In particular, b (C) = b (coC). Hence, int b (coC) 6= ∅ if int b (C) 6= ∅.
In this way we can apply the arguments of [3, Theorem 2.1] and infer that coC is
well-positioned. In turn this implies that C is well-positioned.

(ii) Set λ1 < supx∈C 〈x∗, x〉 and consider the set of points x ∈ C such that 〈x∗, x〉 ≥
λ1. It follows λ1 ≤ 〈x∗, x〉 ≤ −ε ‖x‖ + m. Namely, ‖x‖ ≤ ε−1 (m− λ1). The
functional −x∗ + δC is thus coercive.

(iii) It follows from (ii) and the reflexivity of V.

(i) As C is well-positioned, C ⊆ Kx∗ + x0. It follows C∞ ⊆ Kx∗ . Consequently,
K−

x∗ ⊆ C−
∞. On the other hand, K−

x∗ ⊇ −x∗ +BV ∗ . Hence, intC−
∞ 6= ∅.

We claim that intC−
∞ ⊆ b (C). Fix x∗ ∈ intC−

∞. We can suppose that C is
unbounded, otherwise the claim is trivial. There are η > 0 and ε > 0 such that
x ∈ C and ‖x‖ ≥ η ⇒ 〈−x∗, x〉 ≥ ε ‖x‖. Suppose per contra that there are
two scalar sequences ηn ↑ ∞ and εn ↓ 0, as well as a sequence {xn}n ⊆ C, for
which ‖xn‖ ≥ ηn and 〈−x∗, xn〉 < εn ‖xn‖. Clearly, ‖xn‖ → ∞. As V is reflexive,
passing to a subsequence, we have xn/ ‖xn‖ ⇀ d. This implies 〈x∗, d〉 ≥ 0. Clearly,
〈x∗, d〉 = 0 since d ∈ C∞ and x∗ ∈ C−

∞.

Since x∗ ∈ intC−
∞, we have 〈x∗ + u∗, d〉 ≤ 0 for all u∗ ∈ εBV ∗ . Namely, 〈u∗, d〉 ≤ 0,

which implies d = 0. But, this is a contradiction because C is well positioned.
Hence, 〈−x∗, x〉 ≥ ε ‖x‖ over C and ‖x‖ ≥ η. Clearly, this means 〈−x∗, x〉 ≥
ε ‖x‖ −m for all x ∈ C and for some m. Consequently, 〈x∗, x〉 ≤ −ε ‖x‖+m ≤ m
that implies supx∈C 〈x∗, x〉 < ∞ and x∗ ∈ b (C) and the claim is proved.

To complete the proof of point (i), suppose first that C is closed and convex. We
have proved that intC−

∞ ⊆ b (C). Hence, intC−
∞ ⊆ b (C) ⊆ b (C) = C−

∞. This
implies that int b (C) = intC−

∞.

Suppose now that C is any well-positioned set and define D = co (C). Clearly,
C∞ ⊆ D∞ and C−

∞ ⊇ D−
∞. For what has been proved, we can write

int b (C) = int b (D) = intD−
∞ ⊆ intC−

∞ ⊆ int b (C) .

Hence point (i) holds.

(iv) Notice that we just proved that intD−
∞ = intC−

∞. Hence,

intD−
∞ = intC−

∞ ⇒ D−
∞ = C−

∞.

By the Bipolar Theorem, D∞ = co (C∞) , as desired.
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Example 5.4. Proposition 5.3(i) may fail when V is not reflexive. Consider the
well-positioned closed convex set C = {x ∈ l1 : 0 ≤ xi ≤ 1 for each i} . We have
C−

∞ = l∞ since C∞ = {0} (see Example 3.9). It is not difficult to check that
b (C) = {x ∈ l∞ : x+ ∈ l1}. Clearly, int b (C) 6= ∅, while int b (C) ⊆ b (C) ⊂ l∞ = int
C−

∞. Observe that even Proposition 5.3(ii) fails. Consider for instance the functional
−e = (−1,−1, ...) ∈ int b (C). Clearly, e+ δC is not coercive.

We give a few corollaries of the characterization of well-positionedness established
in Proposition 5.3.

Corollary 5.5. A cone K allows plastering if and only if intK− 6= ∅.

Proof. Observe that σK = δK− . Thus, b (K) = K−. Propositions 3.1(i) and 5.3
conclude the proof.

This is the simplest criterion to check whether a cone allows plastering. For instance,
the positive cone Lp

+ does not allow plastering for p > 1 since (Lp
+)

− = −Lq
+ has

empty interior, unless it is finite dimensional.

By Proposition 5.3, intC−
∞ 6= ∅ when C is well-positioned. However, in general

this is not a characterizing property. For instance, if C is unbounded and linearly
bounded, C∞ = {0}. Hence C−

∞ = V but C is not well-positioned. Next we
show that among finitely well-positioned sets, the property intC−

∞ 6= ∅ indeed
characterizes sets that are well-positioned.

Corollary 5.6. A finitely well-positioned set C in a reflexive space is well-posi-
tioned if and only if intC−

∞ 6= ∅.

Proof. If C is well-positioned, Proposition 5.3 implies intC−
∞ = int b (C) 6= ∅.

Let us prove the converse implication. Suppose x∗ ∈ intC−
∞. We will use an

argument similar to that of Proposition 5.3. We claim that there are η > 0 and
ε > 0 such that x ∈ C and ‖x‖ ≥ η implies 〈−x∗, x〉 ≥ ε ‖x‖. Suppose not.
There are then two sequences ηn ↑ ∞ and εn ↓ 0, as well as a sequence {xn} ⊆
C, for which ‖xn‖ ≥ ηn and 〈−x∗, xn〉 < εn ‖xn‖. Clearly, ‖xn‖ → ∞. Hence,
〈x∗, xn/ ‖xn‖〉 > −εn. Since the space is reflexive, passing to a subsequence, we
have xn/ ‖xn‖ ⇀ d ∈ C∞. Consequently, 〈x∗, d〉 ≥ 0. This implies 〈x∗, d〉 = 0 since
x∗ ∈ C−

∞. Moreover, from x∗ ∈ intC−
∞, 〈x∗ + u∗, d〉 ≤ 0 for all u∗ ∈ εBV ∗ . Hence,

〈u∗, d〉 ≤ 0 for every u∗ ∈ BV ∗ . That is, d = 0. We have obtained xn/ ‖xn‖ ⇀ 0,
which contradicts the fact that C is finitely well-positioned. Therefore, the claim
is true and C is well-positioned.

We now extend the characterization established in Proposition 5.3 from well-posi-
tioned sets to finitely well-positioned ones, though under stronger assumptions.

Proposition 5.7. A closed and convex set C of a reflexive space V is finitely well-
positioned if and only the following two conditions hold:

(i) Q ≡ b (C)− b (C) has finite codimension in V ∗;

(ii) riQ b (C) 6= ∅.
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In this case, riQ b (C) = riQC−
∞ and Q = L⊥

C = b (C)− b (C) = C−
∞ − C−

∞.

Since b (C) is a cone, Q is the minimal closed affine space containing b (C); that is,
Q = aff b (C).

Proof. Let C be a closed and finitely well-positioned set. By Proposition 5.2,
C = L ⊕ C1, where L = LC , C1 is a well-positioned set contained into a closed
subspace M , V = L⊕M , and dimL = n.

It is well-known that V = L⊕M implies V ∗ = M⊥ ⊕ L⊥ and M⊥ ≃ L∗, L⊥ ≃ M∗

(all these properties are true for any Banach space V ). Notice that dimM⊥ = n
and thus L⊥ has finite codimension. From the obvious relation

〈x∗
1 ⊕ x∗

2, x1 ⊕ x2〉 = 〈x∗
1, x1〉+ 〈x∗

2, x2〉 ,

with x∗
1 ⊕ x∗

2 ∈ M⊥ ⊕ L⊥ and x1 ⊕ x2 ∈ L⊕M , it follows that

σC (x∗
1 ⊕ x∗

2) = σL (x
∗
1) + σC1

(x∗
2)

where σL and σC1
denote the support functionals of L and C1 as subsets of L and

M , respectively. Clearly, x∗
1 and x∗

2 in the arguments of σL and σC1
denote the

restrictions of x∗
1 to L and x∗

2 to M , respectively.

On the other hand, σL (x
∗
1) = ∞ unless x∗

1 = 0. Hence, b (C) ⊆ L⊥ and so b (C)−
b (C) ⊆ L⊥. Now, as C1 is well-positioned in M , Proposition 5.3 implies that
int b (C1) 6= ∅ on the space M∗. That is, riL⊥ b (C) 6= ∅. This also implies that
b (C) − b (C) = L⊥. To check the other properties, observe that C∞ = L ⊕ (C1)∞
and C−

∞ = {0}⊕(C1)
−

∞. By Proposition 5.3(i), riL⊥ b (C) = riL⊥ C−
∞. This concludes

the first part of the proof by setting Q = L⊥.

As to the converse, suppose that C satisfies (i) and (ii). Since Q is closed and has
finite codimension, V ∗ admits the decomposition V ∗ = N ⊕ Q where N ⊆ V ∗ has
dimension n. By reflexivity, V = ⊥Q ⊕ ⊥N with ⊥Q ≃ N∗ and ⊥N ≃ Q∗. Suppose
per contra that C is not finitely well-positioned. As ⊥Q is finite-dimensional, there
are n + 1 functionals {x∗

i ⊕ 0}n+1
i=1 in N ⊕ Q that determine a polyhedral cut for

⊥Q. Pick now any element 0 ⊕ y∗ ∈ riQ b (C), with y∗ 6= 0. Then, the collection
{x∗

i ⊕ 0}n+1
i=1 ∪{0⊕ (−y∗)} would not determine a polyhedral cut. That is, for some

scalars {ti}
n+1
i=1 ∪ {τ} the slice would be unbounded. On the other hand, the slice is

contained within

{x ∈ P1 (C) : 〈x∗
i , x〉 ≤ ti ∀i}+ {x ∈ P2 (C) : 〈y∗, x〉 ≥ −τ}

where P1 : V → ⊥Q and P2 : V → ⊥N are the canonical projections. As P1 (C) ⊆
⊥Q , the first set is bounded by construction, and so the set {x ∈ P2 (C) : 〈y∗, x〉 ≥
−τ} would be unbounded. By the Banach-Steinhaus Theorem, there is a sequence
{xn}n ⊆ P2 (C) and a functional 0⊕ z∗ such that 〈z∗, xn〉 ≥ n. On the other hand,
since 0 ⊕ y∗ ∈ riQ b (C), 0 ⊕ y∗ + λ (0⊕ z∗) ∈ b (C) for λ > 0 small enough. But,
〈y∗ + λz∗, xn〉 → ∞ and so σC (y∗ + λz∗) = +∞, a contradiction. We conclude
that C is finitely well-positioned.
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The property of the barrier cone in Proposition 5.7 is closely related with compact
epi-lipschitzianity.11

Proposition 5.8. Let C be a closed and convex set in a reflexive space. If C is
finitely well-positioned, then its barrier cone b (C) is compactly epi-Lipschitzian.
The converse implication holds provided b (C) is closed.

Proof. Suppose that C is finitely well-positioned. Using the notation of the previ-
ous proposition, it holds C = L ⊕ C1, where L = LC , C1 ⊆ M is well-positioned,
and V = L⊕M . We have b (C) ⊆ L⊥ ≃ M∗. Moreover, there is a nonempty open
set U of M∗ for which U ⊆ b (C). Let {ek}

n

k=1 be a basis of L∗ and define the convex
polytope Σ =

∑n

k=1 [−1, 1] ek. Clearly, there is a nonempty open set V in L∗ for
which V ⊆ Σ. Hence, U × V ⊆ b (C) + Σ. But, U × V is a nonempty open set of
V ∗, and so int (b (C) + Σ) 6= ∅. By [8, Proposition 2.10], the convex cone b (C) is
compactly epi-Lipschitzian.

As to the converse, suppose b (C) is a closed and compactly epi-Lipschitzian set.
Thanks to [8, Theorem 2.5(vii)] and to Proposition 5.7, the set C is finitely well-
positioned.

6. Functions

A function f : V → R is

(i) well-positioned if its epigraph epi f ⊆ V × R is well-positioned;12

(ii) finitely well-positioned if its epigraph epi f ⊆ V ×R is finitely well-positioned;

(iii) quasi finitely well-positioned if all its nonempty sublevel sets (f ≤ λ) are finitely
well-positioned;

(iv) semi finitely well-positioned if there is a sublevel set (f ≤ λ), with λ > inf f ,
that is finitely well-positioned.

Clearly, property (i) implies (ii) and (iii) implies (iv). To see that (ii) implies (iii)
is enough to consider the equality epi f ∩

{
λ = λ̄

}
=

(
f ≤ λ̄

)
×
{
λ̄
}
.

The next examples show that in general these implications do not have a converse.
However, Theorem 6.7 will show that properties (ii)–(iv) are equivalent for convex
functions.

Example 6.1. The convex function ϕ : R → R given by ϕ (t) = t is finitely well-
positioned, but not well-positioned.

Example 6.2. Let f (x) =
√

‖x‖ be defined over an infinite dimensional reflex-
ive space. It is quasi finitely well-positioned since all nonempty sublevel sets are
bounded. However, it is not finitely well-positioned. For, take an unbounded se-
quence {xn} with xn/ ‖xn‖ ⇀ 0. Clearly,

√
‖x‖/ ‖xn‖ → 0. By Lemma 6.5 below,

f is not finitely well-positioned. The function f ∧ 1 is a simple example of a semi
finitely well-positioned that is not quasi finitely well-positioned.

11The notion of compactly epi-Lipschitzian sets in locally convex topological spaces is due to
Borwein and Strojwas in [7]. We are grateful to the referee for drawing our attention to this point.
12Well-positioned functions are proper (their epigraphs would otherwise contain a line).
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The following lemma, whose simple proof is omitted, will be useful in deriving the
results of this section. Notice that V × R is endowed with the norm ‖(x, λ)‖ =
‖x‖+ |λ|.

Lemma 6.3. Let {(xn, λn)}n ⊆ V × R. Then

(xn, λn)

‖xn‖+ |λn|
⇀ 0 ⇐⇒

xn

‖xn‖
⇀ 0 and

λn

‖xn‖
→ 0.

Next we establish a full characterization of finitely well-positioned functions.

Theorem 6.4. Let V be reflexive or with separable dual. A function f : V → R is
finitely well-positioned if and only if there is no unbounded sequence {xn} ⊆ dom f
such that xn/ ‖xn‖ ⇀ 0 and either f (xn) / ‖xn‖ → 0 or f (xn) ↓ −∞.

The proof relies on couple of lemmas.

Lemma 6.5. Let V be reflexive or with separable dual. A function f bounded
from below is finitely well-positioned if and only if there is no unbounded sequence
{xn} ⊆ dom f such that xn/ ‖xn‖ ⇀ 0 and f (xn) / ‖xn‖ → 0.

Proof. Setting f − inf f , wlog we can assume f ≥ 0. Suppose that the claimed
conditions hold and that, per contra, f is not finitely well-positioned. There is a
sequence (xn, λn) ∈ epi f such that ‖xn‖+ |λn| → ∞ and (xn, λn) / (‖xn‖+ |λn|) ⇀
0. By Lemma 6.3, xn/ ‖xn‖ ⇀ 0 and λn/ ‖xn‖ → 0. The sequence ‖xn‖ cannot
be bounded. Otherwise, |λn| would be bounded and thus ‖xn‖+ |λn| cannot go to
infinity. Therefore, we can suppose ‖xn‖ → ∞. As 0 ≤ f (xn) ≤ λn, it follows that
f (xn) / ‖xn‖ → 0, a contradiction.

As to the converse, assume f is finitely well-positioned and that there is a sequence
{xn} such that ‖xn‖ → ∞, xn/ ‖xn‖ ⇀ 0 and f (xn) / ‖xn‖ → 0. Consider the
points (xn, f (xn)) ∈ epi f . We have (xn, f (xn)) / (‖xn‖+ |f (xn)|) ⇀ 0 and ‖xn‖+
|f (xn)| → ∞. This implies that f is not finitely well-positioned.

Lemma 6.6. Let V be reflexive or with separable dual. A function f : V → R is
finitely well-positioned if and only if it is quasi finitely well-positioned and there is
no unbounded sequence {xn} ⊆ dom f such that xn/ ‖xn‖ ⇀ 0, f (xn) / ‖xn‖ → 0
and f (xn) ↑ sup f .

Proof. The conditions are clearly necessary. Let us prove their sufficiency. Suppose
per contra that f is not finitely well-positioned under the two claimed conditions.
Then, there is a sequence (xn, λn) ∈ epi f such that xn/ ‖xn‖ ⇀ 0 and λn/ ‖xn‖ → 0.
Notice that necessarily ‖xn‖ → ∞. We consider separately two cases.

(i) lim supn→∞ f (xn) < sup f . This implies that there is a subsequence {xnk
} ⊆

(f ≤ λ) for some λ < sup f . Hence, (f ≤ λ) would not be finitely well-positioned.

(ii) lim supn→∞ f (xn) = sup f . In this case a subsequence can be extracted for
which f (xn) ↑ sup f . Clearly, f (xn) / ‖xn‖ → 0 and this contradicts the hypothesis.
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Proof of Theorem 6.4. The conditions are necessary. For, suppose f is finitely
well-positioned. From f ≤ |f | it follows that epi |f | ⊆ epi f . Hence, |f | is finitely
well-positioned. Suppose that a sequence exists as claimed in the statement for
which f (xn) / ‖xn‖ → 0; i.e., |f (xn)| / ‖xn‖ → 0. By Lemma 6.5, |f | would not be
finitely well-positioned. If f (xn) ↓ −∞, {xn} ∈ (f ≤ λ), and so f would not be
quasi finitely well-positioned. This concludes the proof of necessity.

As to the converse, let us first prove that f is quasi finitely well-positioned. Sup-
pose not. Then, (f ≤ λ0) is not finitely well-positioned for some λ0. There is con-
sequently an unbounded sequence {xn} such that xn/ ‖xn‖ ⇀ 0 and f (xn) ≤ λ0.
Two cases are possible.

(i) lim infn→∞ f (xn) = −∞. In this case there is a subsequence such that f (xnk
) ↓

−∞. But, this leads to a contradiction.

(ii) lim infn→∞ f (xn) > −∞. In this case the sequence is bounded from below, i.e.,
k ≤ f (xn) ≤ λ0. This implies f (xn) / ‖xn‖ → 0 and we get again a contradiction.

Thus, f is quasi finitely well-positioned. Suppose that f is not finitely well-
positioned. By Lemma 6.6, there is an unbounded sequence such that xn/ ‖xn‖ ⇀ 0,
f (xn) ↑ sup f , and f (xn) / ‖xn‖ → 0, a contradiction. The sufficiency part of the
proof is completed.

The next result shows that the three classes of functions introduced at the beginning
of the section through finite well-positionedness are equivalent for convex functions.

Theorem 6.7. A convex function f : V → R is finitely well-positioned if and only
if is semi finitely well-positioned.

The proof of this theorem relies on some lemmas.

Lemma 6.8. Let f : V → R be convex and λ1, λ2 > inf f . A sublevel set (f ≤ λ1)
is unbounded if and only if (f ≤ λ2) is. Moreover, B(f≤λ1) = B(f≤λ2).

Proof. Set λ1 > λ2 > inf f . This implies (f ≤ λ2) ⊆ (f ≤ λ1) and B(f≤λ2) ⊆
B(f≤λ1). Hence (f ≤ λ1) is unbounded if (f ≤ λ2) is. Suppose (f ≤ λ1) is un-
bounded and let xn ∈ (f ≤ λ1) with ‖xn‖ → ∞. As λ2 > inf f , there is v ∈ V
with f (v) = λ2 − ε. Consider the sequence (1− α) v + αxn where α ∈ (0, 1). By
convexity,

f ((1− α) v + αxn) ≤ (1− α) f (v) + αf (xn) ≤ (1− α) (λ2 − ε) + αλ1.

We can thus pick α ∈ (0, 1), so that yn = (1− α) v + αxn ∈ (f ≤ λ2). Hence,
(f ≤ λ2) is unbounded. Let d ∈ B(f≤λ1); i.e., xn/ ‖xn‖ ⇀ d, f (xn) ≤ λ1. If yn is
the above sequence of points, then

yn
‖yn‖

=
(1− α) v

‖yn‖
+

α ‖xn‖

‖yn‖

xn

‖xn‖
.

On the other hand,

α ‖xn‖

‖yn‖
=

α ‖xn‖

‖(1− α) v + αxn‖
=

∥∥∥∥
(1− α) v

α ‖xn‖
+

xn

‖xn‖

∥∥∥∥
−1
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that goes to 1 as n → ∞. Hence yn/ ‖yn‖ ⇀ d, and so B(f≤λ1) = B(f≤λ2).

Lemma 6.9. Let f : V → R be convex. If
(
f ≤ λ̄

)
, with λ̄ > inf f , is finitely well-

positioned, then all its nonempty sublevel sets (f ≤ λ) are finitely well-positioned.
Specifically, if

(
f ≤ λ̄

)
⊆

n⋃
i=1

Kx∗

i
(mi) , (3)

then, for each λ there are scalars εi (λ) > 0 and mi (λ) such that, for some i =
1, ..., n,

x ∈ (f ≤ λ) =⇒ 〈x∗
i , x〉 ≥ εi (λ) ‖x‖ −mi (λ) . (4)

Proof. The property is trivially true for the level sets (f ≤ λ) with λ ≤ λ̄. There-
fore, it is enough to study the case λ > λ̄. As λ̄ > inf f , there is a point x̄ for which
f (x̄) < λ̄. Pick now scalars {ti} so that 〈x

∗
i , x̄〉 < ti and consider the convex function

ϕ (x) =
∨n

i=1 (〈x
∗
i , x〉 − ti)∨

(
f (x)− λ̄

)
. Clearly, ϕ (x̄) < 0. Therefore, (ϕ ≤ 0) 6= ∅.

Moreover, (ϕ ≤ 0) =
⋂

i {〈x
∗
i , x〉 ≤ ti} ∩

(
f ≤ λ̄

)
. By (3), (ϕ ≤ 0) is bounded. By

Lemma 6.8, all sublevel sets (ϕ ≤ h) are bounded for each h > 0. On the other
hand, the level (ϕ ≤ h) is given by the slice

⋂
i {〈x

∗
i , x〉 ≤ ti + h} ∩

(
f ≤ λ̄+ h

)
,

which satisfies the Slater condition in that x̄ ∈
(
f ≤ λ̄+ h

)
and 〈x∗

i , x̄〉 < ti + h for
all i. By Proposition 3.14,

(
f ≤ λ̄+ h

)
is finitely well-positioned and (4) holds.

Proof of Theorem 6.7. Suppose that f is semi finitely well-positioned and that
(f ≤ λ) ⊆

⋃n

i=1 Kx∗

i
(mi) holds. Consider the set of n+2 functionalsD= {(x∗

i , 0)}
n

i=1

∪{(0, 1) , (0,−1)} on V × R. By Lemma 6.9, it is easy to see that epi f (D,T ) is a
polyhedral cut. By Proposition 3.14, epi f is finitely well-positioned. The converse
is trivial.

A result similar to Theorem 6.7 does not hold in general for well-positioned func-
tions, as the example ϕ (t) = t shows. However, if the functions are bounded below
the following analogous result holds.

Proposition 6.10. Let V be reflexive or with separable dual. A convex and bounded
below function f : V → R is well-positioned if and only if a sublevel set (f ≤ λ),
with λ > inf f , is well-positioned.

Proof. Suppose first that f is lower semicontinuous. By Theorem 6.7, f is finitely
well-positioned. By Lemma 5.1 it suffices to show that epi f does not contain any
line. It is easy to see that the unique feasible directions of these lines are (v, 0)
since, otherwise, the function would not be bounded from below. This implies that
f (x0 + tv) ≤ λ for all t. Hence, v ∈ L(f≤λ). This contradicts the fact that (f ≤ λ)
is well-positioned.

If f is not lower semicontinuous, we easily obtain the same result by considering its
lower semicontinuous hull f̄ ≤ f .

The results on support functionals derived in the previous sections can be eas-
ily translated into results on Fenchel conjugates through the relation f ∗ (x∗) =
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σepi f (x
∗,−1). In this vein, next we characterize well-positioned and finitely well-

positioned functions through properties of their Fenchel conjugates. Point (i) is due
to [3, Proposition 3.1].

Proposition 6.11. Let f : V → R be a proper lower semicontinuous and convex
function on a reflexive space V . Then,

(i) f is well-positioned if and only if int dom f ∗ 6= ∅;

(ii) f is finitely well-positioned if and only if ri dom f ∗ 6= ∅ and aff (dom f ∗) has
finite codimension in V ∗.

Proof. (i) See [3, Proposition 3.1]. As to (ii), suppose first that f is finitely well-
positioned and f ≥ 0. As epi f ⊆ V × R+, the lineality space of epi f is contained
in V . Let L be such a finite-dimensional space and let V = L ⊕ M be the usual
decomposition. This implies that f is constant over L and, by Proposition 5.2,
f (x1 ⊕ x2) = ϕ (x2) for x1⊕x2 ∈ L⊕M , where ϕ is a well-positioned function over
M . The Fenchel conjugate is

f ∗ (x∗
1 ⊕ x∗

2) =

{
ϕ∗ (x∗

2) if x∗
1 = 0

+∞ if x∗
1 6= 0

where x∗
1 ⊕ x∗

2 ∈ M⊥ ⊕ L⊥. Hence, dom f ∗ ⊆ L⊥. Since f ≥ 0, we have 0 ∈
dom f ∗ and so aff (dom f ∗) ⊆ L⊥. Since ϕ is well-positioned, ri dom f ∗ 6= ∅ and
aff dom f ∗ = L⊥. The proof is thus complete for f ≥ 0.

Let f be now any finitely well-positioned function. As f is lower semicontinuous
and proper, f ≥ y∗ + γ. Hence, f1 = f − y∗ − γ ≥ 0 and y∗ ∈ dom f ∗. By applying
the previous result, we easily obtain that aff dom f ∗ = y∗ + L⊥ and ri dom f ∗ 6= ∅.

As to the converse, suppose that f satisfies (i) and (ii). Notice that (ii) implies
aff (dom f ∗) = aff (dom f ∗) = Q. If x∗ ∈ riQ dom f ∗, (x∗,−1) is interior with respect
to the affine space Q×{−1}. Hence, (x∗,−1) is interior with respect to Q×R. So,
(x∗,−1) ∈ ri b (epi f) and aff b (epi f) = Q× R. By Proposition 5.7, epi f is finitely
well-positioned.

We close with a noteworthy coercitivity property.

Proposition 6.12. Let f : V → R be a proper lower semicontinuous and convex
function on a reflexive space V .

(i) If f is well-positioned, then f − x∗ is coercive for all x∗ ∈ int dom f ∗;

(ii) If f is finitely well-positioned, then f−x∗ is semicoercive for all x∗ ∈ ri dom f ∗.

Proof. (i) By Proposition 5.3, the functional − (x∗,−1) + δepi f is coercive when
x∗ ∈ int (dom f ∗). This implies that for a fixed scalar λ̄, the set

{
〈−x∗, x〉+ λ ≤ λ̄

}
∩

{f (x) ≤ λ} is bounded in V × R. In particular, it is bounded for f (x) = λ. That
is, 〈−x∗, x〉+ f (x) ≤ λ̄ is bounded. Namely, f − x∗ is coercive.

(ii) Wlog set x∗ = 0. As 0 ∈ dom f ∗, inf f > −∞. In view of the proof of
Proposition 6.11, we have f (x1 ⊕ x2) = ϕ (x2) with ϕ a well-positioned function
over M and V = L ⊕ M. As 0 ∈ riϕ∗, by Proposition 6.12(i) ϕ is coercive over
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M. Hence, f is semicoercive. If x̄ ∈ M is a minimum of ϕ, then x̄ + L is a set of
minimizers of f .

7. Applications

7.1. Intersections

Given a chain of nonempty sets {Cn}, with Cn+1 ⊆ Cn for all n, following Bertsekas
and Tseng [6] define the asymptotic cones

{Cn}∞ =

{
d ∈ V : ∃tn → ∞ and xn ∈ Cn such that

xn

tn
⇀ d

}

and

B ({Cn}) =

{
d ∈ V : ∃xn ∈ Cn such that ‖xn‖ → ∞ and

xn

‖xn‖
⇀ d

}

When Cn = C for all n, we get back to the usual asymptotic objects, that is,
{Cn}∞ = C∞ and B ({Cn}) = BC .

Most of the properties in Proposition 2.1 remain unchanged for this generalization
to chains. For instance, coneB ({Cn}) = {Cn}∞. The following relation is key (see
[17, Proposition 26]):

B ({Cn}) =
∞⋂
n=1

BCn
.

It implies, inter alia, that B ({Cn}) is weakly compact and nonempty when V is
reflexive and the sets Cn are unbounded.

Definition 7.1. Given a chain {Cn} and d ∈ {Cn}∞, we say that {Cn} retracts
along d if, for any sequence yk = xnk

∈ Cnk
such that yk/tk ⇀ d with tk → ∞, there

exists a subsequence {zr}, with zr = ykr , and a bounded sequence αr > 0 such that
zr − αrd ∈ Cnkr

for all r.

The chain {Cn} is called retractive if it retracts along all d ∈ {Cn}∞. When Cn = C
for all n, we get similar definitions for a fixed set C, with {Cn}∞ = C∞.

Any chain trivially retracts along 0. Hence, {Cn}∞ = {0} is a simple sufficient
condition for {Cn} to be retractive. The next lemma gives an equivalent condition
of retractivity in terms of B ({Cn}).

Lemma 7.2. A chain {Cn} is retractive if and only if for each d ∈ B ({Cn})
and for any unbounded sequence yk = xnk

∈ Cnk
such that yk/ ‖yk‖ ⇀ d, there

is a subsequence {zr}, with zr = ykr , and a bounded sequence αr > 0 such that
zr − αrd ∈ Cnkr

for all r.

Proof. We prove the “if,� the converse being trivial. The result is trivially true
when d = 0. Therefore, take a sequence yk = xnk

∈ Cnk
with yk/tk ⇀ d 6= 0
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and tk → ∞. By the usual argument, there exists a subsequence ykr for which∥∥ykr/tkr
∥∥ → λ 6= 0. Hence

ykr
‖ykr‖

=
ykr
tkr

·
tkr

‖ykr‖
⇀

d

λ
,

and so λ−1d ∈ B ({Cn}). Therefore, there is a subsequence {ys} ⊆ ykr and a
sequence of scalars {αs} such that ys − λ−1αsd ∈ Cs, as desired.

The next result is an infinite dimensional extension of [6, Proposition 1].

Theorem 7.3. A retractive chain of nonempty sw-closed and finitely well-posi-
tioned sets of a reflexive space V has nonempty intersection.

In [17] we derived this result as a consequence of more general results. Here we
give a direct proof. We need a geometrical fact. Given a cone K =

⋃n

i=1 Kx∗

i
, we

introduce in V the following equivalent norm, with α > 1,

‖x‖1 = ‖x‖+ α
n∑

i=1

|〈x∗
i , x〉| . (5)

The next property is proved in [17, Lemma 11].

Lemma 7.4. If x ∈ K ∩ {‖x‖1 ≤ 1}, then ‖x‖ ≤ (1 + α)−1.

Proof of Theorem 7.3. Let {Cn} be a chain of finitely well-positioned sets. We
can assume that Cn is unbounded (otherwise the result is trivial by the reflexivity
of the space). By Proposition 3.1, there is some ρ > 0 such that Cn ∩ {‖x‖ ≥ ρ} ⊆
K =

⋃n

i=1 Kx∗

i
for all n. We thus renorm the space with the equivalent norm (5).

Set xn ∈ argminx∈Cn
‖x‖1 for all n. Notice that argminx∈Cn

‖x‖1 6= ∅ under our
hypotheses. If the sequence {xn} is bounded, by taking a subsequence, xn ⇀ x0 ∈
Cn for all n. Therefore, x0 ∈

⋂∞

n=1 Cn and the theorem is true. It remains to show
that the sequence {xn} is bounded.

As ‖xn‖1 ≤ ‖xn+1‖1, we have ‖xn‖1 → ∞ if the sequence is unbounded. Under our
assumption, there is a subsequence {yk} of {xn}, with yk = xnk

∈ Cnk
, such that

yk/ ‖yk‖1 ⇀ d 6= 0. Accordingly, ‖d‖1 ≤ 1, and so ‖d‖ ≤ (1 + α)−1 by Lemma 7.4.

By retractivity, passing to a subsequence {zr}, we have zr − αrd ∈ Cnkr
for all r,

where zr = ykr . Hence, ‖zr − αrd‖1 ≥ ‖zr‖1; that is, ‖zr/ ‖zr‖1 − βrd‖1 ≥ 1 with
0 < βr = αr/ ‖zr‖1. Observe that

∥∥∥∥
zr

‖zr‖1
− βrd

∥∥∥∥
1

=

∥∥∥∥(1− βr)
zr

‖zr‖1
+ βr

(
zr

‖zr‖1
− d

)∥∥∥∥
1

≤ (1− βr) + βr

∥∥∥∥
zr

‖zr‖1
− d

∥∥∥∥
1

.
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If we prove that ‖zr/ ‖zr‖1 − d‖
1
< 1 for r large enough, then ‖zr/ ‖zr‖1 − βrd‖1 <

1, a contradiction. Notice that for r large enough zr/ ‖zr‖1 ∈ K ∩ {‖x‖1 ≤ 1}. Set
ur = zr/ ‖zr‖1. By Lemma 7.4,

‖ur − d‖1 = ‖ur − d‖+ α
n∑

i=1

|〈x∗
i , ur − d〉| ≤ ‖ur‖+ ‖d‖+ α

n∑

i=1

|〈x∗
i , ur − d〉|

≤ 2 (1 + α)−1 + α
n∑

i=1

|〈x∗
i , ur − d〉| .

Since
∑n

i=1 |〈x
∗
i , ur − d〉| → 0, we have ‖ur − d‖1 < 1 for r large enough, provided

α > 1. This completes the proof.

7.2. Closed Images and Algebraic Differences

Next we give a first application of Theorem 7.3.

Proposition 7.5. Let T : V → W be a continuous linear mapping between two
reflexive spaces, and C ⊆ V be finitely well-positioned.

(i) The image T (C) is sw-closed if C is sw-closed and retracts along all directions
d ∈ C∞ ∩ kerT .

(ii) The image T (C) is finitely well-positioned if C∞ ∩ kerT is a linear space
included in LC; in this case, T (C∞) = (TC)∞.

Remark 7.6. (a) The hypothesis in point (i) is fulfilled when, for instance, either
C is retractive or C∞ ∩ kerT = {0} or C∞ ∩ kerT ⊆ LC .

(b) Notice that even for non-convex sets, LC is defined as LC + C = C, though in
general LC may not be a vector space.

Proof. (i) Suppose first that W is separable and that yn ∈ T (C) with yn ⇀ ȳ. We
have to show that ȳ ∈ T (C). The sequence is bounded, i.e., yn ∈ ρBW . As W is
separable, its dual is reflexive as well. Therefore, W is weakly metrizable over the
bounded set ρBW . Denote by δ such a metric. Consider the following sequence of
sets in W

Wn = {y ∈ W : δ (y, y) ≤ δ (yn, ȳ) and y ∈ ρBW} ,

and the associated sets Cn = C ∩ T−1 (Wn) in V . Clearly, the sets Wn are weakly
closed and thus the sets Cn are sw-closed. Moreover, the sets Cn are nonempty by
construction. If their intersection is nonempty and x̄ ∈

⋂∞

n=1 Cn, then T (x̄) = ȳ.
Notice that it is not restrictive to suppose δ (yn, ȳ) ↓ 0 and thus {Cn} is a chain.

Let us prove that {Cn}∞ ⊆ C∞ ∩ kerT . Let d ∈ {Cn}∞. Clearly, d ∈ C∞. Let
{xn} be a sequence such that {xn} ⊆ Cn, tn → ∞ and xn/tn ⇀ d. Consequently,
T (xn/tn) ⇀ T (d). On the other hand, T (xn) ∈ ρBW and so it is bounded. We
have T (d) = 0 and d ∈ kerT , and so the inclusion {Cn}∞ ⊆ C∞ ∩ kerT is proved.

To apply Theorem 7.3 we must prove that the chain {Cn} is retractive. Pick any
d ∈ {Cn}∞ such that T (d) = 0. Let {xnk

} be a sequence for which xnk
∈ Cnk

,
tnk

→ ∞ and xnk
/tnk

⇀ d ∈ C∞ ∩ kerT . By hypothesis, C retracts along any
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direction in C∞ ∩ kerT . Hence xnkr
− αrd ∈ C for a subsequence

{
xnkr

}
and for a

scalar sequence {αr}. On the other hand, T
(
xnkr

− αrd
)
= T

(
xnkr

)
. It follows that

xnkr
− αrd ∈ Cnkr

. We have proved that {Cn} are retractive and thus
⋂∞

n=1 Cn 6= ∅
by Theorem 7.3, as desired.

Suppose now that W is not separable and that yn ⇀ y with yn ∈ T (C). It
suffices to consider the separable linear space W1 = span {yn}n and the linear

mapping T̃ : T−1 (W1) → W1. It is easy to see that all hypotheses hold for the set
C ∩ T−1 (W1) and so the result follows from the first part of the proof.

(ii) Set V0 = kerT ∩ C∞. The cone C∞ is finitely well-positioned. Therefore,
the linear space V0 ⊂ C∞ has finite dimension. Hence, we have V = V0 ⊕ Z.
Let yn ∈ T (xn) with ‖yn‖ → ∞ and xn ∈ Cn. The sequence xn ∈ V admits
the decomposition xn = x0

n ⊕ zn with x0
n ∈ V0 and zn ∈ Z. Clearly T (xn) =

T (zn) = yn. As T is continuous, the sequence zn is unbounded. Notice also
that zn ∈ C. Actually, zn = xn − x0

n ∈ C − V0 = C. Since C is finitely well-
positioned, there is a subsequence znk

and tk → ∞ such that znk
/tk ⇀ d1 6= 0.

Consequently, ynk
/tk = T (znk

/tk) ⇀ T (d1). On the other hand, 0 6= d1 ∈ Z.
Hence d1 /∈ V0 = kerT ∩ C∞ and so T (d1) 6= 0, which proves that T (C) is finitely
well-positioned.

As to the last statement, since the inclusion T (C∞) ⊆ (TC)∞ holds in general, it
suffices to show that (TC)∞ ⊆ T (C∞). Let yn/tn ⇀ d with yn ∈ T (xn), tn → ∞
and d 6= 0. Clearly, ‖yn‖ → ∞ and so there is a subsequence {ynk

} for which
ynk

/ ‖ynk
‖ ⇀ λd with λ 6= 0. Applying to the sequence {xnk

} the above arguments,
we get a subsequence

{
xnkr

}
such that xnkr

/τ r ⇀ d1 where 0 6= d1 ∈ C∞. Once
again there is a subsequence {xl} ⊆

{
xnkr

}
so that xl/ ‖xl‖ ⇀ µd1 with µ 6= 0. But,

yl = T (xl) is a subsequence of ynk
; hence µT (d1) = λd and so T

(
µλ−1d1

)
= d.

Therefore, (TC)∞ ⊆ T (C∞) and the result is proved.

A second noteworthy application of Theorem 7.3 is in providing general conditions
under which the algebraic difference of two sw-closed sets is sw-closed.

Proposition 7.7. Let C and D be two sw-closed sets of a reflexive space. The set
C −D is sw-closed under one of the following cases:

(i) C and D are finitely well-positioned and both retract along any direction in
C∞ ∩D∞;

(ii) C is finitely well-positioned and both C and D retract completely along any
direction in C∞ ∩D∞.13

When C∞ ∩D∞ = {0}, the condition that both C and D retract completely along
the directions in C∞ ∩D∞ is trivially satisfied. Hence, in this case the set C −D
is sw-closed provided both sets are sw-closed and C is finitely well-positioned. In
view of Theorem 4.4, Dieudonné [11]’s original result on differences of convex sets
is thus a special case of Proposition 7.7, at least for the weak topology. We refer
the reader to Adly, Ernst, and Théra [2] for more recent results for differences of

13That is, in Definition 7.1 it must hold zr − αd ∈ Cnkr
for all r and all α small enough.
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closed convex sets based on the condition C∞ ∩D∞ = {0}.

Proof. (i) It suffices to consider the map T : (x, y) 7→ x− y from V × V to V , and
to apply Proposition 7.5 to the set T (C,D) = C −D. We omit details.

(ii) The proof follows closely that of Proposition 7.5. Suppose first V is separable
and xn ∈ C, yn ∈ D with zn = xn − yn ⇀ z̄. The sequence zn is bounded, i.e.,
zn ∈ ρBV . Denote by δ the metric on ρBV that generates the weak topology.
Consider the sequence of sets Cn = C ∩ [Un (z̄) +D], where

Un (z̄) = {z ∈ V : δ (z̄, z) ≤ δ (z̄, zn) , z ∈ ρBV } .

Passing to a subsequence if necessary, we can assume that Un+1 (z̄) ⊆ Un (z̄). There-
fore, {Cn} is a chain. Clearly, Cn 6= ∅ since xn = zn+yn and xn ∈ C∩ [Un (z̄) +D] .
Moreover, [Un (z̄) +D] is sw-closed and so the sets Cn are sw-closed and finitely
well-positioned. Notice further that {Un (z̄) +D}∞ = D∞ and {Cn}∞ ⊆ C∞∩D∞.
To apply Theorem 7.3 it remains to show that the chain {Cn} is retractive. Let
xn ∈ Cn and xn/tn ⇀ d. Clearly, d ∈ C∞ ∩D∞. Under our assumption there is a
subsequence xnk

such that xnk
− αd ∈ C for α small enough. On the other hand,

xnk
∈ [Unk

(z̄) +D]. Namely, xnk
= ξnk

+ ynk
with ξnk

∈ Unk
(z̄) and ynk

∈ D.
From, xnk

/tnk
= ξnk

/tnk
+ ynk

/tnk
it follows ynk

/tnk
⇀ d ∈ C∞ ∩ D∞. By the

assumptions, passing to a subsequence {ys} ⊆ {ynk
} we have ys −αd ∈ D for small

α. Namely, xs − αd = ξs + (ys − αd) ∈ Us (z̄) + D. Hence, for small α it holds
xs − αd ∈ Cn, where {xs} is a subsequence of {xn}. This proves that the sequence
{Cn} is retractive. Hence, there is x̄ ∈

⋂∞

n=1 Cn. This means that for all n we have
x̄ ∈ C and x̄ ∈ Un (z̄) + D. That is, x̄ = ξn + yn with ξn ∈ Un (z̄) and yn ∈ D.
Clearly, ξn ⇀ z̄. Hence, x̄ − ξn = yn ⇀ x̄ − z̄. As D is sw-closed, x̄ − z̄ = ȳ ∈ D.
Therefore, z̄ = x̄− ȳ.

Acknowledgements. The financial support of the European Research Council (ad-

vanced grant, BRSCDP-TEA) is gratefully acknowledged. We are greatly indebted to an

anonymous referee for very helpful comments and suggestions.

References
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