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We prove the following result: let K ⊆ RN be convex with nonempty interior, X a topological
space and f : K ×X → R be concave and u.s.c. in the first variable and coercive and l.s.c. in the
second. Then the (perturbed) strict minimax inequality

sup
λ∈K

inf
x∈X

f(λ, x) + g(λ) < inf
x∈X

sup
λ∈K

f(λ, x) + g(λ),

for some continuous concave g : K → R, is equivalent to the following condition on superdifferen-
tials: if F (λ) = infX f(λ, x), for some λ ∈ K̊

∂F (λ) \
⋃

x∈X
f(λ,x)=F (λ)

∂f(λ, x) 6= ∅.

As an application of this differential characterisation we prove a generalised version of a theorem
of Ricceri, a criterion of regularity for marginal functions, and the fact that to check whether some
perturbed minimax inequality holds, one can test with affine perturbation only.

Keywords: Minimax inequality, concave functions, marginal functions, multiple solutions to vari-
ational problems, nonlinear eigenvalues

1. Introduction

The study of some sort of strict minimax inequalities, inequalities of the form

sup
Y

inf
X

f(x, y) < inf
X

sup
Y

f(x, y),

has a long history and has proved to be useful in various fields. We recall in
particular three theories initiated by Ricceri’s works [6], [7] and [8], in which some
kind of minimax inequalities are applied to the study of multiplicity of solutions of
nonlinear B.V.P. (see [9] for a comprehensive reference on the subject). The first
one is given by the following variational principle.

Theorem 1.1 ([6], [1]). Let X be a reflexive real Banach space, J : X → R a
sequentially weakly lower semicontinuous functional and Φ : X → R a strongly
continuous functional satisfying lim‖x‖→∞Φ(x) = +∞. Assume also that, for each
λ > 0, Φ + λJ is continuously Gateaux differentiable, bounded from below and
satisfies the Palais Smale condition. For each r > infX Φ, put

ϕ1(r) = inf
x∈Φ−1(]−∞,r[)

J(x)− infΦ−1(]−∞,r]) J

r − Φ(x)
,
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ϕ2(r) = sup
y∈Φ−1([r,+∞[)

inf
x∈Φ−1(]−∞,r[)

J(x)− J(y)

Φ(y)− Φ(x)
.

Further, assume that there exists r > infX Φ such that

ϕ1(r) < ϕ2(r). (1)

Then, for each λ ∈] 1
ϕ2(r)

, 1
ϕ1(r)

[, Φ + λJ has at least three critical points.

Here, except for technical functional analytic hypotheses, the main assumption is
given by the strict inequality (1).

The second tool is given by the following theorem.

Theorem 1.2 ([7]). Let X be a separable and reflexive real Banach space, I ⊆ R

an interval and f : I ×X → R a function satisfying the following conditions:

1. For each x ∈ X, f(·, x) is continuous and concave.

2. For each λ ∈ I and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is sequentially weakly
compact.

3. There exists a continuous concave function g : I → R such that

sup
λ∈I

inf
x∈X

(f(λ, x) + g(λ)) < inf
x∈X

sup
λ∈I

(f(λ, x) + g(λ)) . (2)

Then there exists an open interval I ′ ⊆ I such that for each λ ∈ I ′, f(λ, ·) has a
local, non global minimum, w.r.t. the weak topology.

Here a strict minimax inequality, (2), explicitly appears as the main requirement
which allows, under additional but very general hypotheses, to obtain multiple
solutions to fx(λ, x) = 0.

Finally, in the recent work [8], Ricceri suggested another way of looking for multi-
ple critical points, namely by looking at multiple global minima for parametrized
families of functionals. As a starting step of this program, the following theorem,
which we reformulate with a perturbation g, has been obtained.

Theorem 1.3 ([8]). Let X be a topological space, I ⊆ R an interval and f : I ×
X → R satisfying the following conditions:

1. For each λ ∈ I and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is closed and compact.

2. There exists a function g : I → R such that

sup
λ∈I

inf
x∈X

(f(λ, x) + g(λ)) < inf
x∈X

sup
λ∈I

(f(λ, x) + g(λ)) ,

and that, for each x ∈ X, f(·, x) + g(·) is continuous and quasiconcave (i.e.,
{λ ∈ I : f(λ, x) + g(λ) ≥ t} is an interval for any t).

Then there exists λ0 ∈ I such that f(λ0, ·) has at least two global minima.

As before, with suitable additional hypotheses, the latter theorem provides another
source of three critical points results. Notice that the third hypothesis here is a
wide generalisation of the quasiconcavity in Theorem 1.2. However, we will mainly
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(except for the last section) be concerned with the “concave� setting of Theorem
1.2

Let us now briefly discuss the relations between Theorems 1.1, 1.2 and 1.3. Re-
garding Theorem 1.1 in the form given, assumption (1) is actually equivalent, by a
recent work of Faraci and the author, [5], to

sup
λ∈I

inf
x∈X

(Φ(x) + λ(J(x)− r)) < inf
x∈X

sup
λ∈I

(Φ(x) + λ(J(x)− r)) ,

for some r, thus to a strict minimax inequality for a suitable linear perturbation.
Regarding Theorems 1.2 and 1.3, the main point is that, while the function f
may not satisfy a strict minimax inequality, one can still hope that a suitable
perturbation of it (depending only on λ) will do. Therefore these theorems require
almost the same kind of inequality: a linearly perturbed strict minimax inequality
for Theorem 1.1, a concave-perturbed strict minimax inequality for Theorem 1.2,
and, roughly speaking, a quasi-concave perturbed strict minimax inequality for
Theorem 1.3. Clearly, in the last two theorems, the easiest way to check these
inequalities for some perturbation is to restrict the analysis to the linear ones.

A natural question arose by Ricceri is thus the following:

Assume X is a topological space, I an interval and f : I ×X → R a function such
that

1. For each x ∈ X, f(·, x) is continuous and concave.

2. For each λ ∈ I and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is closed and compact.

Suppose furthermore that there exists a continuous concave g such that the strict
minimax inequality (2) holds. Is it true that there exists a linear function ℓ(λ) such
that the same inequality holds with ℓ instead of g?

This question has been answered affirmatively by Cordaro in [3], [4], assuming f was
itself linear in the λ variable, i.e. f(λ, x) = Φ(x) + λJ(x) for some Φ, J : X → R;
however, the general case remained unsolved. Moreover, one may wonder whether
a general statement of this kind holds true for functions depending (in a concave
way) on a vectorial parameter λ ∈ K, the latter being a general convex subsets of
RN , rather than just an interval.

In this paper we will give a differential characterisation of (2), under the structural
condition 1. and 2. of Theorem 1.2, with f vectorially parametrized. Therefore, the
general setting we will work in is given by a function f : K ×X → R, where K is
a convex subset of RN with nonempty interior, X is a topological space, and f is
concave and u.s.c. in the first variable and coercive in the second, i.e.

1. For any λ ∈ K and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is closed and compact.

2. For any x ∈ X, f(·, x) : K → R is concave and u.s.c..

Given such an f , we define the concave function

F (λ) := inf
x∈X

f(λ, x),

often called in the literature marginal function.
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Denoting with ∂ the superdifferential operator in the λ variable and with (v, w) the
standard scalar product in RN , we will prove the following result.

Theorem 1.4. Let X be a topological space, K a convex subset of RN with nonempty
interior and f : K ×X → R be such that

1. For each x ∈ X, f(·, x) is concave and u.s.c.;

2. for each λ ∈ I and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is closed and compact.

The strict minimax inequality (2) holds for some u.s.c., concave g if and only if

S =
⋃

λ∈K̊

(
∂F (λ) \

⋃

x∈X
f(λ,x)=F (λ)

∂f(λ, x)

)
6= ∅.

Moreover if α ∈ −S, then (2) holds with g(λ) = (α, λ).

Implicit in the statement of the theorem is the affirmative answer (in the general,
vectorial case) to the question outlined above.

As a further application of this differential characterisation, we give an elementary
proof of Theorem 1.3 which on one hand avoids the theory of multifunctions, and
on the other holds true in the more general case of convex K ⊆ RN , instead of just
intervals. We remark, however, that the general statement of 1.3 involves functions
which are quasiconcave in the real variable, and in this case the whole approach
presented here fails, as Example 4.6 at the end of the paper shows.

The plan of the paper is the following. In Section 2 we provide some definitions
and recall some elementary results about concave functions. In Section 3 we prove
Theorem 1.4, and in the last section we describe some consequence of the latter: a
new proof of a generalised version of Theorem 1.3, a regularity theorem for marginal
functions and a brief discussion of the quasiconcave case.

2. Preliminary material

In this section we introduce some notations and preliminary propositions.

K will denote an arbitrary convex subset of RN , with K̊ 6= ∅. We will denote
its boundary with b(K), to avoid unnecessary confusion with the superdifferential

operator ∂. Given a concave function h : K → R, we denote by h̃ the extension

h̃(λ) =

{
h(λ) if λ ∈ K,

−∞ if λ ∈ RN \K,

and will say that h is closed if it coincides on K with the closure of h̃.

Given the topological space X, recall that the function f : K×X → R is such that

1. for any x ∈ X, f(·, x) is u.s.c. and concave function in K;

2. for any t ∈ R and λ ∈ K, the set {x ∈ X : f(λ, x) ≤ t} is closed and compact.

We will consider the family of functions F defined as:

F = {f̃(·, x) : x ∈ X}, (3)
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and we will set, for any λ ∈ RN ,

F (λ) = inf
h∈F

h(λ), D := dom(F ) = {λ ∈ RN : F (λ) > −∞}.

The function F is thus concave and u.s.c., and the coercivity assumption on f
implies that K ⊆ D ⊆ K. In the following we will use, with slight abuse of
notation, the same letter F (or F) for the (family of) restrictions on K or K̊.

With these notations we rewrite (2) as

sup
λ∈K

(F + g)(λ) = sup
λ∈K

inf
h∈F

(h+ g)(λ) < inf
h∈F

sup
λ∈K

(h+ g)(λ), (4)

for some u.s.c. and concave function g on K. Notice that (4) is equivalent to the

same statement with K substituted by K̊: indeed, while F is only u.s.c., being also
proper and concave, it is continuous along line segments, and thus supK(F + g) =
supK̊(F + g).

Finally, being F locally lipschitz continuous in K̊, we will consider F ∪ {F} as a

subset of C(K̊), where the latter is the usual Frechet Space of continuous functions

on K̊, with the topology given by convergence on compact subsets, and metric

d(h, k) =
+∞∑

n=1

1

2n
supKn

|h− k|

1 + supKn

|h− k|
,

for some increasing chain of convexes Kn ⋐ K̊, exhausting K̊. In what follows, we
will denote by F∗ the closure in C(K̊) of F .

We point out that while it is not true in C(K̊) with such a topology that from
hn → h it follows supK̊ hn → supK̊ h, the following holds.

Proposition 2.1. Let C ⊂ C(K̊) be the set of concave functions defined in K̊.
Then C is closed and if K is bounded it holds hn → h ⇒ supK̊ hn → supK̊ h.

Proof. It suffice to prove the last statement. By hn → h, we have that for any
compact K ′

⋐ K̊, hn → h uniformly on K ′, thus supK′ hn → supK′ h. Therefore

for any K ′
⋐ K̊

lim
n

sup
K̊

hn ≥ lim
n

sup
K′

hn = sup
K′

h,

and taking the supremum over K ′ in the right hand side we have

lim
n

sup
K̊

hn ≥ sup
K̊

h,

which shows the claim in the case supK̊ h = +∞. Suppose now that supK̊ h < +∞
but

lim
n

sup
K̊

hn − sup
K̊

h = δ > 0. (5)

We choose λ ∈ K̊ such that supK̊ h < h(λ) + δ
2
, and a sequence λn ∈ K̊ such that

hn(λn) → limn supK̊ hn. Since K is bounded, we can suppose, after reindexing, that
λn → λ0 ∈ K. By concavity

hn

(
λ+ λn

2

)
≥

1

2

(
hn(λn) + hn(λ)

)
,
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and since λ+λn

2
→ λ+λ0

2
∈ K̊ and we have uniform convergence in compact subsets

of K̊, we can safely take the limit in the latter inequality. Rearranging, we obtain

lim
n

sup
K̊

hn ≤ 2h

(
λ+ λ0

2

)
− h(λ) ≤ 2 sup

K̊

h− h(λ) ≤ sup
K̊

h+
δ

2
,

which contradicts (5)

Notice that boundedness is essential in the previous proposition. Taking for example
K = (0,+∞) and hn(λ) = min{1, λ

n
} we see that hn → 0 in C but supK hn ≡ 1.

Using this proposition we have that, in the case K bounded, (4) is unaltered when

F is replaced by F∗. Indeed the left hand side is unaltered since for any λ ∈ K̊

inf
h∈F

(h+ g)(λ) = inf
h∈F∗

(h+ g)(λ) = (F + g)(λ).

Regarding the right hand side, it obviously holds

inf
h∈F

sup
K̊

(h+ g) ≥ inf
h∈F∗

sup
K̊

(h+ g)

and for any ε > 0, we can pick an element hε ∈ F∗ such that

sup
K̊

(hε + g) < ε+ inf
h∈F∗

sup
K̊

(h+ g).

Choosing hn → hε, hn ∈ F and using the previous proposition we have

inf
h∈F

sup
K̊

(h+ g) ≤ lim
n

sup
K̊

(hn + g) = sup
K̊

(hε + g) ≤ ε+ inf
h∈F∗

sup
K̊

(h+ g),

which gives the equality taking ε → 0.

The next proposition will be useful in order to deal with unbounded K, as well as
extrema attained on b(K).

Proposition 2.2. Let F be constructed via f : K×X → R, coercive in the second
variable, u.s.c. and concave in the first one. If

sup
K

F < inf
h∈F

sup
K

h

then for every chain {Kn} of compact subsets of K̊ exhausting K̊, the strict minimax
inequality holds on Kn for infinitely many n.

Proof. It suffice to show that for every chain there is at least one Kn for which
the strict minimax inequality holds on it. Since F and every h ∈ F are u.s.c. and
concave, they are all continuous on line segments, and thus the minimax inequality
on K is equivalent to the one on K̊. We choose t such that

sup
λ∈K̊

inf
h∈F

h < t < inf
h∈F

sup
λ∈K̊

h, (6)
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and consider Cn = {x ∈ X : supKn

f(·, x) ≤ t}. Suppose, by contradiction, that

sup
λ∈Kn

inf
h∈F

h = inf
h∈F

sup
λ∈Kn

h

for every n: then Cn is never empty, and it is closed being the intersection of closed
compact sets. Since {Cn} obviously has the finite intersection property, and is
contained in the closed compact set C1, there exists x ∈

⋂
n≥1Cn and therefore,

supK̊ f(·, x) ≤ t, which contradicts (6), since letting h = f(·, x) ∈ F , one has

inf
F

sup
K̊

h ≤ sup
K̊

h ≤ t.

We remark that given an arbitrary family F of u.s.c., concave functions, (i.e. not
necessarily a "coercive" one), an argument similar to the one used in the proof of
Proposition 2.1 gives the same statement in the case K bounded.

We finally recall some classical results on concave functions defined (and finite) in
a convex set K ⊆ RN with nonempty interior.

Proposition 2.3.

1. Superdifferential. The superdifferential of a concave function h : K → R at a
point λ0 of its domain is the set ∂h(λ0) := {α ∈ RN : h(λ) ≤ h(λ0) + (α, λ−
λ0)}. A concave function is said to be superdifferentiable at λ0 iff ∂f(λ0) 6= ∅.
The superdifferential is a closed convex subset of RN and it is nonempty and
bounded iff λ0 ∈ K̊.

2. Differentiability properties. A concave function is differentiable almost every-
where in its domain, and λ0 is a differentiability point iff the superdifferential
consists of precisely one vector (the gradient).

3. Extrema. A concave function h : K → R is continuous in K̊, and it attains
a maximum at λ0 ∈ K iff 0 ∈ ∂h(λ0).

4. Sum of concave functions. If h, g : K → R are concave functions, then for
any λ0 ∈ K,

∂(h+ g)(λ0) = ∂h(λ0) + ∂g(λ0),

with the right hand side being the set of the sums α+ β with α ∈ ∂h(λ0) and
β ∈ ∂g(λ0).

5. Infimum of concave functions. If F is a family of concave functions and
F = infh∈F h, then F is concave, and at any point λ0 of its domain it holds

∂F (λ0) ⊇
⋃

h∈F
h(λ0)=F (λ0)

∂h(λ0).

Indeed from h(λ) ≤ h(λ0) + (α, λ− λ0) it follows F (λ) ≤ h(λ0) + (α, λ− λ0)
and taking the infimum over h ∈ F shows the claim.
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3. The differential characterisation

We now want to characterise the marginal functions F for which there exists an
affine perturbation ℓ such that (4) holds. We will always consider families F con-
structed from functions f : K ×X → R, which satisfy the hypotheses of Theorem
1.4, i.e., u.s.c. and concave in the first variable and coercive in the second. We will
sometimes call such a family of concave functions, a coercive family, due to Lemma
3.2 below.

Definition 3.1. Let F be the infimum of a family F of concave functions on K.
For any λ0 ∈ K, we set

∂FF (λ0) =
⋃

h∈F∗

h(λ0)=F (λ0)

∂h(λ0).

Notice that it holds ∂F (λ0) ⊇ ∂FF (λ0) for every λ0 ∈ K. Indeed if α ∈ ∂h(λ0) for
some h ∈ F∗ such that h(λ0) = F (λ0), then

F (λ0) + (α, λ− λ0) = h(λ0) + (α, λ− λ0) ≥ h(λ) ≥ F (λ), ∀λ ∈ K̊

since F (λ) = infh∈F h(λ) = infh∈F∗ h(λ) for λ ∈ K̊. Using the continuity along
line segments we obtain the same inequality on the whole K, and thus α ∈ ∂F as
claimed.

Suppose now that g : K → R is any u.s.c. and concave function, and define the
family F + g as {h + g : h ∈ F}. Then, by the additivity of the superdifferential,
it is easy to see that

∂F+g(F + g) = ∂FF + ∂g. (7)

While the use of the family F∗ seems artificial, for coercive families we can equiva-
lently use F instead.

Lemma 3.2. Suppose that the family F is coercive. Then, for any h ∈ F∗, there

exists h ∈ F such that h ≤ h. Moreover, for any λ0 ∈ K̊,

⋃

h∈F∗

h(λ0)=F (λ0)

∂h(λ0) =
⋃

h∈F
h(λ0)=F (λ0)

∂h(λ0). (8)

Proof. Let us prove the first statement. Suppose hk → h uniformly on compact
subsets, with hk ∈ F . Let {xk} be such that hk(·) = f(·, xk), and {λm} be a dense
subset of K. The family of subsets of X

Cn =

{
x ∈ X : ∀m ≤ n, f(λm, x) ≤ h(λm) +

1

n

}

is a chain, and each Cn is not empty, since it contains some xk for sufficiently large
k. Therefore it has the finite intersection property and, by coerciveness, every Cn is

closed and compact. Therefore we can pick x ∈ ∩n≥1Cn, and setting h(λ) = f(λ, x),
for every m it holds f(λm, x) ≤ h(λm) and thus it holds for any λ ∈ K.
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To prove (8), it suffices to prove the inclusion ⊆. Given h ∈ F∗ such that h(λ0) =

F (λ0), consider α ∈ ∂h(λ0). If h ∈ F is such that h ≤ h, one has F (λ0) ≤ h(λ0) ≤

h(λ0) = F (λ0) and therefore h(λ0) = F (λ0). Moreover, being (α, λ − λ0) + F (λ0)

a support hyperplane for h, it is so for h too, being h ≤ h. Therefore α ∈ ∂h, and
the inclusion is proved.

Theorem 3.3. Suppose there exists λ0 ∈ K̊ such that

∂F (λ0) ) ∂FF (λ0). (9)

Then for any α ∈ ∂F (λ0) \ ∂FF (λ0), it holds

sup
K

(
F (λ) + (α, λ)

)
< inf

h∈F
sup
K

(
h(λ) + (α, λ)

)
.

Proof. As stated in the previous section, it suffice to prove the strict minimax
inequality for the family F∗, and we will prove it in the equivalent form

sup
K

(
F (λ) + (α, λ− λ0)

)
< inf

h∈F∗

sup
K

(
h(λ) + (α, λ− λ0)

)
.

Let
α ∈ ∂F (λ0) \ ∂FF (λ0),

and consider ℓ(λ) = −(α, λ − λ0). We have 0 ∈ ∂(F + ℓ)(λ0) and therefore F + ℓ
attains its maximum in λ0. Moreover for any h ∈ F∗, we have either h(λ0) > F (λ0)
or, if h(λ0) = F (λ0), 0 /∈ ∂(h+ ℓ). Therefore for any h ∈ F∗ it holds supK(h+ ℓ) >

F (λ0). Consider now a closed convex K ′
⋐ K̊ with λ0 ∈ K̊ ′ and suppose we have

a sequence hn ∈ F∗ such that

F (λ0) + 1 ≥ sup
K

(hn + ℓ) → F (λ0).

In the whole K ′, hn + ℓ is bounded above by F (λ0) + 1 and below by infK′(F + ℓ).
Therefore hn is equicontinuous and equibounded and by Ascoli-Arzelá’s theorem we

can suppose, by renaming an appropriate subsequence, that hn → h ∈ F∗ uniformly
on K ′. But then it holds

F (λ0) ≤ h(λ0) ≤ sup
K′

(h+ ℓ) ≤ lim
n

sup
K′

(hn + ℓ) = F (λ0).

Therefore h+ ℓ attains its maximum at λ0 ∈ K̊ ′, thus giving 0 ∈ ∂(h+ ℓ)(λ0). This

is a contradiction, since then we would obtain α ∈ ∂h(λ0).

The converse is now proved.

Theorem 3.4. Suppose that for every λ0 ∈ K̊ it holds

∂F (λ0) = ∂FF (λ0) (10)

then for every u.s.c. and concave g it holds

sup
K

(F + g) = inf
h∈F

sup
K

(h+ g).
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Proof. We argue by contradiction and apply Proposition 2.2 to obtain that the

strict minimax inequality holds for some convex compact K1 ⋐ K̊. Notice further
that the u.s.c. and concave perturbation g is inessential, since by (7),

∂F (λ0) = ∂FF (λ0) ⇒ ∂(F + g)(λ0) = ∂F+g(F + g)(λ0).

Therefore we can, without loss of generality, suppose g = 0, and that (10) holds
for every λ0 ∈ K1 (considering the superdifferential as the one defined by concave
functions on K, i.e., neglecting the normal cones on boundary points of K1). Sup-
pose then that (4) holds. Since F is continuous on K1, it attains its maximum at
λ0 ∈ K1, and this is equivalent to the existence α ∈ ∂F (λ0) with −α ∈ N(λ0), the
latter being the normal cone to K1 at λ0. Then, by (10), and Lemma 3.2, for some

h ∈ F with h(λ0) = F (λ0) we have α ∈ ∂h(λ0). But then h attains its maximum at
λ0, being α in the normal cone to K1 at λ0, and this contradicts the strict minimax
inequality since its maximum is F (λ0).

Theorems 3.3 and 3.4 thus gives our main result.

Theorem 3.5. The strict minimax inequality (2) holds for some u.s.c. and concave
g if and only if

S =
⋃

λ∈K̊

(∂F (λ) \ ∂FF (λ)) 6= ∅. (11)

Moreover if α ∈ −S, then (2) holds with g(λ) = (α, λ).

One may wonder if −S is actually the set of all the slopes α such that (2) holds
with g(λ) = (α, λ). This is true in dimension one.

Theorem 3.6. Suppose K ⊂ R. If (2) holds for g(λ) = (α, λ), then α ∈ −S.

Proof. Using Proposition 2.2, we can suppose that K is a closed bounded interval.

Let ℓ(λ) = αλ and suppose that F + ℓ attains its maximum at λ0 ∈ K. If λ0 ∈ K̊
then 0 ∈ ∂(F + ℓ)(λ0) = ∂F (λ0) + α, and thus −α ∈ ∂F (λ0). It cannot be
−α ∈ ∂FF (λ0) for otherwise there would exists h ∈ F such that h(λ0) = F (λ0)
and 0 ∈ ∂(h + ℓ)(λ0): indeed this would imply that h + ℓ has the same maximum
as F + ℓ, contradicting (2).

Therefore λ0 ∈ b(K) and F + ℓ is monotone. Suppose, without loss of generality,
K = [λ0, b] and F + ℓ nonincreasing. If ∂(F + ℓ)(λ0) = [a,+∞[, then a ≤ 0 and
∂F (λ0) = [a− α,+∞[.

Using Proposition 2.3, point 2. and 5., we can pick now a sequence {λn} of dif-
ferentiability points for F , λn ↓ λ0, and hn such that hn(λn) = F (λn) → F (λ0),
h′
n(λn) = F ′(λn) ↑ a − α. Clearly {hn} is equibounded and thus equilipschitz on

compact subintervals of K̊, and we can suppose that hn → h ∈ F∗ uniformly on

compact subsets. By Lemma 3.2 we can choose h ∈ F such that h ≤ h. It then
holds

F (λ) ≤ hn(λ) ≤ F (λn) + F ′(λn)(λ− λn)
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for every λ ∈ K and passing to the limit we infer

F (λ0) ≤ h(λ0) ≤ h(λ0) ≤ F (λ0)

and

h(λ) ≤ h(λ) ≤ h(λ0) + (a− α)(λ− λ0) = h(λ0) + (a− α)(λ− λ0).

Therefore (a − α) ∈ ∂h(λ0) and thus 0 ≥ a ∈ ∂(h + ℓ). This shows that h + ℓ is
nonincreasing, and therefore

max
K

(h+ ℓ) = (h+ ℓ)(λ0) = (F + ℓ)(λ0) = max
K

(F + ℓ),

contradicting (2).

In higher dimension this characterisation of the set S fails, as the following example
shows.

Example 3.7. Let K = [0, 1]× [−1, 1] ⊂ R2, and let F = {h1, h2}, with

h1(x, y) = −x− y, h2(x, y) = y − x.

If F = min{h1, h2} then F attains its maximum at the origin and

0 = max
K

F < min
{
max
K

h1,max
K

h2

}
= 1

thus the strict minimax inequality holds (with the zero affine perturbation). How-

ever for any λ0 ∈ K̊,

∂F (λ) = {−1} × [−1, 1] ⇒ S = {−1} × (−1, 1)

and (0, 0) /∈ −S.

4. Some consequences of the differential characterisation

We can use the characterisation given to obtain an elementary proof of Theorem 1.3,
without using the theory of multifunctions. To this end we will need a lemma stating
that ∂FF is actually big enough. Recall that an exposed point of a closed convex set
K is a point e ∈ b(K) such that there exists a supporting hyperplane intersecting
K only in e. More explicitly, there exists α ∈ RN such that

(α, e− z) < 0, ∀z ∈ K \ {e}.

The set of all exposed points ofK will be denoted by Ex(K). Straszewicz’s theorem
states that Ex(K) is dense in the set of extreme point, and thus if K is a compact
convex set, it coincides with the closed convex envelope of Ex(K).

Lemma 4.1. For any λ0 ∈ K̊,

∂FF (λ0) ⊇ Ex (∂F (λ0)) .
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Proof. Consider first the case ∂F (λ0) = {∇F (λ0)}, i.e. λ0 is a differentiability
point for F . Let

Cn :=

{
x ∈ X : f(λ0, x) ≤ F (λ0) +

1

n

}
,

and, by the usual argument, pick x ∈
⋂

nCn. Then clearly h := f(·, x) ∈ F

satisfies h(λ0) = F (λ0). Moreover ∂h(λ0) is not empty being λ0 ∈ K̊ and thus by

Proposition 2.3, point 5., ∂h(λ0) = {∇F (λ0)}.

Suppose now that λ0 is arbitrary, and let e be an exposed point of ∂F (λ0). By
Theorem 25.6 of [10], there exists a sequence λn → λ0 of differentiability points for
F such that ∇F (λn) → e. By what has just been proved, we can pick hn ∈ F such
that hn(λn) = F (λn) and ∂hn(λn) = ∇F (λn). On arbitrary K ′

⋐ K containing λ0,
hn is definitely bounded below (by F ) and above (by, e.g., |(e, λ − λ0)| + 1), thus
we can suppose hn → h ∈ F∗. Clearly h(λ0) = F (λ0) and passing to the limit in

hn(λ) ≤ F (λn) + (∇F (λn), λ− λn)

we obtain that e ∈ ∂h(λ0). It suffice now to apply Lemma 3.2 to obtain h ∈ F such

that F ≤ h ≤ h, and then h(λ0) = F (λ0) and e ∈ ∂h(λ).

Theorem 4.2. Let X be a topological space, K a convex subset of RN with K̊ 6= ∅,
and f : K ×X → R a function such that

1. For any λ ∈ K and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is closed and compact.

2. For any x ∈ X, f(·, x) : K → R is u.s.c. and concave.

If for some u.s.c. and concave g : K → R it holds

sup
λ∈K

inf
x∈X

f(λ, x) + g(λ) < inf
x∈X

sup
λ∈K

f(λ, x) + g(λ),

then there exists λ ∈ K̊ such that f(λ, ·) : X → R has at least two global minima.

Proof. By Theorem 3.4, there is λ0 ∈ K̊ such that

∂F (λ0) ) ∂FF (λ0). (12)

By the previous lemma, for any exposed point e ∈ Ex (∂F (λ0)), we can pick xe ∈ X
such that

f(λ0, xe) = he(λ0) = F (λ0) = inf
x∈X

f(λ0, x), e ∈ ∂f(λ0, xe).

Now it cannot be xe ≡ x for every e ∈ Ex (∂F (λ0)), for otherwise h := f(·, x) ∈ F

would satisfy ∂h(λ0) ⊃ Ex (∂F (λ0)) which implies ∂h(λ0) = ∂F (λ0), contradicting
(12).

Remark 4.3. It is easy to check that this theorem holds true if the first hypothesis
on f is replaced by

1. For every λ ∈ K f(λ, ·) is sequentially l.s.c., and its sublevel sets are sequen-
tially compact,
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which is more handy in applications.

Remark 4.4. In the scalar case K ⊆ R, Theorem 3.6 shows that the affine per-
turbations for which (2) holds are precisely the ones whose slope is in the set

−
⋃

λ∈K̊

(
∂F (λ) \ ∂FF (λ)

)
.

Obviously such a slope cannot exists if F is differentiable in the whole K̊, since in

this case for any λ ∈ K̊, ∂h(λ) = {F ′(λ)} for any h ∈ F∗ such that h(λ) = F (λ).
Therefore (2) can hold for some g only if F is not differentiable at some interior
point. Moreover, the set of "multiple global minima" parameters λ ∈ K detected
by Theorem 1.3 is at most denumerable, since it is contained in the set of non
differentiability of F .

One useful corollary links the uniqueness of global minima with the regularity of
the marginal function F . Recall that one says that a function h : K → R is C-
semiconcave if h− C|λ|2 is a concave function. Here is a variation of a well known
regularity criterion for marginal functions (see e.g. Theorem 3.4.4 and Proposition
3.3.4 d) in [2]), which one can apply, for example, to smooth, C-semiconcave and
coercive families of functions.

Corollary 4.5. Let X be a topological space, K a convex subset of RN with K̊ 6= ∅,
and f : K ×X → R a function such that

1. For any λ ∈ K and t ∈ R, {x ∈ X : f(λ, x) ≤ t} is closed and compact.

2. For some continuous differentiable g : K → R, the functions f(·, x)+ g(·) are
concave and C1 for each x ∈ X.

If f(λ, ·) has a unique global minimum for every λ ∈ K̊, then the marginal function

F (λ) = infX f(λ, x) is C1(K̊).

Proof. Notice that F is C1 iff G(λ) := F (λ) + g(λ) is differentiable at every
point, since the differential of a concave function is always continuous in the set of
differentiability points. Call G the family of concave functions {f(x, ·) + g(·) : x ∈

X}; clearly its marginal function is G. Suppose λ0 ∈ K̊ is such that ∂G(λ0) contains
more than one point. By the previous theorem, one must have ∂GG(λ0) = ∂G(λ0),
since otherwise f(λ0, ·) would have at least two global minima. We can thus pick
α1, α2 in ∂GG(λ0) with α1 6= α2, and therefore x1 and x2 in X such that, having
cancelled the terms g(λ0),

f(λ0, x1) = f(λ0, x2) = inf
X

f(λ0, x) = F (λ0)

and, since ∂
(
f(λ0, xi) + g(λ0)

)
= ∂f(λ0, xi) + g′(λ0),

α1 − g′(λ0) ∈ ∂f(λ0, x1), α2 − g′(λ0) ∈ ∂f(λ0, x2).

Since f(λ0, xi) is differentiable, the latter conditions imply that x1 6= x2, contra-
dicting the well posedness of infX f(λ0, x).
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Theorem 4.2 also shows that the class of affine perturbation is large enough, in the
sense described in the introduction. Indeed if (2) holds for some concave g, then by

Theorem 3.4, there exists λ0 ∈ K̊ such that ∂F (λ0) ) ∂FF (λ0). But then Theorem
3.3 applies, giving a positive answer to the question outlined in the introduction.

However, we stress that Theorem 1.3, as proved by Ricceri using the theory of
multifunctions, holds (in one dimension) under the much weaker assumption that
f(·, x) + g(·) is continuous and quasiconcave for every x ∈ X.

One may then wonder if the analogous of the previous statement holds in this more
general setting, or, at least, whether there exists a linear perturbation giving the
strict minimax inequality if one already has it for a quasiconcave perturbation. The
following example shows that this is not the case.

Example 4.6. Let K = [−1, 1], and X = {0, 1}. Set, for ε ∈ (0, 1/2),

f(λ, 1) =

{
λ if λ ≤ 0,

−ελ if λ ≥ 0;
f(λ, 2) =

{
−λ if λ ≥ 0,

−ελ if λ ≤ 0.

One has F (λ) = min{f(λ, 1), f(λ, 2)} = −|λ|. Moreover

∂F (0) = ∂f(0, 1) ∪ ∂f(0, 2), ∂F (λ) =

{
∂f(λ, 1) if λ < 0,

∂f(λ, 2) if λ > 0.

We then have

1. f satisfies 1. and 2. of Theorem 1.2;

2. by Theorem 3.5, for every concave g (and thus, a fortiori, for every affine ℓ)
it holds

sup
λ∈K

inf
x∈X

f(λ, x) + g(λ) = inf
x∈X

sup
λ∈K

f(λ, x) + g(λ).

Let now

g(λ) =

{
0 if λ ≤ 0,

2ελ if λ ≥ 0.

Then

1. g is quasiconcave;

2. f(·, i) + g(·) is concave and supλ∈K f(λ, i) + g(λ) = ε > 0, for i = 1, 2;

3. F + g is concave and supK(F + g) = 0.

Therefore the strict minimax inequality holds with respect to the perturbation g.
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