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We study touching cones of a (not necessarily closed) convex set in a finite-dimensional real
Euclidean vector space and we draw relationships to other concepts in Convex Geometry. Ezposed
faces correspond to normal cones by an antitone lattice isomorphism. Poonems generalize the
former to faces and the latter to touching cones, these extensions are non-isomorphic, though.
We study the behavior of these lattices under projections to affine subspaces and intersections
with affine subspaces. We prove a theorem that characterizes exposed faces by assumptions
about touching cones. For a convex body K the notion of conjugate face adds an isotone lattice
isomorphism from the exposed faces of the polar body K° to the normal cones of K. This extends
to an isomorphism between faces and touching cones.
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1. Introduction

The term of touching cone has first appeared in 1993 when Schneider used it to
conjecture! in Section 6.6 of [15] equality conditions for the Aleksandrov-Fenchel
inequality. This inequality, established in 1937, is really a system of quadratic
inequalities between several convex bodies, i.e. compact convex subsets of a finite-
dimensional real Euclidean vector space (E, (-,-)). A very special case is the isoperi-
metric inequality in dimension two that states that the area A and the boundary
length [ of a two-dimensional convex body satisfy 4rA < [? with equality if and
only if the convex body is a disk.

Initially we were trying to improve our understanding of projections of state spaces.
These convex bodies, motivated in Section 1.3, are examples where the notion of
touching cone is the same as normal cone. We are not aware of further attention
to touching cones in the literature. So in Section 1.2 we take the opportunity and
collect evidence of their significance in Convex Geometry:

1. Touching cones arise from normal cones in an analogous way as faces arise from
exposed faces.

LAll of these conjectures are still open.
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Figure 1.1: The closed quarter disk K (left) with its normal cones (right) sketched
in the unit disk. Proper normal cones of K are: three quadrants at the faces {a}, {b}
and {c}, two rays at the faces [a,b] and [a, c| and a family of rays at the one-point
faces of the arc from b to ¢ other than {b} or {c}. The two dashed rays are touching
cones but not normal cones of K.
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2. The pair of exposed face and face changes its role with the pair of normal
cone and touching cone when projection to an affine subspace is replaced by
intersection with an affine subspace.

3. If K is a convex body, there is a lattice isomorphism. The faces of the polar
body correspond to the touching cones of K by taking positive hulls.

4. Touching cones can detect the exposed faces which are intersections of coatoms.

5. Touching cones relate to a special smoothness in dimension two.

1.1. Preliminaries

Our analysis uses the frame of Lattice Theory, see e.g. Birkhoff [3], which is well-
known in Convex Geometry, see e.g. Loewy and Tam [11] and the references therein.
A mapping f : X — Y between two partially ordered sets (posets) (X, <) and (Y, <)
is isotone if for all x,y € X such that x < y we have f(z) < f(y). The mapping
f is antitone if for all 2,y € X such that x <y we have f(x) > f(y). A lattice £
is a partially ordered set (£, <) where the infimum x Ay and supremum z V y of
each two elements x,y € L exist. All lattices appearing in this article are complete,
i.e. for an arbitrary subset S C £ the infimum A S and the supremum \/ S exist.
The reason is that elements x,y in these lattices are convex subsets of £ where a
relation z < y and x # y always implies a dimension step dim(z) < dim(y) (so £
has finite length and must be complete). In particular £ has a smallest element 0
and a greatest element 1. A coatom of L is an element = € £ not 1 such that y > x
and y # x implies y = 1 for all y € L.

Given a convex subset C' C E we explain the concepts of normal cone, exposed
face and face. The normal cone of C' at © € C is the set of vectors u € E, that
do not make for any y € C' an acute angle with the vector from = to y. We put
N(C,z):={u € E: (u,y—xz) <0 for all y € C}. The relative interior ri(C') of C'is
the interior of C' with respect to the affine span aff(C') of C'. The relative boundary
of C' is rb(C) := C \ ri(C). The normal cone of any non-empty convex subset
F C C is well-defined (see Section 4) as the normal cone of any = € ri(F). We
put N(C, F') := N(C, z). E.g. the normal cone of C' is the orthogonal complement
of the translation vector space lin(C') of aff(C') and further Examples are shown in
Figure 1.1. The normal cone of the empty set is N(C,)) := E. This and lin(C)*
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Figure 1.2: The stadium (left) consists of a square with two half-disks attached
on opposite sides. The supporting hyperplane H; defines the exposed face F; for
1 = 1,2. The two extreme points of F; are non-exposed faces. The truncated disk
K (right) is the closed unit ball in R?* with the segment z > % missing. The polar
body K° of K is the union of K with the bright closed triangle.

are the improper normal cones, all other normal cones are proper normal cones
and both together form the normal cone lattice N'(C'). The normal cone lattice is
a complete lattice ordered by inclusion with the intersection as the infimum (see
Prop. 4.8).

A supporting hyperplane of C' is any affine hyperplane H in E, such that C'\ H is
convex and C'N H is non-empty. An exposed face of C'is the intersection of C' with
a supporting hyperplane. An example is shown in Figure 1.2, left. In addition ()
and C' are exposed faces called improper exposed faces. All other exposed faces are
proper exposed faces. The set of exposed faces is the exposed face lattice F, (C).
This is a complete lattice ordered by inclusion and with the intersection as the
infimum (see Prop. 3.8). If C' has at least two points, then we have an antitone
lattice isomorphism (see Prop. 4.7)

N(C): Fi(C) = N(C), FN(C,F). (1)

Two examples of this isomorphism are sketched in Figure 1.3 in columns two and
three. The isomorphism does not require that C' is closed or bounded. We can
write the isomorphism (1) and its inverse in the form (18), i.e. for proper exposed
faces F' and proper normal cones N of C' we have

F i [(N(C,z) = N(C,y) for any y € ri(F),

zeF

N +— ﬂ F (C,u) = F (C,v) for any v € ri(N) \ {0}.
ueN\{0}

The closed segment between x,y € E is [z,y] := {(1 — N)x + Ay | A € [0,1]}, the
open segment between z,y € E is Jz,y[:= {(1 = Nz + Xy | A € (0,1)}. A face of
C' is a convex subset F' of C, s.t. whenever for 2,y € C the open segment |z, y|
intersects ', then the closed segment [z,y] is included in F'. An extreme point is
the element of a zero-dimensional face. The faces () and C are improper faces, all
other faces are proper faces. The set of all faces of C'is the face lattice of C' denoted
by F(C). Tt is easy to show that arbitrary intersections of faces are faces, so F(C)
is a complete lattice ordered by inclusion and with the intersection as the infimum.
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It is easy to show F(C) D F (C). A face which is not an exposed face will be
called a non-exposed face, see e.g. Figure 1.2, left.

1.2. Observations about touching cones

We introduce touching cones according to our results in Theorem 7.4. A touching
cone of C' is any non-empty face of a normal cone of C'. An example is shown in
Figure 1.1. The improper normal cones lin(C')* and E are touching cones called
improper touching cones, all other touching cones are proper touching cones. These
together form the touching cone lattice denoted by 7 (C'). This is a complete lattice
ordered by inclusion and with the intersection as the infimum. One has 7(C) D

N(C).

1.2.1. Analogy in creation of touching cones and faces

There is an analogy between touching cone and face if we use the concept of poonem
that Griinbaum [6] applies for a closed convex subset of E. In finite dimension
poonem is equivalent to face. We define a poonem of a convex subset C' C E as a
subset P of C' s.t. there exist subsets Fy, Fi,..., F) of C' with Fy = P, F, = C' and
F;_1 is an exposed face of F; for 1 = 1,...,k. Every poonem is a face because a
face of a face of C' is a face of C'. The converse is also true: given a proper face F'
of C, the smallest exposed face sup, (F') containing F' is a proper exposed face of
C' by Lemma 4.6, so dim(sup, (F)) < dim(C). By induction F'is a poonem of C.
We have unified extensions

F.(C) c F(C) = {poonems of elements in F, (C)},
N(C) c T(C) = {non-empty poonems of elements in N'(C)}.

As F(C) is the set of poonems of C', a more systematic definition would consider
poonems of proper elements or of coatoms of F| (C) and of N (C). In any case we
can see that the concepts of exposed face, normal cone and poonem suffice to define
face and touching cone in a unified way.

1.2.2. Compatibility with projection and intersection

We introduce Schneider’s (equivalent) definition of touching cone: If v € E is non-
zero and the exposed face F' := F|(C,v) is non-empty, then the face T'(C,v) of
the normal cone N(C, F) that contains v in its relative interior, is called a touching
cone; lin(C)* and E are touching cones by definition.

Let A C E be an affine subspace, by m,(C') we denote the orthogonal projection
of C'to A. If v € lin(A) and T(C,v) is a normal cone of C, then T'(m4(C),v) is
a normal cone of my(C). This is proved in Section 6 by a new characterization of
normal cones. Exposed faces of C' however may project to non-exposed faces of

WA(C).

Dually, exposed faces are preserved under intersection of C' with A. But for some
v € lin(A) the cone T'(C,v) may be a normal cone of C' while T'(C'N A, v) is not a
normal cone of C'N A. Example 7.8 discusses these aspects.
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Figure 1.3: A finite sketch of proper lattice elements, empty circles denote deleted
points, dashed lines denote deleted lines. Lattices belong to the convex body to
their left, we have F(K) = F,(K) and 7 (K°) = N(K°). In both rows there is an
antitone isomorphism between exposed faces and normal cones (between columns
two and three). The positive hull operator pos defines three isotone isomorphisms
between rows one and two. Touching cones that are not normal cones and non-
exposed faces are highlighted by a dark background (right column). The antitone

isomorphism of the conjugate face is F' +— E.

1.2.3. A lattice isomorphism for convex bodies

We consider a convex body K C E with at least two points and with the origin in
the interior, 0 € int(K’). The polar body

K :={ueE|(u,z) <1lforalze K}

is a convex body with 0 € int(K°), an example is shown in Figure 1.2, right.
Given a subset S C E, the positive hull pos(S) of S is the set of all finite positive
combinations of elements of S, i.e. an element x € E belongs to pos(S) if and
only if there is k € N, \; € R with \; > 0 and s; € S for ¢« = 1,...,k such that
x = Y% As; (we have 0 € pos(S)). In Section 8 we establish isotone lattice
isomorphisms

FL(K°) = N(K), Fw pos(F),

o (2)
F(K°) - T(K), F s pos(F).

The inverse isomorphism is given for a proper touching cone T' € 7 (K) by T +
rb(K°) N T. We think that (2) underlines (in the case of convex bodies) that
the notion of touching cone is as fundamental as face. An example of the lattice
isomorphisms is shown in Figure 1.3.

Following Remark 7.3 for a convex body K we have the partition of [E into the
relative interiors of touching cones # E. Denoting T'(K, u) the touching cone with
the vector v € E \ {0} in its relative interior, we have the partition

E\ {0} = U wer oy ti(T (K, ).
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Figure 1.4: This intersection of two closed disks has touching cones which are not
normal cones (dashed rays). Still, all proper faces are coatoms.

This is reminiscent of the partition of the metric projection (see e.g. Schneider [15])

E = Joex(z + N(K, ).

The partition of E \ {0} reminds us also of the partition of K*° into the relative
interiors of its faces (10). We have the following analogy:

Partition of rb(/K°) in relative | Partition of E \ {0} in relative interiors
interiors of proper faces. of proper touching cones of K.

1.2.4. Coatoms of the face lattice

We explain for a general convex subset C' C E that touching cones can characterize
exposed faces in terms of coatoms in F (C'). We recall that a coatom F' of F, (C)
does not need to satisfy the dimension equation dim(F) + 1 = dim(C), see e.g. Fy
in Figure 1.2, left. Since intersections of exposed faces are exposed, any intersection
of coatoms in F, (C) is an exposed face. A sufficient condition for the converse is
proved in Thm. 7.10:

Theorem. Let F' be a proper exposed face of C' where every touching cone included
in the normal cone N(C, F') is a normal cone. Then F is an intersection of coatoms

of F1L(C).

Figure 1.4 shows that there is no converse to the theorem. Examples are discussed
after the remark below. A main argument to the theorem is Minkowski’s theorem
(a convex body is the convex hull of its extreme points) applied to a section of
a normal cone. Another argument is the isomorphism (1). If we consider convex
bodies, then the isomorphism (2) turns the theorem into an equivalent form, which
more obviously follows from Minkowski’s theorem (see Section 8).

Remark 1.1 (Exposed faces in dimension two). In dimension dim(C) = 2
every non-exposed face of C' is the endpoint of a unique one-dimensional face of C'.

We prove this claim. All one-dimensional faces of C' are coatoms of F,(C) (as
sup, (F') is proper for a proper face F'). One dimension below, a point x of C' may
belong to i = 0, 1,2 one-dimensional faces of C' and exactly for i = 0,2 the set {x}
is an intersection of coatoms of C'. So a proper exposed face F' of C' is not the
intersection of coatoms of F, (C') if and only if F' = {z} where x is the endpoint of
a unique one-dimensional face of C'.

If in addition the assumptions of the above theorem hold for C', then non-exposed
faces F' are characterized by the conditions F' = {x} where x is the endpoint of a
unique one-dimensional face of C.
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Figure 1.5: Empty circles denote deleted points, dashed lines denote deleted lines.
The left triangle has three proper touching cones, all of which are normal cones.
Accordingly every proper exposed face of the triangle is an intersection of coatoms.
If the top vertex is added (right) one normal cone is added but two touching cones
are added. The top vertex is not an intersection of coatoms.

An example with N (C') = 7(C) is the polar body K° (mouse shape) of the trun-
cated disk. Further examples of N(C) = 7(C) are the state space discussed in
Example 7.8. Examples of N(C) € 7(C) that do not have the characterization
of Remark 1.1 are the quarter disk in Figure 1.1 and the truncated disk K in
Figure 1.3. Two convex set, which are not closed, are discussed in Figure 1.5.

1.2.5. Smoothness in dimension two

There is a special smoothness issue in dimension two. This holds for a general convex
subset C' C R? if N(C) = T(C), examples are listed in the previous paragraph.
It would be interesting to see how smoothness generalizes into higher dimensions
(where however coatoms of F | (C') can have small dimension). A boundary point «
of C'is singular, if C' has two linearly independent normal vectors at x.

The smoothness property, given dim(C') = 2 and 7(C) = N(C), is that every
singular point € C' is the intersection to two distinct boundary segments of C': If
x € (' is singular then the normal cone of C' at z has two distinct boundary rays
t1,ty, which are touching cones of C' by definition. By assumption ¢; is a normal
cone of C'; so it is the normal cone at a boundary point y; # = of C'. It follows that
the segment [z, y;] is a boundary segment of C'. The same arguments applied to t;
show {x} = [z,y1] N [z, y2] (If the intersection was a segment, then dim(C) < 1 by

(15)(iv)).

1.3. Projections of state spaces

Our motivation to study touching cones lies in Information Theory, see Amari
and Nagaoka [2]. Analysis takes place in the convex body of state space S(n).
This is a convex body in the algebra Mat(C,n) of complex n x n-matrices. In
fact S(n) consists of all positive semi-definite matrices (i.e. being self-adjoint and
without negative eigenvalues) that have trace one. We have 7 (S(n)) = N (S(n))
and F(S(n)) = F.(S(n)), see Example 6.2. In Example 7.8 we discuss orthogonal
projections P of S(n) to vector spaces L, they too satisfy 7(P) = N (P). These
projections are connected to information manifolds called exponential families, see
e.g. Knauf and Weis [10].
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We ask if a finite-dimensional convex set C' is stable, which means that for any
0 < d < dim(C) the union of faces F' of C' with dim(F") < d is a closed set (see
Papadopoulou [13]). It is well-known that S(n) is stable. Is P also stable? This
would have consequences for the topology of exponential families.

Another question is about non-exposed faces of P and their behavior if L varies in
a Grassmannian manifold of subspaces. This question may be related to continuity
properties of information measures, see [10]. It is likely to be accessible by Convex
Algebraic Geometry (as studied by Henrion, Rostalski, Sturmfels and others) be-
cause P is polar to an affine section of S(n), see [7, 12, 16]. On the other hand, the
faces of P correspond to the touching cones of the affine section, which is an affine
algebraic set.

2. Posets and lattices
We introduce lattices and cite two fundamental assertions about lattices.

Definition 2.1. A partially ordered set or poset (X, <) is a set X with a binary
relation <, such that for all z,y, z € X we have x < z (reflexive), x <y and y <z
implies * = y (antisymmetric) and = < y and y < z implies < z (transitive);
y > x is used instead of x < y.

A mapping f: X — Y between two posets (X, <) and (Y, <) is isotone, if 1 < 9
implies f(z1) < f(xg) for any xy, 29 € X. The mapping f is antitone if 1 < x5
implies f(z2) < f(x1).

In a poset (X, <), a lower bound of a subset S C X is an element = € X such that
x < s forall s €S. An infimum of S is a lower bound x of S such that y < x for
every lower bound y of S. Dually, an upper bound of a subset S C X is an element
x € X such that s < x for all s € S. A supremum of S is an upper bound = of S
such that x < y for every upper bound y of S. We may write S = {s,}acs for an
index set . In case of existence, the infimum of S is unique and is denoted by A S
or by A,ecs Sa, likewise the supremum of S is denoted by \/ .S or by \/ ., 54 in case
of existence.

ael

If (X, <) has a smallest element 0, then an element = € X not 0 is an atom of X if
for all y < x in X with y # = we have y = 0. If (X, <) has a greatest element 1,
then an element x € X not 1 is a coatom of X if for all y > x in X with y # x we
have y = 1.

A lattice (L,<,A,V) is a poset (£, <), such that for any two elements z,y € L
the infimum x Ay := A{z,y} and the supremum z Vy := \/{z,y} exist. A lattice
(L, <, A, V) is complete if every subset X of £ has an infimum and a supremum. We
denote a complete lattice by (£, <, A, V,0,1) with 0 the smallest and 1 the greatest
element of £. A lattice (£, <, A,V) is modular if for all elements z,y,z € L the
modular law is true:

x <z impliesxV (yAz)=(xVy)A:z. (3)

The partial ordering of L restricts to subsets. We call X C L a sublattice of L if

for all ,y € X the infimum z Ay and the supremum z V y (calculated in £) belong
to X.
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Remark 2.2. Birkhoff has proved in [3], Lemma 1 on page 24, that an isotone
bijection between two lattices with isotone inverse is a lattice isomorphism.

Definition 2.3. A property of subsets of a set M is a closure property when (i)
M has the property, and (ii) any intersection of subsets having the given property
itself has this property.

Remark 2.4. Birkhoff has proved in [3], Corollary on page 7, that those subsets
M of any set M which have a given closure property form a complete lattice.
The ordering on M is given by inclusion. The infimum of {M,},e; € M is the

intersection A,c; Mo = (\ae; Mo and the supremum is \/ o, M, = {M e M |
Yael:M,C M}

acl

3. Faces and exposed faces

We introduce faces and exposed faces of a convex set and their lattice structure.
Klingenberg [9] may be consulted for the background in affine geometry. Let
(E, (-,-)) be a finite-dimensional real Euclidean vector space. We recommend a
monograph such as Rockafellar or Schneider [14, 15] for an introduction to convex
sets.

Definition 3.1 (Convexity). The convez hull conv(C') of a subset C' C E consists
of all convex combinations of elements of C, i.e. x € conv(C) if and only if there

is k € N and for « = 1,...,k there are \; € R with A\; > 0 and Z?Zl)\j =1

and there are z; € C such that x = Zﬁle Ajz;. We understand conv(()) = 0.
The subset C' C E is convex, if x,y € C implies [z,y] C C, which is the same as
C' = conv(C). A convex body is a closed and bounded convex set. If we drop the
condition of Y " | A; = 1 then we speak of a positive combination and we denote
the set of positive combinations of C' by pos(C') (and pos() = {0}). A convex cone
is a non-emepty convex subset C' of E where x € C' and A > 0 imply Ax € C, which
is the same as C' = pos(C).

According to Rockafellar [14] §2 the convex hull of C' is the smallest convex subset
of E containing C'. It is a closure property that a subset C' C E is convex, i.e. E is
convex and arbitrary intersections of convex subsets are convex. Hence, Remark 2.4
ensures that the convex subsets of [E are the elements of a complete lattice ordered
by inclusion and conv(C') is the intersection of all convex subsets of E that include
C. Closure properties are important also for face lattices.

Definition 3.2 (Face lattice). If C' C E is a convex subset, then a convex subset
F C Cis a face of C if for all z,y € C' the non-empty intersection |x, y[NF implies
[z,y] C F. The empty set ) and C' are improper faces, all other faces of C' are
proper. A face of the form {x} for x € C is called an extreme point of C'. The set
of faces of C' will be denoted by F(C') and will be called the face lattice of C.

If C' C E is a convex subset then the intersection of any family of faces of C' is a face
of C'. In other words, the property face is a closure property. Thus, by Remark 2.4
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the face lattice

(F(C),c,n,Vv,0,0) (4)
is a complete lattice ordered by inclusion and the infimum is the intersection. The
smallest element of F(C') is (), the greatest is C'. We cite Schneider [15], Chap. 1, for
two fundamental theorems. Carathéodory’s theorem says if C' C E and x € conv(C),
then z is a convex combination of affinely independent points of C. Minkowski’s
theorem says that every convex body is the convex hull of its extreme points.

Definition 3.3 (Relative interior). If C' C E then the affine hull of C, denoted
by aff(C) is the smallest affine subspace of E that contains C'. The interior of C'
with respect to the relative topology of aff(C) is the relative interior 1i(C) of C.
The complement rb(C') := C\ri(C) is the relative boundary of C. If C' C E is convex
and non-empty then the vector space of C'is defined as the translation vector space
of aff(C),

lin(C) :={z —y | z,y € aff(C)}. (5)
We define the dimension dim(C) := dim(lin(C)) and dim(()) = —1.

Let C, D C E be convex subsets. Rockafellar proves in [14], Cor. 6.6.2, the sum
formula for the relative interior

ri(C') 4+ ri(D) = ri(C + D). (6)
In Thm. 6.5 he proves for the case ri(C') Nri(D) # ()
ri(C) Nri(D) =1i(C' N D). (7)

If A is an affine space and o : E — A is an affine mapping, then by Thm. 6.6 in [14]
a(ri(C)) = ri(e(C)) (8)

holds. If F' is a face of C' and if D is a subset of C', then by Thm. 18.1 in [14] we
have

rilD)NF#0 = D CF. (9)
By Thm. 18.2 in [14] C' admits a partition by relative interiors of its faces

C = U rerey ri(F). (10)

In particular, every proper face of C' is included in the relative boundary rb(C') and
its dimension is strictly smaller than the dimension of C'. We need the following.

Lemma 3.4. If H C E is an affine hyperplane with O ¢ H and C' C H is a convex
subset, then pos : F(C) — F(pos(C)) \ {0} is a bijection with inverse F— C' N F.

Proof. If F is a face of pos(C), then F is a convex cone. So, if F' # (), then
F = pos(F N C). Moreover, since C' C pos(C') the set F'NC' is a face of C. This
gives an injective mapping

F(pos(C)\ {0} — F(C), F—FnC.

By (10) the relative interiors of faces F' of pos(C') are a partition of pos(C') so the
sets ri(F)NC are a partition of C'. If F is a face of pos(C') where ri(F)NC # () then
ri(FNC) =ri(F)NC by (7). This proves that the above mapping is a bijection. [
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The decomposition (10) justifies a definition:

Definition 3.5. Let ' C E be a convex subset. For every x € C' a unique face
F(C,x) of C is defined by the condition z € ri(F(C, x)).

We describe suprema of faces.

Lemma 3.6. If C C E is a convex subset and {F,}acs is a non-empty family of
faces of C with x, € ri(F,) for all a € I, then for any z € ri(conv{z, | « € I'}) we
have \/ o1 Fo = F(C, 2).

Proof. Since z € F(C, z) and since z is in the relative interior of the convex set
conv{z, | a € I}, this convex set is included in F(C,z) by (9). So all the z,
belong to F'(C,z). Again by (9) all the faces F,, are included in F(C, z) because
zo € r1i(F,). Thus F(C,z) is an upper bound for the family {F,},c; and thus
Voer Fo C F(C,z). Conversely we have z € conv{z, | a € I} C \/ o Fa, 50
F(C,z) C Vs Fo by (9) because z € ri(F(C, 2)). O

Some faces of C' are obtained by intersection of C' with a hyperplane, these are the
exposed faces. Different to Rockafellar or Schneider [14, 15] we always include () and
C to the exposed faces in order to turn this set into a lattice.

Definition 3.7 (Exposed face lattice). Let C' C E be a convex subset. The
support function of C'is E — R U {£oo}, u — h(C,u) := sup,c-(u, z). For non-
zero u € E

H(Ciu) :={zx € E: (u,z) = h(C,u)}

is an affine hyperplane in E unless H(C,u) = ) when h(C,u) = —oo with C' = {) or
h(C,u) = oo, when C'is unbounded in the direction of u. If H(C,u) # (), then we
call it a supporting hyperplane of C'. The exposed face of C' by u is

F (Ciu) :=CnNH(C,u).

The faces () and C are exposed faces of C' by definition called improper exposed
faces. All other exposed faces are proper. The set of exposed faces of C' will be
denoted by F | (C) called the ezposed face lattice of C'. A face of C, which is not an
exposed face is a non-exposed face.

It is easy to show F(C) C F(C). An example of a non-exposed faces is given
in Figure 1.2, left. It is well-known that the intersection of exposed faces is an
exposed face, see e.g. Schneider [15], but the following details were not found in the
literature.

Proposition 3.8. Let C' C E be a convex set and let U C E\ {0} be a non-empty
set of directions. Then ri(conv(U)) \ {0} is non-empty and every vector v in this
set satisfies (e FL(C,u) = FL(C,v) unless the intersection is empty.

Proof. Since U # () we have ri(U) # 0 (see [14], Thm. 6.2). If we had ri(conv(U)) =
{0} then conv(U) would be {0}, which was excluded in the assumptions. This proves
the first assertion.
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Figure 3.1: This depicted convex set K is a composition of two right prisms, one
based on a triangle the other based on a quarter disk. The supremum of the extreme
points = and y is the top triangle in F, (K) and the segment [z,y] in F(K).

Let F:= (,cp F1L(C.u) and G = (\,cconv(u oy £L(C, ). First we show F = G.
The non-trivial part is to prove F' C G. A vector v € conv(U) \ {0} is a convex
combination v = ), A\ju; for u; € U and non-negative real scalars \; summing up
to one. If x € F then z € F| (C,u;) for all i and then

(v,2) = > N, x) = >, \ymaxgeo (U, ) > maxgec »; MW, s) = maxsec (v, s),
so x € F|(C,v). The vector v was arbitrary. So x € G and we have F' = G indeed.

We assume that G # () and prove G = F| (C,v) for v € ri(conv(U))\ {0}. To prove
the non-trivial inclusion F' (C,v) C G assume by contradiction that there is a point
y € F(C,v)\ G, i.e. there exists ug € conv(U) \ {0} such that

(VRS FJ_(C, U) \ FJ_(C, uo).

Since v lies in the relative interior of conv(U) and ug lies in conv(U) there exists
A€ (0,1) and uy € conv(U) such that v = Aug+ (1 —A)uy (see Theorem 6.4 in [14]).
We assume that u; # 0 by performing a small perturbation of this point along the
direction v—uy if necessary. Now let € G. Then we have x € F| (C, ug)NF(C, uy)
so the estimation

(0.5) = Moo, ) + (1= X) (s, 9} < Amasc{ug,2) + (1 - A, )
< Mug, ) + (1 = XN)(ug, ) = (v, x)
gives the contradiction y ¢ F| (C,v). O

Given a convex subset C' C E the property of a subset of C' to be an exposed face of
C' is a closure property by Prop. 3.8. Thus, by Remark 2.4 the exposed face lattice

(FL(C),c,n,V,0,C) (11)

is a complete lattice ordered by inclusion and the infimum is the intersection. Al-
though we have the inclusion of F, (C') C F(C) into the face lattice (4), F,(C) is
not in general a sublattice of F(C'). Both lattices have the intersection as infimum
but their suprema may be different. An example is drawn in Figure 3.1.

We prove a technical detail for the next assertion. If C'is convex subset of E, x € E
and {z} C C then the equality

ri(conv(C \ {z})) = ri(C) (12)
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holds. If C'\ {x} is not convex then conv(C'\ {z}) = C and the equality follows.
If C'\ {x} is convex then z is an extreme point of C. Hence, unless C' = {x}, we
have 11(C) € C'\ {} C C. Therefore C'\ {z} lies between ri(C) and the closure C
of C. Thus the relative interiors of C'\ {z} and C are equal by Cor. 6.3.1 in [14].

Corollary 3.9. Let C; D C E be convex subsets. If D contains a non-zero vector,
then 1i(D) contains a non-zero vector. If (V,ep\ oy F'1L(C,u) # 0 then this intersec-

tion is the exposed face F'|(C,v) for any non-zero v € ri(D).

Proof. By Prop. 3.8 we have for any vector v € ri(conv(D\{0}))\ {0} the equality
of the intersection with the face F'| (C,v). With (12) applied to z := 0 and C' := D

we get ri(conv(D \ {0}))\ {0} =ri(D) \ {0}. O

4. Normal cones

We study normal cones of a convex subset C' C E of the finite-dimensional real
Euclidean vector space (E, (-,-)). There is an antitone lattice isomorphism between
exposed faces and normal cones.

Definition 4.1. The normal cone of C at x € C is
N(Cyz):={uecE: (u,y—x) <0forall y e C} (13)

and vectors in N(C, x) are called normal vectors of C at x.

There is a pointwise relation between exposed faces and normal cones. If C' C E is
a convex subset, then for arbitrary z € C' and non-zero u € E the equivalence of
the following statements is easy to prove.

o (u,z) = h(C,u),
Ql'EFJ_(C,U), (14)
e uc N(C x).

The following relations are easy to prove by elementary means. If F' C C'is a convex
subset, x € ri(F') and y € C, then we have

(i) N(C,z) Llin(F),

(ii) if y € F then N(C,y) D N(C, ),
(iii) if y € ri(F) then N(C,y) = N(C, z),
(iv) if u, —u € N(C,y) then u € lin(C)*.

(15)

The orthogonal complement with respect to the Euclidean inner product is denoted
by *+.

Lemma 4.2. Let x € C. Then N(C,z) = (N(C,z) Nlin(C)) + lin(C)* holds and

the following statements are equivalent.

e the normal cone N(C,z) is a vector space,
o z cr1i(C),
e N(C,z) =lin(C)*.
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x q
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Figure 4.1: The union C' of a square and a quarter disk with extreme points z, y:
{z} is an exposed face while {y} is a non-exposed face. The face {y} has the same
normal cone as the face [z, y]. The normal cone of {y} is included in the normal cone
of {z}, even though {z} and {y} are unrelated in the partial ordering of inclusion.

Proof. Let z € C. The direct sum decomposition of N(C, x) follows from N(C, )+
lin(C)+ C N(C,z). Since N(C,x) is a convex cone, it is sufficient to prove the
inclusion lin(C)*+ C N(C,z): if u € lin(C)* then (u,y —x) = 0 for all y € C so
u € N(C,x).

Now let us assume that N(C,x) is a vector space. Then for u € N(C,z) we have
+u € N(C,z) and by (14) we get

h(C,u) = (u,z) = —(—u,x) = —h(C, —u).

Thus, for the vectors u € E with h(C,u) # —h(C, —u) follows u ¢ N(C, z), which
means (u, z) < h(C,u) by (14). These are exactly the assumption of Theorem 13.1
in [14] to prove that = € ri(C). Clearly, if z € ri(C) then N(C, ) = lin(C)=*. O

Definition 4.3. The normal cone of a non-empty convex subset F' of C' is defined
as

N(C, F) := N(C, z) (16)

for any = € ri(F"). This definition is consistent by (iii) in (15). The normal cone
of the empty set is defined as the ambient space N(C,()) := E. The normal cone
lattice of C' is the set of normal cones of all faces N'(C) := {N(C, F) | F € F(C)}.
We consider the normal cone lattice as a poset ordered by set inclusion. The cones
lin(C)* and E are the improper normal cones, all other normal cones are proper.

The assignment of normal cones to faces F(C) — N(C), F — N(C,F) is an
antitone mapping between posets. This follows from (ii) in (15). But the faces of
two included normal cones may be unrelated, see Figure 4.1. We work towards the
antitone lattice isomorphism F, (C) — N (C).

Lemma 4.4. If F € F(C) is a face and u € E\ {0} then F C F (C,u) if and only
ifu e N(C,F). For allu € E\ {0} we have u € N(C, F (C,u)).

Proof. The assertion is trivial for F = (). Otherwise let us assume that the
inclusion F' C F| (C,u) holds and consider a point x € ri(F(C,u)). We have
u € N(C,z) = N(F(C,u)) by the relation (14) and by definition (16) of a nor-
mal cone. Since F' C F| (C,u) we have N(C, F (C,u)) C N(C, F) by the antitone
normal cone assignment. Conversely, if v € N(C, F) then for x € ri(F') we have
u € N(C,x). Thus z € F| (C,u) by the relation (14) and (9) gives F' C F(C,u).
The second assertion is the special case of F' = F| (C,u). O
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We consider smallest upper bounds of exposed faces for arbitrary subsets of C'. This
is consistent by completeness (11) of the exposed face lattice F (C):

Definition 4.5. The smallest exposed face of C' that contains a subset F' C C' is

sup (F) := m{G eF (C)| FcG}. (17)

Properties of the smallest exposed face are:

Lemma 4.6. If F' € F(C) is a proper face, then sup, (F) = (\,enc,rpgoy F1(Cu)
is a proper exposed face. We have ri(N(C,F)) # {0} and for each non-zero
v € 1i(N(C, F)) we have sup,(F) = F.(C,v). If F € F(C) is a face then
N(C,sup, (F)) = N(C, F).

Proof. By Lemma 4.4 if u € E is non-zero, then the face F' is included in F/(C,u)
if and only if u € N(C, F').

Relative interior points of the proper face F' do not belong to ri(C'), so by Lemma 4.2
the normal cone of F is strictly larger than lin(C)* = N(C,C). Choosing any
u € N(C, F)\1in(C)* we get that F but not C is included in F| (C,u). So sup, (F)
is a proper exposed face of C' and the intersection expression for sup | (F') follows. As
F # (), any non-zero vector v € ri(N(C, F')) gives sup , (F') = F (C,v) by Cor. 3.9.

Since F' C sup (F'), the inclusion N(C,sup, (¥')) C N(C, F) follows from antitone
assignment of normal cones. For every non-zero vector u € N(C, F') we have F' C
F, (C,u). Hence sup | (F) C F,(C,u) and so u € N(C,sup, (F)). O

We arrive at the main results of this section.

Proposition 4.7. Assume that C' has not exactly one point. Then the assignment
of normal cones to exposed faces N(C) : F (C) — N(C), F — N(C,F) is an

antitone lattice isomorphism.

Proof. The two lattices F,(C) and N (C') are partially ordered by set inclusion.
They are linked by the antitone mapping of posets

N(C)|_7.1(C) fJ_(C)—M/V‘(C), FHN(C,F)

This mapping is surjective because a face F' of C' has the same normal cone as the
smallest exposed face that contains F', see Lemma 4.6.

We can show that N(C')|z (¢) has an antitone inverse. Then Remark 2.2 implies
that N(C)|z, (o) is an (antitone) lattice isomorphism. Let us prove that this map
is injective and consider two proper exposed faces F, G of C' with the same normal
cone N. Then there exists by Lemma 4.2 a non-zero vector u € N, so there is a
non-zero v € ri(N). As F,G # (), Lemma 4.6 proves that F' = F, (C,v) = G. By
Lemma 4.2 only the improper face C' has the smallest possible normal cone lin(C)*.
It remains to show that N(C, F') = E implies F' = () for an exposed face F of C. If
N(C, F') = E holds for a non-empty face F' then Lemma 4.2 shows that F' = C' and
lin(C) = E+ = {0}. Thus, C has exactly one point but this case was excluded in
the assumptions.
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We show that the inverse N (C') — F,(C) is antitone. For proper exposed faces
F,G of C the inclusion N(G) C N(F') implies sup  (F) C sup, (G) by Lemma 4.6.
As F,G are exposed we have F' = sup, (F) and G = sup,(G), hence F' C G.
The greatest element E of A/(C') maps to the smallest element () of 7, (C') and the
smallest element lin(C)* of N (C) maps to the greatest element C' of 7, (C). O

By definition of the normal cone of a face and by antitone assignment of normal
cones the isomorphism F, (C) — N(C) in Prop. 4.7 is for proper exposed faces
FeF (O)

F— (,er N(C,2) = N(C,y) for any y € ri(F),

18

N = Nyenvoy Fr(Cou) = Fi(C,v) for any v € ri(N) \ {0} (18)

The second mapping defined for proper normal cones N € N(C) describes the

inverse N (C') — F, (C) by Lemma 4.6. Now we shows that intersections of normal

cones are normal cones, so by Remark 2.4 the normal cone lattice is a complete
lattice with intersection as the infimum

(N(C), c,n, V,lin(C)*,E). (19)

Proposition 4.8. If {N,}aer € N(C) is a non-empty family of normal cones,
then Noc; Na = (aes No and this intersection is a face of N for every o € I with
N5 # E.

Proof. As E is the greatest element of N'(C) we assume N, # E for all o € I
and we assume that C' has not exactly one point, without restricting generality. As
N(C, ) = E we choose throughout for a € I a family of (non-empty) faces F, with
N(C, F,) = N,. Let x, € ri(F,) for « € I and let z € ri(conv{z, | @ € I}). So
Lemma 3.6 shows F(C,z2) = \/, ., Fa- By Prop. 4.7 we have K := A\ ., N(C, F,) =
N(C,V er Fo) = N(C, 2).

The assignment of a normal cone is antitone, so for all & € I we have K C N(C, F5).
This proves one inclusion, it remains to show () ., N(C, F,) C K. We write z as
a convex combination for n € N, \; > 0 and «(i) € [ for i = 1,...,n in the form
z = )" Nt Hence, if u € (N, o, N(C, F,), then for all € C' we have the
inequality (u,z —z) =Y i A\i{u,x — a3)) < 0. This proves u € N(C, z).

ael

For a@ € I let us prove that K is a face of Nj. Let u,v,w € Nz, v € K and
v €Ju,w]. If u =0 then w = Av for some A > 0, then u,w € K because K is a
convex cone including v. If u,w # 0 and v = 0 then u,w € lin(C)*. By Lemma 4.2
the vector space lin(C)* belongs to every normal cone of C, so u,w € K. Let us
assume u, v, w # 0. For every o € I holds v € N, = N(C, F,,) so F,, C F(C,v) by
Lemma 4.4. Now Prop. 3.8 shows F| (C,v) = F, (C,u) N F (C,w), so we have

F,CF (Cv)=F (C,u)NF (C,w) C F (C,u).

This gives N(C, F'| (C,u)) C N(C, F,) and Lemma 4.4 completes the proof with
u € N(C, F(C,u)). The proof of w € N(C, F,) is a complete analogue. O
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5. Cylinders

This section explains a lifting construction for projections of convex sets. Lifting
is an isomorphism for face lattices, we characterize lifted faces. As an application,
the projections of state spaces introduced in Section 1.3 are decomposed by Weis
[16] using a lifting. Throughout this section let C' be a convex subset of a finite-
dimensional real Euclidean vector space (E, (-,-)) and let V' be a linear subspace of

E.

If ) # A C Eis an affine subspace, then there is a unique affine mapping 74 : E — A,
called the orthogonal projection to A, such that for all x € E we have

(x — ma(x)) L lin(A). (20)

We study the orthogonal projection 7y : E — V to V. This, thought of as acting
on sets, may be written for M C E in the form

(M) =(M+VHnV. (21)

In addition to the projection m(C) we will study the cylinder C' + V*, which
connects the projection my (C) to C.

There is a basic tool for the study of cylinders, which is reminiscent of the modular
law for lattices (3).

Lemma 5.1. Let X,Y, Z CE suchZ+ X C Z. Then X +(YNZ)=(X+Y)NZ.

Proof. The inclusion (X +Y)NZ C X + (Y N Z) is proved by taking vectors
x € X and y € Y such that v +y € Z. Then y = (x +y) —x € Z. For the
converse X + (Y NZ) C (X +Y)NZ we choose vectors z € X and t € YN Z. Then
l+xeZ. U

A special case of Lemma 5.1 is the modular law for affine spaces. Let A C E be
an affine subspace with translation vector space lin(A). If X C lin(A) then for
arbitrary Y C E we have

X+ (Y NA)=(X+Y)NA. (22)
We will use this modular law as indicated in Figure 5.1.

Definition 5.2. We define the lift from V to C (or along V* to C) as the mapping
LY : 28 —2¢ M — (M +V+)NC. Here 2% denotes the power set of E and 2¢ the
power set of C.

Lemma 5.3. The projection my : 2% — 2V is isotone with respect to set inclusion
and we have
LS =LS o LS = LY oy
If M is a family of subsets of my(C'), then my is left inverse to LG | ap. In particular
LY\ M — {LS(M) - M € M}

is a bijection. The mapping LS| is an isotone isomorphism of posets (partially
ordered by set inclusion).
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Figure 5.1: We start with a plane V and an arbitrary subset C' in R®. For simplicity
in the drawing we choose C' a triangle in V. A non-zero vector v € V defines the
supporting hyperplane H = H(C,v) with v 1. H. We have V+ C {v}+ = lin(H).
So by the modular law for affine spaces V++ (CNH) = (V+ +C)N H holds. This
set is drawn tiled.

Proof. Trivial. O

Lemma 5.4 (Lifted faces). If F is a face of my(C) then the lift LS (F) is a face of
C. The exposed face for non-zerov € V transforms according to LS (F\ (my(C),v)) =
FJ_(Ca U) :

Proof. For a face F of m,(C) we show that L$/(F) is a face of C. To this aim
we choose x,y,z € C such that y €]z, 2[ and y € LG(F). We have to prove
r,z € L$(F). By (8) the projection 7 commutes with reduction to the relative
interior of a convex set, so we have 7y (y) €]my(z), mv(2)[. Since y € L§(F) we
have 7y (y) € F. Since F' is a face we obtain 7y (x), my(z) € F. Then

v € LS omy(z) = (my(z) + V)N C € (F+ VY ne = LY(F).

Analogously we have z € LS(F), so LY(F) is a face of C.

The support functions of C' and 7 (C') are equal on V because for all z € E
and v € V we have (v,z) = (v,my(x)). If v € V is a non-zero vector then the
hyperplanes H(C,v) and H(my(C),v) are equal. Since v € V we have V+ C
{v}+ = lin(H (7y(C),v)) and we can apply the modular law for affine spaces (22)
as follows

VE 4+ FL(ry(C),v) = VE + [my(C) N H(my (C),v)]
= [V + 7 (C)] N H(my(C),v) = (VE4+C)N H(C,v).

This gives

LY(F, (v (C),v)) = (FL(my(C),v) + VN = (V*+ C)Nn H(C,v) N C
= H(C,v)NnC = F (C,v)

finally. O
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Definition 5.5. With respect to C' and V, the face L$/(F) € F(C) is called the
lifted face of F' € F(my(C)). The lifted face lattice is

F¢ = {L§(F) : F € F(mv(C))}:
The lifted exposed face lattice is
Foy = {Ly(F): F e Fi(nv(C))} (23)

where F(my(C)) is the face lattice of 7y (C') and F (7 (C)) is the exposed face
lattice of 7y (C). We consider FS and ]:‘g | partially ordered by set inclusion.

Proposition 5.6 (Lifted face lattices). The lifts from V to C' restricted to the
face lattices of my(C') are

LYyt Flav(C)) — FF C F(C),
L7 rvcy . Frlmv(C)) — Fy L C FL(O).

These mappings are isotone lattice isomorphisms. The infimum in the lifted face
lattices is the intersection.

Proof. The mapping L$ restricted to F(my(C)) resp. to F(my(C)) is a bijection
to F¢ resp. to ]—"‘(;: | by Lemma 5.3. The ranges are included in the face lattice of
C resp. in the exposed face lattice of C' by Lemma 5.4.

The mappings LS and 7y (on the considered domains) are inverse to each other
and they are isotone with respect to set inclusion by Lemma 5.3. Hence the lift is
a lattice isomorphism in each case by Remark 2.2.

Finally, by direct sum decomposition of E = V 4 V+ we have for a non-empty
family {F, }aer of faces of my (C)

L‘C/j(nael Fa) = (mael Fa + VL) m C - ﬂae[(FOt + VL) m C = ﬂae[ L‘C/j(Fa)’

the infimum in the lifted face lattices is the intersection. O

We notice that the lifted exposed face lattice ]—"‘(;: | is not a sublattice of the face
lattice F(C') because the supremum of lifted faces in F(C') is not necessarily a lifted
face. An example is a triangle projected to the linear span of one of its sides, say
c. Then the corners A and B of ¢ belong to ]—"‘g 1, but ¢ does not. We characterize
the lifted face lattice:

Proposition 5.7 (Lift invariant faces). A face F' € F(C) belongs to the lifted
face lattice FG if and only if L$(F) = F.

Proof. Let us choose a face F' € F(C). If F belongs to FS then there is a face
G € F(my(C)) such that F = L$(G). With Lemma 5.3 we obtain

LY(F) =L o LY(G) = LY(G) = F.

For the converse we assume that F' = LY (F). If my(F) is a face of m(C) then we
have F' = L$om(F) and so F is a lifted face. It remains to prove 7y (F) € F(my(C)).
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To this end let z,y, 2z € my(C) such that y €]z, z[ and y € 7wy (F). We must show
z,2 € my(F). We choose T € LG(x) and 7 € L$(2). Then [7,Z] -5 [z,2] is a
bijection so there exists § €]7, Z[NL{ (y). Since y € 7y (F) we have §y € Loy (F) =
LY(F) = F and this proves 7,z € F because F is a face of C. Then x = 7y (Z) and
z = my(Z) belong to my (F) and we have proved that my (F) is a face of my(C). O

There is a canonical space to project onto.

Corollary 5.8. Let U be the orthogonal projection of V onto the vector space of
C,i.e. U := minc)(V). Then for all F C C we have L§(F) = LG (F). In particular
FG = F§ holds.

Proof. We put W := lin(C'). By straight forward calculation we have for any
FcC
LE(F)=((VEnW) + (F+WhH))naff(C)NnC.

By the modular law (22) applied to the first two intersection sets this simplifies to
LY(F). The second statement follows now from Prop. 5.7. O
Finally we write down the normal cones.

Lemma 5.9 (Normal cones). Let a € C+V=+. Then N(my(C), my(a)) = N(C +
V+a)+ V=L If a belongs to C then N(C' +V=+,a) = N(C,a)NV.

Proof. Let a € C + V+. We use the relation (14) to prove the first identity. We
decompose a vector u € E in the foom u = v +w € E forv € V and w € V*+. If
u € N(my(C), my(a)) then

B(C + V) = h(my (C),v) = h(my (C),u) = (u, 7y (@) = (v, 7 () = (v, a),

sov € N(C+V+ a)and u € N(C + V+, a) + VE. Conversely, if v € N(C + V4, a)
then

(u, my(a)) = (v, 7y (a)) = (v,a) = W(C +V*+,v) = himy(C),v) = hmy(C), ),

so u € N(my (C), my(a)).

The second equation is as follows. If u € N(C + V=, a), then u € N(C,a) because
there are less conditions on normal cones for the smaller set C. For all w € V- we
have (u,+w) < 0 so u € V. Conversely, if u € N(C,a) NV, then for all x € C
and for all w € V1 we have (u,z + w — a) = (u,7 —a) < 0 and this proves
ueN(C+ Vi a). O

6. Sharp relations

Let (EE, (-, -)) be a finite-dimensional real Euclidean vector space and C' C E a convex
subset. There is a relation (14) between exposed faces and normal cones, this is for
reCanduekE\{0}

reF (Ciu) <= wueN( ).

We define two alterations:
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Definition 6.1. A vector u € E\ {0} is sharp normal for C' if
reri(F (Ciu) = wueri(N(C,z)). (24)
A point x € C is sharp exposed in C' if

uweri(N(C,z)\ {0} = zeri(FL(C,u)). (25)

A connection of sharp normal vectors to normal cones will be shown in the following
section. In this section we show that the above definitions do not depend on the
ambient space (through the normal cones), the argument for sharp exposed points
connects these to exposed faces. We show that sharp normal vectors are preserved
under orthogonal projection of a convex set and sharp exposed points are preserved
under intersection. An example where both (24) and (25) hold is a state space:

Example 6.2. For n € N let Mat(C,n) be the set of complex n x n matrices act-
ing as linear operators on the complex Hilbert space C" with the standard inner
product, 0, resp. 1,, denoting the zero resp. the multiplicative identity. We consider
the Euclidean space of self-adjoint matrices endowed with the Hilbert-Schmidt in-
ner product (a,b) — tr(ab) for a,b € Mat(C,n) self-adjoint. Here tr denotes the
standard trace. By a > 0 we mean that a € Mat(C,n) is positive semidefinite, i.e.
self-adjoint and having non-negative eigenvalues. The state space of Mat(C,n) is
the convex body

S(n) :={p € Mat(C,n) | p > 0 and tr(p) = 1}. (26)
The Pauli o-matrices oy := (9§), 02 := (97) and o3 := (§ %) together with 1,

are an orthogonal basis for the self-adjoint part of Mat(C,2). The Bloch ball is
S(2) = {%(HQ + byoy + baog + b3os) | (b1, be,bs) € ]BSB}.

For m,n € N the state space of the direct sum algebra A := Mat(C, m)® Mat(C, n)
is the convex hull of the individual state spaces

S(A) :==S(m +n)NA = conv(S(m) & 0,,0,, ®S(n)).

With n direct summands we have e.g. the n — 1 dimensional simplex S(C").

An element p € A is an orthogonal projection if p> = p = p*. The set of orthogonal
projections of A are partially ordered by: p < ¢ if and only if pg = p for p,q
orthogonal projections. The support projection s(p) of p € S(A) is the sum of the
spectral projections of p belonging to non-zero eigenvalues. The mazimal projection
p4(u) of a vector w in the space Ay, of self-adjoint matrices is the spectral projection
of u for the largest eigenvalue of u. For non-zero u € Ay, we have the exposed faces
(see Weis [16], Section 2.3)

FL(S(A),u) = {p € S(A) | s(p) < py(u)},

. (27)
ri(FL(S(A),u)) = {p € S(A) | s(p) = p+(u)}
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and for p € S(A) we have the normal cones

N(S(A), p) = {u € As | s(p) < ps(u)},

. (28)
HINGS(A), p) = {u € Aw | 5(p) = ps ()}
Much more general the facial structure of the state space of C*-algebra is treated
by Alfsen and Schultz [1]. It is immediate from (27) and (28) that every non-zero
vector u € Ag, is sharp normal for S(A) and every element p € S(A) is sharp
exposed in S(A). We will extend this example in Example 7.8.

The definitions (24) and (25) depend a priori on the ambient space E through
the normal cone. For sharp normal vectors we show independence in the following
lemma. To keep notation clear we use orthogonal projections 7y, onto a vector space
V' C E and not onto an affine space.

Lemma 6.3. Let C C V. Then every non-zero v € V* is sharp normal for C' in
the ambient space E. A wvector v € E\ V< is sharp normal for C in the ambient
space B if and only if the vector my(v) is sharp normal for C in the ambient space

V.

Proof. For v € V+ C lin(C)* we have F|(C,v) = C (notice that h(C,v) = 0
unless C' = )). Then for every = € ri(C) the normal cone N(C,z) = lin(C)* is a
vector space by Lemma 4.2, so v € ri(N(C, z)) and v is sharp normal for C.

If v € E\ V* then we have F\ (C,v) = F(C,my(v)). For a point x € ri(F (C,v))
we distinguish between the normal cone Ng(C, x) in the ambient space E and the
normal cone Ny (C,z) C V in the ambient space V. These satisfy Ng(C,z) =
Ny (C,z) + V+. By the sum formula (6) for the relative interior we have

ri(Ng(C, z)) = 1i(Ny(C, z)) + V*.

Then we get v € ri(Ng(C,x)) if and only if 7 (v) € ri(Ny(C, x)), i.e. v is sharp
normal for C' in E if and only if 7y (v) is sharp normal for C' in V. O

Sharp normal vectors are preserved under projection.

Proposition 6.4. If a non-zero vector v € V s sharp normal for C, then v is
sharp normal for m,(C').

Proof. We choose z € ri(F'| (my(C),v)) and we have to show that v € ri(N(my (C),z)).
By Lemma 5.4 we have

F\ (my(C),v) =y (FL(C,v))

so by (8) we can choose a point a € ri(F(C,v)) such that x = 7y (a). By as-
sumption the vector v is sharp normal for C' so v € ri(N(C, a)). By the formula for
normal cones of a projected set in Lemma 5.9 we have

N(my(0),z) = (N(C,a) N V) + V*.
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Since v € 1i(N(C,a)) we have v € ri(N(C,a) N V) by the intersection formula
(7) for relative interiors. The sum formula (6) for the relative interior shows v €
ri(N(my (C), z)), i.e. v is sharp normal for 7, (C) in E. O

We shortly discuss sharp exposed points and connect these to exposed faces. The
following lemma shows also that the definition (25) of sharp exposed is independent
of the ambient space because exposed faces are independent of the ambient space.

Lemma 6.5. A non-empty face F of C' is exposed if and only if there is a point
in ti(F'), which is sharp exposed in C. If there is a point in ri(F), which is sharp
exposed in C, then all points in ri(F') are sharp exposed in C.

Proof. Let F' be a non-empty exposed face of C. If z € ri(F') then we have
N(C, F) = N(C, z) by definition of the normal cone of F. We want to show that x
is sharp exposed in C. If N(C,x) = {0} then there is nothing to prove. Otherwise
by Lemma 4.6 for all non-zero u € ri(N(C, F)) we have F' = F|(C,u). In other
words for each u € ri(N(C, z))\ {0} we have z € ri(F | (C,u)), i.e. x is sharp exposed
in C.

Conversely let F' # ) be a face of C', not necessarily exposed. Since C' is exposed
we can assume F' # C, so N(C, F) # {0} by Lemma 4.2. Let us choose a point
x € ri(F) and consider a non-zero vector u € ri(N(C, F)) = ri(N(C,z)). If we
assume that x is sharp exposed in C, then we have z € ri(F, (C,u)). Therefore
F = F\|(C,u) is an exposed face by the decomposition (10). O

Exposed faces are preserved under intersection.

Lemma 6.6. Let A C E be an affine subspace and let x € CNA. If F(C,x) is an
exposed face of C, then F(C' N A, x) is an exposed face of C' N A.

Proof. If z € ri(C') then z € ri(C'N A) by the intersection formula (7) for relative
interiors. So F(C'NA,z) = CNA is exposed. Otherwise there is a non-zero v € E
such that x € ri(F | (C,u)). As z € A we have h(C,u) = (u,z) = h(C N A, u), so
we obtain F'| (C,u)NA = F| (CNA,u). By the intersection formula (7) for relative
interiors this gives « € ri(F (C' N A, u)) and completes the proof. O

7. Touching cones

Let C be a convex subset of a finite-dimensional real Euclidean vector space (E, (-, -)).
We connect sharp normal vectors for C' to Schneider’s [15] concept of touching cone.
Touching cones form a complete lattice with infimum the intersection. They include
all normal cones, which are preserved under projection. Touching cones can detect
the exposed faces which are intersections of coatoms.

Definition 7.1. If v € E is a non-zero vector and if the exposed face F'| (C,v) is
non-empty, then the touching cone of C for w is defined by T(C,u) := F(N(C, F. (C,
u)),w). This is the face of the normal cone N(C, F\(C,u)), which has u in the
relative interior. The normal cones lin(C')* and E are touching cones by definition,
called improper. All other touching cones are proper. The set of touching cones of
C, called touching cone lattice is denoted by T (C).
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Perhaps the analogy with the face-function (as studied by Klee and Martin [8] and
others) should be pointed out here. The face-function associates with each = € C
the smallest face F'(C, x) of C' containing x. Analogously (or dually) Definition 7.1
associates with each vector u # 0 the smallest touching cone of C' containing it.

Lemma 7.2. If T is a touching cone of C, then T = (T Nlin(C)) +1lin(C)*. Every
normal cone of C' is a touching cone of C. IfT is a touching cone of C' but T' # E,
then

(a) ifueri(T)\{0}, then Fi(C,u) = ,ep oy F1L(C,v) is non-empty,

(b) ifueri(T)\ {0}, then T =T(C,u),
(¢) if0€ri(T), then T =lin(C)*.

Proof. The first assertion is clear for 7' = lin(C')* or 7' = E. The normal cone N

of z € C is a direct sum of N Nlin(C) and of lin(C')* by Lemma 4.2, so this holds
also for all its faces including T'.

Let us prove that every proper normal cone N of C' belongs to 7 (C'). By the antitone
lattice isomorphism F,| (C') — N(C) in Prop. 4.7 there is a proper exposed face F,
such that N = N(C, F'). By Lemma 4.6 there exists u € ri(N(C, F'))\ {0} such that
F=F (C,u). Now u € ri(N(C, F)) = ri(N(C, F(C,u))) gives T(C,u) = N(C, F)

by definition of a touching cone.

(a)—(c) are trivial if "= {0}. Otherwise the touching cone T" arises from a non-
zero vector w € E as T = T(C,w) such that F| (C,w) # { (also in the case

T = lin(C)* # {0}).
To show (a) we notice T' C N(C, F' (C, w)), so the intersection [,y 1oy F1(C,v) is

non-empty by Lemma 4.6. For any u € ri(7") \ {0} this intersection equals F, (C, u)
by Cor. 3.9.

To prove (b) we recall w € ri(T") by definition of a touching cone. If a non-zero
u € 1i(T) is chosen then by (a) we have F| (C,u) = F,(C,w) and the two vectors
u,w belong to the relative interior ri(7") of the same face T of N(C, F (C,u)), so
T(C,u) =T(C,w) =T by the partition (10) of a convex set into relative interiors
of faces.

For (¢) we recall that a convex cone with zero in the relative interior is a linear
space. Since w € ri(T) the opposite vector —w belongs also to ri(7T") and from
(a) follows F\(C,w) = F (C,—w) so F (C,w) = C. The normal cone of C is
N(C,C) =1lin(C)* by Lemma 4.2 hence T = T(C,w) = lin(C)*. O

Remark 7.3. If K is a convex body and u € E a non-zero vector, then F'| (K, u)
is a non-empty exposed face and the touching cone 7' := T'(C,u) with v € ri(7T)
is defined. So E \ {0} is covered by the relative interiors of touching cones # E.
Lemma 7.2(b) and (¢) make sure that this cover is disjoint. We notice that this
partition follows also from Thm. 8.3

Next we show beyond 7 (C) D N(C) that the touching cone lattice consists of all
non-empty faces of normal cones. The infimum in 7 (C) is the intersection and
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7(C) is a complete lattice
(T(C),c,n, v,1in(C)*, E). (29)

Theorem 7.4. The touching cones of C' are exactly the non-empty faces of the
normal cones of C, i.e. T(C) = {T | T # 0 is a face of NN € N(C)}. The
touching cone lattice is a complete lattice ordered by inclusion. If {Ty}aer C T(C) is
a non-empty family of touching cones, then N\ o; To = (Noe; Ta and this intersection
is a face of Ty for every a € I with Ty # E.

Proof. By definition, every touching cone is a non-empty face of a normal cone.
For the converse we need not treat the improper cones lin(C)* and E, they have
only one non-empty face, which is already included to the touching cones. Let N be
a proper normal cone of C. By the partition (10) of N into relative interiors of its
faces, it is sufficient to show for any non-zero vector v € N that T'(C,v) = F(N,v),
i.e. the touching cone of v is the face of N with v in the relative interior.

There is a proper exposed face F' with normal cone N(C, F) = N by Prop. 4.7.
Since v € N(C, F') we have F' C F| (C,v) as proved in Lemma 4.4. By the antitone
assignment of normal cones we get N(C, F'| (C,v)) C N and this statement includes
by Prop. 4.8 that N(C, F', (C,v)) is a face of N. By definition of a touching cone,
T(C,v) is a face of the normal cone N(C, F | (C,v)), so it is a face of N. As v
belongs to the relative interior of T'(C,v), we conclude that T'(C,v) = F(N,v).

In order to prove that 7(C) is a complete lattice with intersection as infimum,
we can show by Remark 2.4 for a non-empty family {7, }.c; that the intersection
MNues Tw is a touching cone of C. Since lin(C')* is the smallest element of 7(C)
by Lemma 7.2 and since E is the greatest element of 7 (C') we assume that all T,
are proper touching cones. Then for every o € I there is a non-zero u, € E such
that T,, = T(C,u,). We put N, := N(C, F (C,u,)) so T(C,u,) is a face of N,.
The normal cone N := (;.; N3 is a face of N, by Prop. 4.8, so the intersection
NNT(C,u,) is a face of N, and also of N. But then

ﬂ&e[ T& = ﬂ&eI(N N T(C> Ua))

is a face of N, which is a touching cone by the first part of this theorem. Since the
normal cone N is a face of N, the intersection ﬂae ;1% is a face of N,. O

We prove an independence of touching cones.

Corollary 7.5. The lattice orderings of N'(C) and T (C) and the embedding N (C)
— T(C) are independent of the ambient space E.

Proof. A normal cone N € N(C) has the direct sum form N = (N Nlin(C)) +
lin(C')* by Lemma 4.2. Thus the normal cone lattice N'(C') can be reconstructed
from

N = {Nnlin(C) | N € N(C)}

by adding the direct summand lin(C)*. This defines a lattice isomorphism N —
N(C) and the lattice N s independent of the ambient space E because N is the



348 5. Weis / A Note on Touching Cones and Faces

normal cone lattice of C' in the ambient space lin(C'). By Thm. 7.4 the touching cone
lattice 7 (C') consists of all non-empty faces T of N'(C), so T = (T'Nlin(C))+lin(C)*+
holds. The same argument as above shows independence of the lattice 7(C) from
the ambient space E. The question which touching cones are normal cones is solved
by the embedding N (C) — 7(C'), which is also induced from the ambient space
lin(C). O

Sharp normal vectors characterize the normal cones among all touching cones.

Proposition 7.6. A proper touching cone T of C' is a normal cone of C if and
only if there is a vector in ri(T) \ {0}, which is sharp normal for C. If there is a
vector in 1i(T) \ {0}, which is sharp normal for C, then all vectors in ri(T) \ {0}
are sharp normal for C'.

Proof. Let K be a proper touching cone of C' and let us assume that v € ri(K) \
{0} is sharp normal for C. Then there exists x € ri(F (C,u)) and we have
u € 1i(N(C,z)). By definition of the normal cone of a face we have N(C,z) =
N(C,F(C,u))hence u € ri(N(C, F'| (C,u))) and this gives us T'(C, u)=N(C, F' (C,u)).
Since u € ri(K) we have K = T(C,u) by Lemma 7.2(b). Hence K is the normal
cone of the non-empty face F| (C,u).

Conversely let us assume that the touching cone K is the normal cone of a non-
empty face of C. Then by Prop. 4.7 we have K = N(C, F') for some non-empty
exposed face F' of C. Now Lemma 4.6 shows for any non-zero u € ri(K) that
F = F\|(C,u) holds. Then for any x € ri(F, (C,u)) we have

N(C,z) = N(C,F) = K

and this shows that u € ri(N(C, x)). We have proved that u is sharp normal for C.
If K is proper, then existence of a non-zero vector u in ri(K) is assured. O

Projection properties of sharp normal vectors apply to touching cones. We denote
7y the orthogonal projection onto a vector space V' C E.

Corollary 7.7. Let v € V \ {0}. If the touching cone T(my(C),v) exists and is
not a normal cone, then T'(C,v) exists and is not a normal cone. In particular, if

T(C)=N(C) then T (my(C)) = N (7 (C)).

Proof. If T(my(C),v) exists, then F| (7, (C),v) # () and by Lemma 5.4 we have
Fi(my(C),v) = my(FL(C,v)). So F(C,v) # 0 and T(C,v) exists. If in addition
T(C,v) is a normal cone of C, then v is sharp normal for C' by Prop. 7.6 as v €
ri(7(C,v)). Then by Prop. 6.4 v is sharp normal for 7y (C') and this implies that
T(my(C),v) is a normal cone of my (C). O

Example 7.8. We return to Example 6.2 and denote by K := S(A) the state
space of the algebra A := Mat(C, 2) & C. We have seen that every non-zero u € As,

is sharp normal for K and every p € K is sharp exposed in K. This implies
T7(K)=N(K) and F(K) = F,(K) by Prop. 7.6 and Lemma 6.5. Now we consider
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Figure 7.1: The cone of revolution C' of an equilateral triangle (left). An affine
plane A through the center of gravity of C' is specified by the angle ¢ < 90°. The
intersection C'NA is hyperbolic for ¢ = 12° (middle) and elliptic for ¢ ~ 39° (right),
drawn dark. The union with the bright region surrounding it is the projection

WA(C).

a family of two-dimensional projections and intersections of K produced by a three-
dimensional affine space of self-adjoint matrices without os-contribution in the first
summand

A :={a € Mat(C,2) ® C | a* = a, trfa(os ® 0)] = 0 and tr(a) = 1}.
If 3 denotes orthogonal projection to A, then (see [10] Section 2)

C:=7;(K)=KnNA=conv [{peS2) | tr(pos) =0} &0, 0 & 1]

is the three-dimensional cone depicted in Figure 7.1, left. By Cor. 7.7 we have
T(C) = N(C) because C' is the projection of K to A. By Lemma 6.6 we have

F(C) = F.(C) because C is the intersection of K with A.

Let A C A be the two-dimensional affine subspace containing % and having the
angle ¢ with the direction —1y & 2. Two example are shown in Figure 7.1, right.
The projection shapes my (C') have every touching cone a normal cone. So, according
to Thm. 7.10 and Remark 1.1 a face of my(C) is non-exposed if and only if it is
the endpoint of a unique one-dimensional face. The examples with ¢ = 12° and
» ~ 39° have two non-exposed faces: the tangent points of boundary segments to
the elliptic boundary arcs. The intersections C' N A have all faces exposed. In the
depicted examples exist touching cones, which are not normal cones. It is instructive
to realize that projection and intersection for the same affine space A are polars of

each other up to the sign (see e.g. Weis [16] Section 2.4).

An easy corollary of Minkowski’s and Carathéodory’s theorem characterizes normal
cones and exposed faces in terms of touching cones.

Theorem 7.9. Let N be a proper normal cone of C' such that every touching cone
included in N is a normal cone. Then N can be written as a supremum of atoms

of N(C). A number of dim(N) — dim(lin(C)*) atoms suffice in the supremum.

Proof. By Cor. 7.5 we assume that C' has non-empty interior int(C) # 0, so {0} is
the smallest element in AV'(C'). Let N be a proper normal cone of C. Then N does
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not contain a line, for otherwise by (iv) in (15) we had int(C') = (). Therefore there
is an affine hyperplane H C E such that K := N N H is a convex body and N is
the positive hull N = pos(K). Let u € ri(K). By Minkowski’s theorem we write u
as a convex combination u = Z?:l Aiu; for (non-zero) extreme points u; of K. By
Carathéodory’s theorem we choose d = dim(K) + 1 = dim(XV).

We show that N is a supremum of the d normal cones r; = {\u; | A > 0},
i=1,...,d. By Lemma 3.4 u belongs to ri(/N) and the ray r; is a face of N so r; is
a touching cone by Thm. 7.4. By assumption the touching cone r; is a normal cone
so it is an atom in N'(C'). If the supremum N := ry V- --Vry is strictly included into

N, then N must be a proper face of N by Prop. 4.8, so N C rb(NN) by the partition
(10) of N into relative interiors of its faces. This contradicts u € ri(NV). O

The isomorphism N(C) : F,(C) — N(C) in Prop. 4.7 gives an equivalent form of
this theorem (which is trivial if C'is a single point).

Theorem 7.10. Let F' be a proper exposed face of C' such that every touching cone
included in the normal cone N(C, F') is a normal cone. Then F can be written as
an intersection of coatoms of F1(C). A number of dim(N(C, F)) — dim(lin(C)*)

coatoms suffice in the intersection.

One may check the Thm. 7.9 and Thm. 7.10 on Figure 1.5, 1.3 and 1.1. The
theorems have no converse by example in Figure 1.4. The bound on coatoms is
saturated by a corner of a cube, it is not saturated for the apex of the cone in
Figure 7.1, left.

8. Polar convex bodies

This section is restricted to a convex body K C E in a finite-dimensional real
Euclidean vector space (E,(-,-)). Unless specified other we assume that K has
non-empty interior int(K) # ) containing the origin 0 € int(K) and second we
assume that K has at least two points. Conjugate faces induce an isotone lattice
isomorphism between the faces of the polar convex body K° and the touching
cones of K. This implies an equivalent theorem to Thm. 7.9, which can be proved
directly using only Minkowski’s and Carathéodory’s theorem. The antitone lattice
isomorphism F| (K) — N(K) (see Prop. 4.7) gives a fourth equivalent form of
Thm. 7.9.

Definition 8.1. The polar body of K is K° :={x € E| (z,y) < 1forall y € K}.

If F is a subset of K, then the conjugate face of F is F = {z € K°| (z,y) =
1forally € F}.

The polar body K° is a convex body with 0 € int(K°) and such that K°° = K, see
Schneider [15], Section 1.6. An example of a convex body with its polar body is
depicted in Figure 1.2, right. We recall that () and K are exposed faces of K so as
to make F, (K) a lattice (this deviates from definitions by Rockafellar or Schneider
(14, 15]). By Schneider, Thm. 2.1.4, a subset F' C K is included in a proper

exposed face of K if and only if the conjugate face Fisa proper exposed face of
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K°. Further, if these conditions hold, then (ﬁ J = sup, (F) is the smallest exposed
face of K containing F. Obviously § = K° and K = (. So F,(K) — F.(K),
F— (ﬁ J is the identity and we get an antitone lattice isomorphism:

~

Fi(K)— F (K°), F~F. (30)

An example is shown in Figure 1.3. The following remark may help our intuition.

Remark 8.2. The polar of an affine space A in E with respect to the unit sphere
{z € E| (z,z) = 1} is the affine space

AP = Lo e B | (z,y) = 1 for all y € A}

The polar is well-known in projective geometry (see e.g. Coxeter or Fischer [4, 5]),
it defines an antitone lattice isomorphism on the set of affine subspaces of A C E
with 0 € A with E joined. The polar is an involution, i.e. AP°larpolar — A guch that
dim(A) + dim(AP") = dim(E) — 1. E.g. §*°™ = E and EP?™ = (). In fact it
restricts a correlation of a projective space.

The conjugate face of an arbitrary subset F' C K is F = aff(F)Polar N K°. Tt is

possible, e.g. for a disk, that aff (ﬁ ) C aff(F)Po'ar, Equality holds for all polytopes
K and their faces F, see Griinbaum [6], Section 3.4.

The next observation is that the normal cone of every non-empty exposed face
F of K is the positive hull of the conjugate face N(K, F') = pos(F) (we have
pos(@) = {0}). This statement is proved in a more general form by Schneider
[15], Lemma 2.2.3. We include the empty face with 0§ = K° and with normal cone
N(K, () = pos(K°) = E. Combining this with the two antitone lattice isomorphisms
F(K) — Fi (K°) in (30) and F,(K) — N(K) in Prop. 4.7 we get an isotone
lattice isomorphism

FI(K°) = N(K), F~ pos(F) (31)

from the commuting diagram

FL(K) —= Fi(K°).
N(K)

Every proper exposed face ' of K° has a supporting hyperplane H of K° with
F = K°NnH. We get F = pos(F)N H and since () # int(K°) we have also
F =pos(F) N (K°). So the inverse to (31) is

N —1h(K°)NN if N £E,

N(K) = Fi(K), {E e

By examples in Figure 1.3 the antitone isomorphism F,(K) — N(K) does not
extend to F(K) — 7 (K) but we prove extension of pos : F, (K°) — N (K).
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Theorem 8.3. Let K be a convexr body containing at least two points and with
0 € int(K). If K° denotes the polar body, then the positive hull operator pos defines
an isotone lattice isomorphism F(K°) — T (K).

Proof. We consider a proper exposed face F' of K°. For N := pos(F') we have a
bijection pos : F(F) — F(N)\ {0} by Lemma 3.4, which may be written in the
form

pos(F)NF =F forall F e F(F),

pos(GNF) =G forall G € F(N)\ {0}. (32)

By (31) and the paragraph following it, we have F' = rb(K°) N N so we replace
F by rb(K°) in (32) except F(F'), which we leave unchanged. This gives us the
bijection
| faces of proper . non-empty faces of proper
pos - exposed faces of K° normal cones of K ’
The domain is clearly F(K°)\ {K°} and the target is 7(K) \ {E} by Thm. 7.4.

Since K has more than two points we have E # {0} so pos(K°) = E extends this
map to an isotone lattice isomorphism F(K°) — T (K). O

Theorem 8.3 partitions E\ {0} into relative interiors of touching cones, see Rem. 7.3.
We translate Thm. 7.9 by interchanging exposed faces with normal cones and touch-
ing cones with faces, using (31) and Thm. 8.3. Through affine embeddings we can
drop the condition 0 € ri(K) in the sequel, the condition that K has at least two
points is not needed.

Theorem 8.4. Let K be a convex body and let F' be a proper exposed face of K
such that every face included in F' belongs to F | (K). Then F can be written as a
supremum of at most dim(F) + 1 atoms of F (K).

Thm. 8.4 follows directly from Minkowski’s and Carathéodory’s theorem. It is
wrong if K is not closed (e.g. a closed triangle with an extreme point missing) or
unbounded (e.g. the strip {(z,y) € R? | x,y >0, y < 1}).

The antitone lattice isomorphism N(K) : F, (K) — N(K) in Prop. 4.7 gives us
an equivalent form of Thm. 8.4. We denote by F'| (K, N) the unique exposed face
F of K with N(K, F) = N and we use intersection for the infimum in N(K) by
Prop. 4.8.

Theorem 8.5. Let K be a convex body and let N be a proper normal cone of K
such that every face included in F\ (K, N) belongs to F, (K). Then N can be written
as an intersection of at most dim(F| (K, N)) 4+ 1 coatoms of N(K).

The bound on coatoms is saturated by the normal vector of a square face of the
cube.
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