
Journal of Convex Analysis

Volume 19 (2012), No. 2, 355–384

Notes on Extended

Real- and Set-Valued Functions

Andreas H. Hamel
Department of Mathematical Sciences,
Yeshiva University, New York, USA

hamel@yu.edu

Carola Schrage
Institute for Mathematics,

Martin-Luther-University, Halle-Wittenberg, Germany

carola.schrage@mathematik.uni-halle.de

Received: November 14, 2010

An order theoretic and algebraic framework for the extended real numbers is established which
includes extensions of the usual difference to expressions involving −∞ and/or +∞, so-called
residuations. New definitions and results for directional derivatives, subdifferentials and Legendre–
Fenchel conjugates for extended real-valued functions are given which admit to include the proper
as well as the improper case. For set-valued functions, scalar representation theorems and a new
conjugation theory are established. The common denominator is that the appropriate image spaces
for set-valued functions share fundamental structures with the extended real numbers: They are
order complete, residuated monoids with a multiplication by non-negative real numbers.

Keywords: Extended real-valued functions, directional derivative, subdifferential, Fenchel conju-
gate, set-valued function, conlinear space, infimal convolution

2010 Mathematics Subject Classification: 49N15, also: 54C60, 90C46

1. Motivation and bibliographical comments

Without any doubts, the notion of an extended real-valued function turned out
to be extremely useful in variational analysis, optimization theory and beyond.
On the one hand, several operations like taking the directional derivative or the
infimal convolution, even performed on real-valued or proper functions, may lead
to functions which also attain the values +∞ and/or −∞, and it would be really
awkward to exclude such cases (see already [12, p. 167]). On the other hand, the
added element +∞ admits the inclusion of constraints in a very elegant and concise
way (compare [19, p. 23]).

Almost all textbooks and relevant papers on convex and variational analysis make
use of this notion. As examples we mention [16], [11], [19], [20], [4], [12], all published
before 1980.

To our opinion, the most thorough investigation of extended real-valued functions
has already been made by Jean Jacques Moreau in [14], [15], [16]. It is a stunning
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and startling fact that his attempt to "algebraize" the extended reals was not ex-
ploited consequently later on. Compare [20, p. 6], and [2, p. 9], where the operation
(+∞) + (−∞) is called "risky" and "undefined and forbidden", respectively, and
also the classic [19, p. 24]. Even in the more recent [21, p. 15], the authors state
"there’s no single, symmetric way of handling ∞−∞".

Most authors try to avoid the difficulties (like in [18, p. 38]: "we won’t have occasion
to worry about +∞ − ∞ or 0 · ∞") by restricting the theory to proper functions
or just ignore the problem. An extreme with respect to this "avoiding approach"
is the standard volume on infinite dimensional analysis [1, p. 2] which reads "The
combination +∞−∞ of symbols has no meaning. The symbols +∞ and −∞ are
not really meant to be used for arithmetic, they are only used to avoid awkward
expressions involving infima and suprema." In this note, we show that just the
opposite works well.

To avoid the development (or the use) of an arithmetic for the extended reals does
not only passes a chance, it may also lead to imprecise statements. An example for
the latter can even be found in otherwise impressive textbooks: Theorem 2.3.1(ix)
in [24] does not hold for improper functions (no such assumption made in the quoted
reference) unless one uses the inf-addition on the left and the sup-addition on the
right hand side (see below for definitions) of the equation (f�g)∗ = f ∗ + g∗. The
same remark applies, for example, to the first part of Theorem 1 in [12, Section 3.4,
p. 178].

In this note, we give an extension of Moreau’s approach to extended real-valued
functions by noting that the correct algebraic framework is an order complete,
residuated monoid with a multiplication with non-negative real numbers. The
advantage of this complicated sounding construct is manifold: First, there is no
need anymore to "explain away" the value −∞ or to introduce algebraic rules for
expressions like (+∞) + (−∞) "by convention" ([21, p. 15]), or to avoid them.
Secondly, new operations can be introduced which give a precise meaning to ex-
pressions like (+∞) − (−∞), and one obtains a whole calculus for addition and
residuation/difference in IR = IR ∪ {−∞} ∪ {+∞}. On an abstract level, some of
these observations have already been made by Mart́ınez-Legaz, Singer and Getan
in [13] and [6].

Moreover, our approach will also simplify the notation avoiding symbols like r∔−s
(see, among others, Moreau’s papers, [13, Example 2.3], [23]). Finally, it will become
clear that the theory is completely symmetric, because our slightly different point of
view (compared to Mart́ınez-Legaz, Singer and others) is that there are two different
ways for introducing algebraic and order structures in IR and more general sets as
shown in the section about set-valued functions. This follows Moreau’s original
idea of defining convex and concave functions using different additions and image
spaces.

Since we consequently work with two algebraically different copies of the extended
reals, we have to say which of the two is used as an image space if we define an
extended real-valued function. Thus, there are two classes of such functions. Not
very surprisingly, the multiplication by −1 transfers a function of one class into
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one of the other, an operation which is nothing else than a duality in the sense of
[23]. We show how these concepts can be used, for example, to define directional
derivatives and subdifferentials of improper convex/concave functions in a coherent
way.

A second new feature of our approach is that in order to obtain complete (duality)
results the set of dual variables is extended by improper elements and, moreover, the
definition of the Legendre-Fenchel conjugate is altered: The new definition involves
an additional real variable which comes from the idea that the conjugate should
be defined on the set of affine functions rather than on the set of linear functions.
It does not make a difference if the function is proper, but it does if not since
the improper "linear" functions are not additive. A somehow surprising result is
that the conjugate of the infimal convolution of two functions turns out to be the
supremal convolution of their conjugates – with respect to the new primal variable.

We mention that improper affine functions have been used in [17] in order to for-
mulate duality results for optimization problems involving set-valued maps. We are
not aware of further references, but we think there should be some.

Finally, we consider set-valued functions and give an extension of the theory formu-
lated in [8] to improper set-valued functions using the (improper) scalar ones. In
fact, the present note has been written since we wanted to have a coherent frame-
work for proper and improper scalarizations of (closed convex) set-valued functions.
The approach follows ideas of [22]: In particular, using the representation of set-
valued closed convex functions by families of extended real-valued ones we give a
new definition of Legendre-Fenchel conjugates for set-valued functions and conclude
with a Fenchel-Moreau theorem which includes the proper as well as the improper
case.

We conclude the introduction by noting that it does not take more than 5 pages
and relatively elementary mathematics to introduce the two possibilities for an
algebraic and order theoretic framework in IR, which seems affordable for classroom
and textbook purposes.

2. A basic result from residuation theory

In this section, we consider a lattice ordered set with an algebraic operation which
we call addition, denoted by +, since it corresponds to "usual" additions for the
special cases we have in mind. In the following, we understand by a partially ordered
groupoid a nonempty set W with a binary relation +: W ×W → W and a partial
order ≤ which are compatible: u, v, w ∈ W and u ≤ v imply u + w ≤ v + w. The
sum u + M of u ∈ W and M ⊆ W is understood in the Minkowski sense with
u+M = ∅ if M = ∅. The following theorem can be extracted, for example, from [5,
Chapter XII]. See also [13, Proposition 2.6], [6, Proposition 2.1] for parts (c), (d).

Theorem 2.1. Let (W,+,≤) be a partially ordered commutative groupoid. The

following statements are equivalent:

(a) For each u, v ∈ W there is w ∈ W such that for w′ ∈ W

u ≤ v + w′ ⇐⇒ w ≤ w′;



358 A.H.Hamel, C. Schrage / Notes on Extended Real- and Set-Valued Functions

(b) For each u, v ∈ W the set {w′ ∈ W : u ≤ v + w′} has a least element;

(c) For u ∈ W and M ⊆ W such that infM exists it holds

u+ infM = inf (u+M) ;

(d) For each u, v ∈ W there exists inf {w′ ∈ W : u ≤ v + w′} ∈ W and it holds

u ≤ v + inf {w′ ∈ W : u ≤ v + w′} .

Proof. The equivalence of (a) and (b) is obvious. Assume (a). Then

∀m ∈ M : u+ infM ≤ u+m,

hence u + infM is a lower bound of u + M . On the other hand, let w ∈ W such
that

∀m ∈ M : w ≤ u+m.

By assumption, there is w̄ ∈ W such that

w ≤ u+ w′ ⇔ w̄ ≤ w′.

Hence w̄ ≤ m for all m ∈ M and therefore w̄ ≤ infM . Again by assumption
w ≤ u+ infM which proves that u+ infM is the infimum of u+M .

Assuming (c) we define w = inf {w′ ∈ W : u ≤ v + w′}. Then

u ≤ inf {v + w′ : w′ ∈ W, u ≤ v + w′} =
(c)

v + inf {w′ ∈ W : u ≤ v + w′} = v + w.

Now, from (c) it follows

v ≤ inf {u+ w′ ∈ W : v ≤ u+ w′} = u+ inf {w′ ∈ W : v ≤ u+ w′} ,

i.e. (d) holds true.

Finally, assume (d) and define M = {w ∈ W : u ≤ v + w}. Then, by assumption,
infM ∈ W and

u ≤ v + w ⇔ w ∈ M ⇔ infM ≤ w

which proves (a).

This completes the proof of the theorem.

We shall call a partially ordered commutative groupoid satisfying the conditions
of Theorem 2.1 inf–residuated. The following theorem can be proven with parallel
arguments and gives conditions for sup–residuated groupoids.

Theorem 2.2. Let (W,+,≤) be a partially ordered commutative groupoid. The

following statements are equivalent:

(a) For each u, v ∈ W there is w ∈ W such that for w′ ∈ W

v + w′ ≤ u ⇐⇒ w′ ≤ w;
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(b) For each u, v ∈ W the set {w′ ∈ W : v + w′ ≤ u} has a greatest element;

(c) For u ∈ W and M ⊆ W such that supM exists it holds

u+ supM = sup (u+M) ;

(d) For each u, v ∈ W there exists sup {w′ ∈ W : v + w′ ≤ u} ∈ W and it holds

v + sup {w′ ∈ W : v + w′ ≤ u} ≤ u.

3. An algebraic framework for extended real-valued functions

3.1. Order extension

Adding two elements −∞, +∞ to the set IR of real numbers we consider the set
IR = IR∪ {−∞}∪ {+∞} and extend the usual order relations ≤, < on IR to IR by
setting

∀r ∈ IR: −∞ ≤ r ≤ +∞,

∀r ∈ IR: −∞ < r < +∞.

With this extension of ≤,
(

IR,≤
)

becomes a partially ordered, complete lattice:
Every subset has an infimum and a supremum. In particular,

inf ∅ = sup IR = sup IR = +∞, (1)

inf IR = inf IR = sup ∅ = −∞. (2)

Note that the commonly used conventions inf ∅ = +∞, sup ∅ = −∞ are the un-
avoidable choice if one wants to maintain the following monotonicity property:
M ⊆ N ⊆ IR implies infM ≥ infN and supM ≤ supN .

3.2. Addition

There are two ways to extend the addition from IR to IR by means of the order
relation ≤. We obtain two different algebraic operations in IR.

Definition 3.1. The binary operations +� : IR × IR → IR and +� : IR × IR → IR
defined by

r+� s = inf {a+ b : a, b ∈ IR, r ≤ a, s ≤ b} , (3)

r+� s = sup {a+ b : a, b ∈ IR, a ≤ r, b ≤ s} (4)

for r, s ∈ IR are called the inf-addition and the sup-addition in IR, respectively.

The terminology is due to [21]. Already Moreau [14] introduced the two different
additions in IR. Clearly, both operations coincide with the usual addition in IR.
The notable differences are

(+∞)+� (−∞) = (−∞)+� (+∞) = +∞,

(+∞)+� (−∞) = (−∞)+� (+∞) = −∞.
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Since inf-adding +∞ always gives +∞ as a result, we say that +∞ dominates the
inf-addition. Likewise, −∞ dominates the sup-addition. Both operations are com-
patible with the order ≤ on IR in the usual sense. Thus,

(

IR,+� ,≤
)

and
(

IR,+� ,≤
)

are ordered commutative monoids which are complete lattices. The following re-
sult describes the relationships between inf-/sup-addition and the order relation.
Compare, for example, [14], Proposition 1 and 2 with F = M , G = N and
f (x) = g (x) = x.

Proposition 3.2. Let M,N ⊆ IR. Then

inf (M+�N) = infM+� infN, sup (M+�N) ≤ supM+� supN, (5)

infM+� infN ≤ inf (M+�N) , supM+� supN = sup (M+�N) (6)

where the sum of sets is understood in the Minkowski sense.

Proof. By definition,

infM+� infN = inf {r + s : r, s ∈ IR, infM ≤ r, infN ≤ s}

and for all m ∈ M,n ∈ N holds infM+� infN ≤ m+�n, thus infM+� infN ≤
inf (M+�N). On the other hand, if M = ∅ or N = ∅, then both of infM+� infN and
inf (M+�N) give the result +∞ since the latter element dominates the inf-addition.
If M,N 6= ∅ and one of them has infimum −∞ then infM+� infN = inf (M+�N) =
−∞. If −∞ < infM, infN then, for each ε > 0 there are mε ∈ M ∩ IR, nε ∈ N ∩ IR
such that mε + nε ≤ infM+� infN + ε, hence infM+� infN ≤ inf (M+�N) which
gives, together with the first part, equality.

In particular, with r ∈ IR, N = {r} we obtain (again, compare [14], p. 7, formulas
(2.9), (2.12))

r+� infM = inf ({r}+�M) , r+� supM = sup ({r}+�M) . (7)

Finally, note that the inequalities in (5) and (6) are not satisfied as equations in
general. A counterexample can already be found in [15], p. 7.

3.3. Multiplication with −1

By setting
(−1) (+∞) = −∞, (−1) (−∞) = +∞

we extend the multiplication of real numbers with −1 to IR. As usual, we abbreviate
(−1) r to −r for r ∈ IR if no confusion arises. Obviously,

∀r, s ∈ IR: (r ≤ s ⇔ −s ≤ −r)

and hence for each M ⊆ IR

(−1) infM = sup (−1)M. (8)

Thus, the multiplication with −1 is a duality of IR onto itself in the sense of [23],
Chapter 5. Here and in the following, we make use of (−1)M = {−r : r ∈ M} if
M 6= ∅ and (−1)M = ∅ if M = ∅.
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Proposition 3.3. For r, s ∈ IR,

(−1) (r+� s) = (−1) r+� (−1) s.

Proof. Using Definition 3.1 and (8) above we obtain

(−1) (r+� s) = (−1) inf {a+ b : a, b ∈ IR, r ≤ a, s ≤ b}

= sup {(−a) + (−b) : a, b ∈ IR, r ≤ a, s ≤ b}

= sup {a′ + b′ : a′, b′ ∈ IR, a′ ≤ −r, b′ ≤ −s}

= (−1) r+� (−1) s

which already proves the claim.

3.4. Residuation and inf-/sup-difference

Proposition 3.2 together with Theorem 2.1 and 2.2 tell us that
(

IR,+� ,≤
)

and
(

IR,+� ,≤
)

are residuated semigroups with a neutral element (i.e. residuated mo-
noids), see e.g. [5], Chap. XII. The corresponding residuation operations may serve
as extensions of the difference from IR to

(

IR,+� ,≤
)

and
(

IR,+� ,≤
)

, respectively.

This motivates the following definition. Residuation operations for x 7→ r+ x in IR
have not been considered by Moreau. Only Mart́ınez-Legaz, Singer and Getan (see
[13], [6]) seem to have realized the importance of residuation for the foundation of
convex analysis.

Definition 3.4. Let r, s ∈ IR. The element

r−� s = min
{

t ∈ IR: r ≤ s+� t
}

is called the inf-difference of r and s. The element

r−� s = max
{

t ∈ IR: s+� t ≤ r
}

is called the sup-difference of r and s.

One easily obtains for all r, s ∈ IR

r−� s = inf {t ∈ IR: r ≤ s+� t} , (9)

r−� s = sup {t ∈ IR: s+� t ≤ r} (10)

and

r−� (+∞) = −∞, (−∞)−� r = −∞, (11)

r−� (−∞) = +∞, (+∞)−� r = +∞. (12)

The rules for a subtraction of least and greatest elements from each other are as
shown below:

(+∞)−� (−∞) = +∞, (+∞)−� (+∞) = +∞,

(+∞)−� (+∞) = −∞, (+∞)−� (−∞) = +∞,

(−∞)−� (+∞) = −∞, (−∞)−� (−∞) = +∞,

(−∞)−� (−∞) = −∞, (−∞)−� (+∞) = −∞.
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Moreover, from Theorem 2.1(a) with u = r ∈ IR, v = s ∈ IR, w = r−� s and w′ = 0,
and likewise with the help of Theorem 2.2, we obtain

r ≤ s ⇔ r−� s ≤ 0 ⇔ 0 ≤ s−� r. (13)

The following result gives relationships between inf-/sup-addition, inf-/sup-sub-
traction and multiplication with −1.

Proposition 3.5. Let r, s ∈ IR. Then

r−� s = r+� (−1) s, (14)

r−� s = r+� (−1) s, (15)

s−� r = (−1) (r−� s) , (16)

s−� r = (−1)r−� (−1)s, (17)

s−� r = (−1)r−� (−1)s. (18)

Proof. If r = −∞, or if s = +∞, then r−� s = r+� (−1) s = −∞, see (11). If
r = +∞ and s < +∞, or if s = −∞ and r > −∞, then r−� s = r+� (−1) s = +∞.
This proves (14) since if r, s ∈ IR, the formula is known to be true. Likewise, (15)
is proven.

Next, we use (8) and (9) to obtain

(−1)(r−� s) = sup {t ∈ IR: r ≤ s+� (−1)t} .

Since it suffices to take the supremum over t ∈ IR we get

r ≤ s+� (−1)t ⇔ r+� t ≤ s

and (16) follows from Definition 3.4.

The last two equations are immediate from (14), (15).

We establish a calculus for manipulating inf-/sup-differences. Since these operations
are special cases of residuation mappings these rules are well-known, see for example
[3, Lemma 3.2] where the sup versions can be found.

Proposition 3.6.

(a) For each r ∈ IR,

r−� r =

{

0 : r ∈ IR

−∞ : r 6∈ IR,
r−� r =

{

0 : r ∈ IR

+∞ : r 6∈ IR.

(b) For each r, s, t ∈ IR with r ≤ s,

r−� t ≤ s−� t, t−� s ≤ t−� r,

and

r−� t ≤ s−� t, t−� s ≤ t−� r.
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(c) For each a, b, r, s ∈ IR,

(a+� r)−� (b+� s) ≤ (a−� b)+� (r−� s),

especially

(a+� r)−� (r+� b) ≤ (a−� b).

Symmetrically,

(a−� b)+� (r−� s) ≤ (a+� r)−� (b+� s),

especially

(a−� b) ≤ (a+� r)−� (r+� b).

(d) If M ⊆ IR and a ∈ IR, then

a−� infM = sup
m∈M

(a−�m),

a−� supM = inf
m∈M

(a−�m).

Proof. (a) is straightforward from the definitions. For (b) observe that if r ≤ s,
then s ≤ t+� t′ implies r ≤ t+� t′, and this in turn gives r−� t ≤ s−� t. Moreover, if
r ≤ s, then t ≤ r+� t′ implies t ≤ s+� t′, and this in turn gives t−� s ≤ t−� r. The
relationships for −� can be proven similarly. We turn to (c). Take t1, t2 ∈ IR such
that a ≤ b+� t1 and r ≤ s+� t2. Then (a+� r) ≤ (b+� s)+� (t1 + t2), hence

(a+� r)−� (b+� s) ≤ t1+
� t2.

Taking the infimum over t1 satisfying a ≤ b+� t1 and t2 satisfying r ≤ s+� t2 gives
the result. The second formula in (c) is immediate by setting r = s in the first and
applying (a). The results for −� are proven likewise. (d) Using (14), (15) as well as
(8) and (e) of Proposition 3.5 we obtain

a−� infM = a+� (−1) infM = a+� sup−M = sup (a+� (−M)) = sup (a−�M) .

The second equation follows from the first since by (15) we have a−� supM =
a+� inf(−1)M and thus a−� supM = infm∈M (a−�m).

3.5. Multiplication with non-negative reals

The multiplication with non-negative reals is extended to IR by

∀t > 0: t · (±∞) = ±∞

and 0 · (±∞) = 0 ∈ IR. The triples
(

IR,+� , ·
)

and
(

IR,+� , ·
)

are conlinear spaces
(see appendix for a definition) consisting only of convex elements. That is, the
multiplication with non-negative real numbers distributes over +� and +� as well as
the other way around.

The order relation ≤ as defined above is compatible with this algebraic structure
in the usual sense. We write IRM =

(

IR,+� , ·,≤
)

, IRO =
(

IR,+� , ·,≤
)

, and drop the
· for multiplication if no confusion arises.
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Proposition 3.7. For all a, b ∈ IR and t ≥ 0 it holds

t(a−� b) = ta−� tb, t(a−� b) = ta−� tb.

Proof. The relationships are trivial for t = 0. If t > 0 then

t(a−� b) = inf {ts ∈ IR: a ≤ b+� s}

= inf {s′ ∈ IR: ta ≤ tb+� s′} = ta−� tb.

The result for −� follows similarly.

4. Extended real-valued functions

From the above, it should be clear that there are two types of extended real-valued
functions, those mapping into IRM and those mapping into IRO. The point-wise
multiplication with −1 transfers a function of one class into a function of the other.
This point of view differs slightly from [6] where (only one copy of) IR is consid-
ered with two additions and two corresponding residuation operations. This might
appear to be just a tiny shift of weight, but it becomes important when it comes
to set-valued functions: The replacements of IRM and IRO will have rather different
looking elements. In the following, let X be a linear space.

Definition 4.1. Let f : X → IR. The epigraph and the hypographs of f are the
sets

epi f = {(x, r) ∈ X × IR: f (x) ≤ r} ,

hypo f = {(x, r) ∈ X × IR: r ≤ f (x)} ,

respectively. The effective domain of a function g : X → IRM is the set

dom g = {x ∈ X : g (x) < +∞}

whereas the effective domain of a function h : X → IRO is the set

domh = {x ∈ X : −∞ < h (x)} .

The concept of the domain depends on the image space, so if one knows the latter,
one also knows which definition to use. Therefore, we do not introduce different
symbols. Note also that the collection of functions into IRM (IRO) is a conlinear
space under point-wise addition +� (+� ) and multiplication with non-negative reals,
but neither collection is a linear space. Mixing up the image spaces may lead to
strange effects as the next example shows.

Example 4.2. Consider the functions f, g : IR → IRM defined by

f (x) =

{

+∞ : x < 2,

−∞ : x ≥ 2,
g (x) =

{

−∞ : |x| ≤ 1,

+∞ : |x| > 1.

Both functions have a convex epigraph. So has the function x 7→ f (x)+� g (x).
However, the function x 7→ f (x)+� g (x) neither has a convex epigraph nor a convex
hypograph.
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The previous example also shows that convexity and +� are linked as are concavity
and +� . This justifies the following definition (already in [14, p. 19]).

Definition 4.3. A function g : X → IRM is called convex if

∀t ∈ (0, 1) , ∀x1, x2 ∈ X : g (tx1 + (1− t)x2) ≤ tg (x1)+
� (1− t) g (x2) .

A function h : X → IRO is called concave if

∀t ∈ (0, 1) , ∀x1, x2 ∈ X : th (x1)+� (1− t)h (x2) ≤ h (tx1 + (1− t)x2) .

Again, the collection of all convex functions into IRM (concave functions into IRO)
is a conlinear space under point-wise addition +� (+� ) and multiplication with non-
negative reals. Apparently, it does not make much sense to consider convex func-
tions into IRO, nor concave into IRM.

A function g : X → IRM is convex if and only if −g : X → IRO is concave. A function
g mapping into IRM is convex if and only if its epigraph is a convex subset of the
linear space X × IR, and a function h mapping into IRO is concave if and only if its
hypograph is convex.

Definition 4.4. A function f : X → IR is called positively homogeneous if

∀t > 0, ∀x ∈ X : f (tx) = tf (x) .

A positively homogeneous convex function into IRM is called sublinear, and a posi-
tively homogeneous concave function into IRO is called superlinear.

Notice that we do not include the case t = 0 in the definition of positive homogeneity.
Thus,

g(x) =

{

−∞ : x ≤ 0,

+∞ : x > 0

is a positively homogeneous function, while 0 · g(x) 6= g(0 · x) holds for all x ∈ X.

Example 4.5 (improper affine functions). Let X be a topological linear space
and X∗ its topological dual. We write x∗ (x) for the value of an element x∗ ∈ X∗

at x ∈ X. Let r ∈ IR and set x∗
r(x) = x∗(x)− r for x ∈ X. Each x∗ ∈ X∗ generates

a closed improper function x∗
r : X → IRM given by

x∗
r (x) =

{

−∞ : x∗
r (x) ≤ 0

+∞ : x∗
r (x) > 0

which we call the inf-extension of the affine function x 7→ x∗
r (x). Analogously,

the improper sup-extension of x 7→ x∗
r (x) (with a closed hypograph) mapping into

IRO can be obtained by reversing the roles of −∞ and +∞. The functions x∗
0 are

positively homogeneous, subadditive and superadditive, but not additive, i.e. in
general x∗

0 (x1 + x2) 6= x∗
0 (x1)+

� x∗
0 (x2) for x1, x2 ∈ X. Below, this will force us to

define Legendre–Fenchel conjugates acting on the set of affine rather than linear
functions.
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In the sequel, we shall write x∗ for x∗
0 and x∗ for x∗

0. Define

X∗ = {x∗ : x∗ ∈ X∗}

and XM = X∗ ∪ X∗. The set XM is called the (topological) inf-dual of X (cor-
respondingly, the sup-dual XO of X can be defined using the sup-extensions of
continuous linear functions). On XM, an addition can be introduced by

ξ + η = η + ξ =











inf-extension of x∗ + y∗ : ξ = x∗, η = y∗,

ξ : ξ = x∗, η = y∗,

x∗ + y∗ : ξ = x∗, η = y∗

for ξ, η ∈ XM with x∗, y∗ ∈ X∗. Taking the multiplication by non-negative numbers
pointwise, (XM,+, ·) is a conlinear space with neutral element 0 ∈ X∗.

The following representation formulas for (proper and improper) affine functions
will be used later on.

Proposition 4.6. Let ξ ∈ XM, r ∈ IR. Then

∀x1, x2 ∈ X : ξr (x1 + x2) = sup
r1+r2=r

[ξr1 (x1)+� ξr2 (x2)] , (19)

∀x1, x2 ∈ X : ξr (x1 − x2) = sup
r1+r2=r

[ξr1 (x1)−
� ξ−r2 (x2)] . (20)

Proof. Exemplarily, we prove (19). The formula is obvious for ξ = x∗ ∈ X∗ and for
ξ = 0∗. Let ξ = x∗ ∈ X∗\

{

0∗
}

. Then, by definition of x∗ and since −∞ dominates
the sup-addition sup

{

x∗
r1
(x)+� x

∗
r2
(y) : r1 + r2 = r

}

= +∞ if and only if there are
r1, r2 ∈ IR such that r1 + r2 = r and x∗ (x) − r > 0, x∗ (y) − r > 0. But this is
equivalent to x∗ (x+ y) − r > 0, and this in turn to x∗

r (x+ y) = +∞. Otherwise,
x∗
r (x+ y) = supr1+r2=r

(

x∗
r1
(x)+� x

∗
r2
(y)
)

= −∞.

Replacing sup by inf, +� by +� and −� by −� one may obtain another pair of repre-
sentation formulas.

5. Applications

5.1. Directional derivatives of convex functions

In this section, we shall show that the residuations −� and −� may serve as sub-
stitutes for the usual difference in the definition of the directional derivative of ex-
tended real-valued convex and concave functions. Besides the obvious result (may
be useful or not) of having a coherent definition of directional derivatives also for
improper functions the constructions below indicate the deep connection between
the order relation in the image space, crucial for the definition of residuations, and
directional derivatives.

Definition 5.1. The directional derivative of a function g : X → IRM at x0 ∈ X in
direction x ∈ X is given by

g′ (x0, x) = lim
t↓0

1

t
[(g (x0 + tx)−� g (x0))] .
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The directional derivative of a function h : X → IRO at x0 ∈ X in direction x ∈ X
is given by

h′ (x0, x) = lim
t↓0

1

t
[(h (x0 + tx)−�h (x0))] .

If g (x0) = +∞ then g′ (x0, x) = −∞ since r−� (+∞) = −∞ for all r ∈ IR. If
g is convex and g (x0) = −∞ then g′ (x0, x) = −∞ iff there is t > 0 such that
g (x0 + tx) = −∞ and g′ (x0, x) = +∞ otherwise. If g (x0) ∈ IR the directional
derivative coincides with the classical one (see e.g. [12], p. 193). Similar remarks
apply to h′ (x0, x).

Remark 5.2. We have g′ (x0, x) = (−1) (−g)′ (x0, x) and similar for h. This can
be seen with the help of Proposition 3.5.

Proposition 5.3. If g : X → IRM is convex, then x 7→ g′ (x0, x) is a sublinear

function from X into IRM. In this case,

g′ (x0, x) = inf
t>0

1

t
[(g (x0 + tx)−� g (x0))] . (21)

Likewise, if h : X → IRO is concave, then x 7→ h′ (x0, x) is a superlinear function

from X into IRO and

h′ (x0, x) = sup
t>0

1

t
[(h (x0 + tx)−�h (x0))] . (22)

Proof. The basic fact is the monotonicity of the difference quotient

t 7→
1

t
[(g (x0 + tx)−� g (x0))] .

Indeed, taking t > 0 and τ ∈ (0, 1) we obtain with the help of Proposition 3.6(c)
and Proposition 3.7

1

τt
[g (x0 + τtx)−� g (x0)] ≤

τ

τt
[g (x0 + tx)−� g (x0)] +

�
1− τ

τt
[(g(x0)−

� g(x0))]

≤
1

t
[g (x0 + tx)−� g (x0)] .

Therefore, for 0 < s = τt < t

1

s
[(g (x0 + sx)−� g (x0))] ≤

1

t
[(g (x0 + tx)−� g (x0))]

and hence

g′ (x0, x) = inf
t>0

1

t
[(g (x0 + tx)−� g (x0))]

holds true. For s > 0,

g′ (x0, sx) = s · inf
st>0

1

st
[(g (x0 + stx)−� g (x0))] = sg′ (x0, x) ,
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thus the directional derivative is positively homogeneous.

Finally, consider the function gt : X → IRM defined by

gt(x) =
1

t
(g(x0 + tx)−� g(x0)) for x ∈ X.

The epigraph of each function gt is convex and by the monotonicity of the difference
quotient,

epi g′(x0, ·) =
⋃

t>0

epi gt

is convex. Thus, the directional derivative is a sublinear function.

The concave case is immediate, considering that h is concave iff −h is convex.

The first part of the previous proposition is an extension of results like theorem
2.1.13 in [24]. In the "proper" theory, it is well-established that the linear mino-
rants of x 7→ g′ (x0, x) are precisely the elements of the subdifferential of g at x0.
Admitting improper affine functions (see Example 4.5) it is now possible to formu-
late an "improper" supplement for the "proper" theory. Recall XM = X∗ ∪ X∗ (see
Example 4.5).

Definition 5.4. An element ξ ∈ XM is called an extended subgradient of g : X →
IRM at x0 ∈ X iff

∀x ∈ X : ξ(x− x0) ≤ g (x)−� g (x0) (23)

The set of all subgradients of g at x0 is denoted by ∂exg (x0), the set of improper
subgradients of g at x0 is denoted by ∂ipg (x0), and the (classical) subdifferential is
∂g (x0) = ∂exg (x0) \∂

ipg (x0).

Obviously, −∞ ∈ ∂exg (x0) for all g and all x0 ∈ X.

Proposition 5.5. Let g : X → IRM be a convex function. The following two state-

ments are equivalent for ξ ∈ XM, x0 ∈ X:

(a) ξ is a subgradient of g at x0;

(b) ∀x ∈ X : ξ (x) ≤ g′ (x0, x).

Proof. First, assume (a) and choose x = x0 + ty with t > 0, y ∈ X. We get

∀y ∈ X, ∀t > 0: ξ (ty) ≤ g (x0 + ty)−� g (x0) .

Since 1
t
ξ (ty) = ξ (y) for all t > 0, y ∈ X (no matter if ξ is proper or improper) we

may conclude

∀y ∈ X, ∀t > 0: ξ (y) ≤
1

t
[g (x0 + ty)−� g (x0)] .

Formula (21) produces (b). Next, assume (b). Using (21) and choosing t = 1 gives
(23).
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5.2. Legendre–Fenchel conjugation

The following concepts and results supplement the conjugation theory for functions
with a proper closure. Throughout this section, we assume that X is a separated
locally convex space with topological dual X∗. It is well-known that if g is convex
and improper, then (cl g) (x) ∈ {±∞} for all x ∈ X (see [24, Proposition 2.2.5]).
In this case, dom (cl g) = cl (dom g).

Theorem 5.6. Let g : X → IRM be improper closed convex. Then g is the pointwise

supremum of its improper closed minorants, and if g 6≡ −∞, then there are x∗ ∈
X∗\ {0} and r ∈ IR such that

∀x ∈ X : x∗
r (x) ≤ g (x) .

Proof. If g is g ≡ +∞ or ≡ −∞, then g(x) = 0∗−1 or g(x) = 0∗ for all x ∈ X,
respectively. Thus, let us assume dom g 6≡ ∅ and g 6≡ −∞. Since dom g is a closed
convex subset of X it is the intersection of all closed half spaces including it. Each
such half space has the form

{x ∈ X : x∗ (x)− r ≤ 0} ⊇ dom g (24)

for some x∗ ∈ X∗, r ∈ IR. The function x∗
r : X → IR certainly is a closed improper

affine minorant of g. Since dom g is the intersection of all domx∗
r with x∗, r satisfying

(24) the result follows.

The next result characterizes improper affine minorants of improper IRM-valued
functions.

Theorem 5.7. Let g : X → IRM. The following statements are equivalent for ξ ∈
XM and r ∈ IR:

(a) ∀x ∈ X : ξr (x) ≤ g (x),

(b) supx∈X {ξr (x)−
� g (x)} ≤ 0,

(c) supx∈X

{

ξr (x)+� (−1) g (x)
}

≤ 0,

(d) infx∈X {g (x)−� ξr (x)} ≥ 0,

(e) infx∈X {g (x)+� (−1) ξr (x)} ≥ 0.

Moreover, if ξ = x∗ with x∗ ∈ X∗ then (a) through (e) are equivalent to

(f) dom x∗
r ⊇ dom g,

and the suprema in (b), (c) are −∞ whereas the infima in (d), (e) are +∞.

Proof. The equivalence of (a) and (b) follows from (13). The equivalence of (b)
and (c) is immediate from (14). Likewise, (d) and (e) are equivalent because of
(15). The equivalence of (b) and (d) follows from (14) and (8).

If ξ = x∗ then the difference x∗
r (x)−

� g (x) is +∞ if and only if x ∈ dom g\ dom x∗
r,

so (b) and (f) are equivalent.

The previous theorem together with the effect described in Example 4.5 gives rise
to the following definition.
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Definition 5.8. The Legendre-Fenchel conjugate of g : X → IRM is the function
g∗ : XM × IR → IRO which is given by

g∗ (ξ, r) = sup
x∈X

{ξr (x)−
� g (x)} .

for ξ ∈ XM, r ∈ IR.

Take x∗ ∈ X∗ and r ∈ IR. Of course,

g∗ (x∗, r) = sup
x∈X

{x∗
r (x)−

� g (x)} = sup
x∈X

{x∗ (x)−� g (x)} − r = g∗ (x∗)− r

where g∗ (x∗) is the classical Legendre-Fenchel conjugate of g at x∗ ∈ X∗. Moreover
(compare the previous theorem),

g∗ (x∗, r) =

{

−∞ : dom x∗
r (·) ⊇ dom g,

+∞ : otherwise.
(25)

Therefore, ξr with ξ ∈ XM, r ∈ IR is a (proper or improper) closed affine minorant
of g if and only if g∗ (ξ, r) ≤ 0.

Proposition 5.9. Let g : X → IRM be a function, (ξ, r) ∈ XM × IR. The following

equivalent statements are true:

(a) The Young-Fenchel inequality

∀x ∈ X : ξr (x)−
� g (x) ≤ g∗ (ξ; r) .

(b)
∀x ∈ X : ξr (x) ≤ g (x)+� g∗ (ξ; r) .

(c)
∀x ∈ X : ξr (x)−

� g∗ (ξ; r) ≤ g (x) .

Proof. The first equation is immediate from the definition on the conjugate. For
(b) and (c), recall r−� s ≤ t is equivalent to r ≤ s+� t (see Theorem 2.1(a)). This
gives the equivalence of (a) with (b) and (c), respectively.

Many of the known rules for the manipulation of conjugates apply also to g∗ at
improper elements. There are, however, some differences. We shall indicate one of
them, a rule for conjugates of an infimal convolution which is defined for f, g : X →
IRM (see [14]) as

(f�g) (x) = inf {f (x1)+
� g (x2) : x1 + x2 = x} .

Theorem 5.10. Let f, g : X → IRM and ξ ∈ XM, r ∈ IR. Then

(f�g)∗ (ξ, r) = sup {f ∗ (ξ, r1)+� g
∗ (ξ, r2) : r1 + r2 = r} . (26)

If, in particular, ξ = x∗ ∈ X∗ then

(f�g)∗ (x∗, r) = f ∗ (x∗, 0)+� g
∗ (x∗, 0)+� (−r) . (27)
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Proof. From the first formula in (d) of Proposition 3.6 we obtain

(f�g)∗ (ξ, r) = sup
x,y∈X

(ξr(x+ y)−� (f(x)+� g(y))) .

From (19) and (7), (14) we may conclude

(f�g)∗ (ξ, r) = sup
x,y∈X

(

sup
r1+r2=r

(ξr1(x)+� ξr2(y))+� (−1) (f(x)+� g(y))

)

= sup
x,y∈X

r1+r2=x0

(

(

ξr1(x)+� ξr2(y)
)

+� (−1)
(

f(x)+� g(y)
)

)

Using Proposition 3.3 we get

(f�g)∗ (ξ, r) = sup
x,y∈X

r1+r2=r

(

(

ξr1(x)+� ξr2(y)
)

+�

(

(−1)f(x)+� (−1)g(y)
)

)

= sup
x,y∈X,
r1+r2=r

(

(

ξr1(x)+� (−1)f(x)
)

+�

(

ξr2(y)+� (−1)g(y)
)

)

.

Again (14) yields

(f�g)∗ (ξ, r) = sup
x,y∈X,
r1+r2=r

((ξr1(x)−
� f(x))+� (ξr2(y)−

� g(y))) .

Taking the supremum with respect to x while applying the second part of (7), and
then doing the same with the supremum with respect to y we arrive at

(f�g)∗ (ξ, r) = sup
y∈X,

r1+r2=r

(f ∗ (ξ, r1)+� (ξr2(y)−
� g(y)))

= sup
r1+r2=r

(f ∗ (ξ, r1)+� g
∗ (ξ, r2)) .

This completes the proof.

Remark 5.11. Taking r = 0 in (27) and observing that g∗ (x∗, 0) = g∗ (x∗) is the
classical Legendre-Fenchel conjugate we arrive at the correct version of Theorem
2.3.1(ix) in [24]. See already Moreau’s paper [16], Paragraph 6.h.

Remark 5.12. Surprisingly, the right hand side of (26) turns out to be the supre-
mal convolution of the conjugates of f and g – with respect to the real variable r.
One may observe once again that conjugation via the formula given in Definition 5.8
changes the image space: +� has to be used on the right hand side of (26) whereas
+� appears on the left hand side.

Definition 5.13. The Legendre-Fenchel biconjugate of g : X → IRM is the function
g∗∗ : X → IRM which is given by

g∗∗ (x) = sup
(ξ,r)∈XO×IR

{ξr (x)−
� g∗ (ξ, r)}

for x ∈ X.
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Theorem 5.14. Let g : X → IRM be closed convex. Then g = g∗∗.

Proof. Note that for x∗ ∈ X∗ and r ∈ IR we have

x∗
r (x)−

� g∗ (x∗, r) =

{

+∞ : x 6∈ dom x∗
r and dom g ⊆ dom x∗

r

−∞ : otherwise
(28)

and

x∗
r (x)−

� g∗ (x∗, r) = x∗ (x)−� g∗ (x∗, 0) . (29)

If epi g = ∅, then g∗∗(x) = g(x) = +∞ for all x ∈ X. If epi g 6= ∅, then g is the
pointwise supremum of its affine minorants. Especially, if g is improper, then it is
the pointwise supremum of its improper affine minorants, thus by (28) g∗∗(x) = g (x)
holds for all x ∈ X. If g is proper, then the well-known biconjugation theorem (see
e.g. [24, Theorem 2.3.3]) combined with (29) delivers the desired result.

Remark 5.15. The closed convex hull of g : X → IRM is defined by

∀x ∈ X : (cl co g)(x) = inf {t ∈ IR: (x, t) ∈ cl co (epi g)} .

Since the conjugate of an arbitrary function coincides with the conjugate of its closed
convex hull, the biconjugate of the function yields precisely the closed convex hull.

The well-known relationship between the subdifferential and the Fenchel conjugate
can be extended to the improper case as follows.

Proposition 5.16. Let g : X → IRM be a convex function and x0 ∈ dom g. Then,

the following statements are equivalent for ξ = x∗ ∈ X∗, r = x∗(x0):

(a) ξ ∈ ∂exg (x0),

(b) dom ξr ⊇ dom g,

(c) ∀x ∈ X : (ξr (x)−
� g (x))+� g (x0) ≤ ξr (0) = −∞.

(d) g∗ (ξ, r) = −∞.

Proof. It holds ξx∗(x0)(x) = ξ(x− x0) for all x ∈ X. Moreover, ξx∗(x0)(x) = −∞ if
x∗(x) ≤ x∗(x0) and ξx∗(x0)(x) = +∞ otherwise. (a) ⇔ (b) can be checked directly.
(a) ⇔ (d) is formula (25). (d) ⇒ (c) is clear from the definition of g∗, while (c) and
"not (b)" produce a contradiction.

Proposition 5.17. Let g : X → IRM be a convex function and x0 ∈ X. If x0 6∈
dom g, then ∂exg (x0) = {−∞}. If x0 ∈ dom g, then

∂exg (x0) = {ξ ∈ XM : g∗ (ξ, x∗ (x0))+
� g (x0) ≤ ξ (0)} .

Proof. Assume x0 ∈ dom g. First, if ξ = x∗ ∈ X∗ then ξ (0) = −∞. If ξ ∈ ∂exg (x0)
then Proposition 5.16(d) gives g∗ (ξ, x∗ (x0)) = −∞, hence g∗ (ξ, x∗(x0))+

� g (x0) ≤
ξ (0). If ξ satisfies the latter inequality, then, by definition of g∗, also the one in
Proposition 5.16(c), hence ξ ∈ ∂exg (x0). Secondly, let ξ = x∗ ∈ X∗. Then g is
proper (otherwise ∂g (x0) = ∂exg (x0) ∩X∗ = ∅ and g∗ (ξ, x∗(x0)) ≡ +∞), and the
result is well-known since g∗ (ξ, x∗ (x0)) = g∗ (x∗)− x∗ (x0) in this case.
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We close this subsection by noting that the theory in Sections 5.1, 5.2 has a symmet-
ric counterpart for functions mapping into IRO which requires modified definitions.
For example, Moreau [14, p. 10], already introduced the sup-convolution for IRO-
valued functions.

5.3. Set-valued convex and concave functions

5.3.1. Image spaces

Let Z be a topological linear space and P (Z) the collection of all subsets of Z
including ∅. Let C ⊆ Z be a convex cone including 0 ∈ Z. We shall write z1 ≤C z2
for z2 − z1 ∈ C, and this defines a reflexive, transitive relation. The relation ≤C

can be extended in two different ways to P (Z), see for example [7], [8] for details
and references. A basic idea in these references is to use the equivalence classes in
P (Z) of the extension of ≤C to construct appropriate image spaces for set-valued
functions. It turned out (see [8]) that the following sets are appropriate choices as
image spaces for set-valued closed convex (concave) functions:

Qt
C (Z) = {A ⊆ Z : A = cl co (A+ C)} and

QC
t (Z) = {A ⊆ Z : A = cl co (A− C)} .

We redefine the addition for elements A,B of Qt
C (Z) and QC

t (Z) and the multipli-
cation with 0 ∈ IR by

A⊕B = cl (A+B) (30)

and 0 · A = clC in Qt
C (Z) and 0 · A = − clC in QC

t (Z), respectively. Then,
(Qt

C (Z) ,⊕, ·,⊇) and
(

QC
t (Z) ,⊕, ·,⊆

)

are partially ordered conlinear spaces.
Again, the multiplication with −1, transforming Qt

C (Z) into QC
t (Z) and vice versa,

is a duality in the sense of [23]. We shall abbreviate QM = (Qt
C (Z) ,⊕, ·,⊇) and

QO =
(

QC
t (Z) ,⊕, ·,⊆

)

. The advantage of using these image spaces compared to
other, more common approaches in vector and set optimization is that they are
partially ordered lattices with formulas for inf and sup as given below. Moreover,
inf and sup in these spaces are not "utopia elements", but they are strongly related
to known extremality concepts based on minimal/maximal points with respect to
≤C or set relations. Compare [7], [9] and, most notably, the discussion in [10].

Proposition 5.18.

(a) Let A ⊆ QM and B ∈ QM. Then

infA = cl co
⋃

A∈A

A, supA =
⋂

A∈A

A

and

infA⊕B = inf (A⊕ {B}) , supA⊕B ⊆ sup (A⊕ {B}) .

(b) Let A ⊆ QO and B ∈ QO. Then

supA = cl co
⋃

A∈A

A, infA =
⋂

A∈A

A
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and

supA⊕B = sup (A⊕ {B}) , infA⊕B ⊆ inf (A⊕ {B}) .

The addition for sets of sets is defined as A ⊕ {B} = {A⊕B : A ∈ A} if A is

non-empty and A⊕B = ∅ otherwise.

Proof. Exemplarily, we add the proof of infimum-additivity in QM. Indeed, for
A ⊆ QM and B ∈ QM we have

infA⊕B =

(

cl co
⋃

A∈A

A

)

⊕B =

(

co
⋃

A∈A

A

)

⊕B

= cl co
⋃

A∈A

(A⊕B) = inf (A⊕ {B}) .

Since the roles of inf and sup are exchanged in QO, the supremum-additivity in QO

follows directly. The other results are essentially a consequence of the definitions
of inf, sup and ⊕.

In view of the Theorems 2.1, 2.2, the previous proposition tells us that QM and QO

are order complete residuated lattices. Note that ∅ is the greatest element in QM

and the least in QO. In both cases, it dominates the addition which is in complete
analogy with +∞ dominating the inf-addition in IRM and −∞ the sup-addition in
IRO. The residuation can be used to define a difference for sets.

Definition 5.19. Let A,B ∈ QM. The set

A−�B = inf {M ∈ QM : A ⊇ B ⊕M} = {z ∈ Z : B + {z} ⊆ A} (31)

is called the inf-difference of A and B. Likewise, for A,B ∈ QO the set

A−�B = sup {M ∈ QO : B ⊕M ⊆ A} = {z ∈ Z : B + {z} ⊆ A} (32)

is called the sup-difference of A and B.

The reader may wonder why we use the same expression for the difference in QM

and QO which is not the case in IRM and IRO. Of course, the reason is that we use
different order relations, namely ⊇ in QM and ⊆ in QO and therefore, the infimum
in QM is a union as it is the supremum in QO. We had the same effect if we would
use ≤ in IRM and ≥ in IRO. However, note that A−�B ∈ QM for A,B ∈ QM while
A−�B ∈ QO for A,B ∈ QO, so A−�B and A−�B look very different in general.

From now on, let X and Z be separated, locally convex spaces with topological
duals X∗ and Z∗, respectively. The (negative) dual cone of C is the set

C− = {z∗ ∈ Z∗ : ∀z ∈ C : z∗ (z) ≤ 0} .
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It is well-known (and a consequence of a separation argument) that sets A ∈ QM,
B ∈ QO can be described dually as

A =
⋂

z∗∈C−\{0}

{

z ∈ Z : inf
a∈A

−z∗ (a) ≤ −z∗ (z)

}

,

B =
⋂

z∗∈C−\{0}

{

z ∈ Z : − z∗ (z) ≤ sup
b∈B

−z∗ (b)

}

,

respectively. The above representation of elements in QM and QO can be used to
characterize the set differences from Definition 5.19 in terms of support functions.
For D ⊆ Z, define the extended real-valued functions σM

D : Z∗ → IRM, σO

D : Z∗ → IRO

by
σM

D (z∗) = inf
z∈D

−z∗ (z) , σO

D (z∗) = sup
z∈D

−z∗ (z) .

Proposition 5.20.

(a) For all A,B ∈ QM,

A−�B =
⋂

z∗∈C−\{0}

{z ∈ Z : σM

A (z∗)−�σM

B (z∗) ≤ −z∗ (z)} .

In particular, if A = {z ∈ Z : σM

A (z∗) ≤ −z∗(z)} for z∗ ∈ C−\ {0}, then

A−�B = {z ∈ Z : σM

A (z∗)−�σM

B (z∗) ≤ −z∗ (z)} .

(b) For all A,B ∈ QO,

A−�B =
⋂

z∗∈C−\{0}

{z ∈ Z : − z∗ (z) ≤ σO

A (z∗)−�σ
O

B (z∗)} .

In particular, if A = {z ∈ Z : − z∗(z) ≤ σO

A (z∗)} for z∗ ∈ C−\ {0}, then

A−�B = {z ∈ Z : − z∗(z) ≤ σO

A (z∗)−�σ
O

B (z∗)} .

Proof. (a) By definition of A−�B, σM

A (z∗) ≤ σM

B+z (z
∗) whenever z ∈ A−�B, and

σM

B+z (z
∗) = σM

B (z∗)+� z∗ (−z) for all z∗ ∈ C−\ {0}. Thus, σM

A (z∗)−�σM

B (z∗) ≤
−z∗(z).

On the other hand, take z ∈ Z such that σM

A (z∗)−�σM

B (z∗) ≤ −z∗ (z) for all z∗ ∈
C−\ {0} and assume z /∈ A−�B. Then there is b ∈ B such that z + b /∈ A. A
separation argument produces z∗ ∈ C−\ {0} and t ∈ IR such that −z∗ (b+ z) <
t ≤ σM

A (z∗). Since σM

B (z∗) ≤ −z∗ (b) we may conclude −z∗ (z) < σM

A (z∗)−�σM

B (z∗),
a contradiction.

If, additionally, A = {z ∈ Z : σM

A (z∗) ≤ −z∗ (z)} with z∗ ∈ C−\ {0} and σM

A (z∗)
−�σM

B (z∗) ≤ −z∗ (z) for z ∈ Z, then σM

A (z∗) ≤ −z∗ (b+ z) for all b ∈ B, thus
B + z ⊆ A.

(b) is proven with parallel arguments.
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From Proposition 5.20 we immediately obtain for all A,B ⊆ QM and z∗ ∈ C−\ {0}

σM

A−� B (z∗) ≥ σM

A (z∗)−�σM

B (z∗)

with equality if A = {z ∈ Z : σM

A (z∗) ≤ −z∗(z)}. A parallel relationship holds for
elements of QO and −� .

Remark 5.21. For z∗ ∈ Z∗ we set H (z∗) = {z ∈ Z : z∗ (z) ≤ 0}. The additional
assumption in Proposition 5.20(a) is equivalent to A⊕H (z∗) = A since

A⊕H (z∗) = {z ∈ Z : ϕM

z∗ (A) ≤ −z∗(z)} .

5.3.2. Set-valued functions and their scalar representation

The graph of a function f : X → P (Z) is the set

gr f = {(x, z) ∈ X × Z : z ∈ f (x)} ,

and the effective domain of f is dom f = {x ∈ X : f (x) 6= ∅}.

Definition 5.22. A function g : X → QM is called convex (positively homogenous,
closed) iff gr g ⊆ X×Z is convex (a cone, closed). A positively homogenous convex
function into QM is called sublinear. A function h : X → QO is called concave
(positively homogenous, closed) iff grh ⊆ X × Z is a convex (a cone, closed). A
positively homogenous concave function into QO is called superlinear.

The collection of all convex functions into QM (QO) is a conlinear space under point-
wise addition and multiplication with non-negative reals. As in the scalar case, it
does not make much sense to consider convex functions into QO or concave into QM.
A function g : X → QM is convex if and only if −g : X → QO is concave.

The next goal is to represent QM-valued functions by families of IRM-valued ones
and, likewise, QO-valued functions by families of IRO-valued ones. Let z∗ ∈ C− and
g : X → QM, h : X → QO. Define ϕM

g,z∗ : X → IRM and ϕO

h,z∗ : X → IRO, respectively,
by

ϕM

g,z∗ (x) = inf
z∈g(x)

−z∗ (z) and ϕO

h,z∗ (x) = sup
z∈h(x)

−z∗ (z) (33)

for x ∈ X. Note that g is convex if and only if ϕM

g,z∗ is convex for all z∗ ∈ C−, and
h is concave if and only if ϕO

h,z∗ is concave for all z∗ ∈ C−, see [22, Lemma 3.2.3.].
If z∗ = 0 then

ϕM

g,z∗ (x) =

{

0 : x ∈ dom g

+∞ : otherwise.

Moreover, −ϕO

−g,z∗ (x) = ϕM

g,z∗ (x) for all x ∈ X. From the dual description of
elements of QM, QO the following formulas are immediate for functions g : X → QM,
h : X → QO:

∀x ∈ X : g (x) =
⋂

z∗∈C−\{0}

{

z ∈ Z : ϕM

g,z∗ (x) ≤ −z∗ (z)
}

(34)

∀x ∈ X : h (x) =
⋂

z∗∈C−\{0}

{

z ∈ Z : − z∗ (z) ≤ ϕO

h,z∗ (x)
}

. (35)
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These formulas tell us that QM- and QO-valued functions can be represented by
families of extended real-valued functions. In general, the scalarizations may behave
"very badly".

Example 5.23. Let the set IR2 be ordered by the cone C = IR2
+, z

∗ = (0,−1) and
g : IR → IR2 be defined as g(x) =

{

( 1
x
, 0)
}

+ C if x > 0, and g(x) = ∅ otherwise.
Then, ϕM

g,z∗(0) = +∞, while ϕM

g,z∗(x) = 0 holds for all x > 0 and thus clϕM

g,z∗(0) = 0.

The above example shows that the scalarizations ϕM

g,z∗ of a closed function need not
be closed. However, one can restrict the scalarizations to closed ones as already
shown in [22, Proposition 3.3.5].

Proposition 5.24. Let g : X → QM and h : X → QO be a closed convex and a

closed concave function, respectively. Then

∀x ∈ X : g (x) =
⋂

z∗∈C−\{0}

{

z ∈ Z :
(

clϕM

g,z∗

)

(x) ≤ −z∗ (z)
}

(36)

∀x ∈ X : h (x) =
⋂

z∗∈C−\{0}

{

z ∈ Z : − z∗ (z) ≤
(

clϕO

h,z∗

)

(x)
}

. (37)

Proof. A function h : X → QO is closed and concave if and only if −h : X → QM is
closed and convex. Thus, it is sufficient to prove the statement for convex functions.
Let g : X → QM be closed and convex. If gr g = ∅, then there is nothing to
prove. Let (x0, z0) /∈ gr g. Then by a separation argument in X × Z there exists
(x∗, z∗) ∈ (X∗ × Z∗) \ {(0, 0)} and t ∈ IR such that

−x∗(x0)− z∗(z0) < t < inf
(x,z)∈gr g

(−x∗(x)− z∗(z)) .

Obviously, z∗ ∈ C− and

∀x ∈ X : x∗(x)− (x∗(x0) + z∗(z0)) < x∗(x) + t < inf
z∈g(x)

(−z∗(z)) = ϕM

g,z∗(x).

Thus, x 7→ x∗(x) + t is an affine minorant of clϕM

g,z∗ and

z0 /∈
{

z ∈ Z : ϕM

g,z∗(x0) ≤ −z∗(z)
}

.

This proves ⊇ in (36), and the converse inclusion is trivial.

A function g : X → QM is called proper (C-proper) if dom f 6= ∅ and f (x) 6= Z
(f (x) 6= f (x)−C) holds for all ∈ X. A function g : X → QM is proper (C-proper)
if and only if there exists at least one z∗ ∈ C−\ {0} (z∗ ∈ C−\ − C−) such that
ϕM

g,z∗ : X → IRM is proper. However, even if g is C-proper, not all scalarizations are
proper in general.

Example 5.25. Let Z = IR2, C = cl cone {c} with c = (0, 1)T . Take z∗0 =
(0,−1)T ∈ IR2 and define a function g : IR → QM by

g(x) =















H(z∗0) =
{

z ∈ IR2 : (z∗0)
T z ≤ 0

}

: x > 0

C : x = 0

∅ : x < 0
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Then g is convex C-proper, and ϕM

g,z∗ : X → IRM is proper if and only if z∗ is
collinear with z∗0 . Moreover, the function g is not completely characterized by its
proper scalarizations since g(0) = C ( H(z∗0) holds.

The previous example shows that while analyzing set-valued functions, improper
scalar functions appear naturally. Providing a calculus on the space of improper
functions allows a unified approach to the theory of set-valued functions via scalar-
ization.

5.3.3. Conaffine proper and improper functions

In the remaining two sections we focus on the convex case mentioning that the
corresponding constructions for the concave one are easily obtained.

Definition 5.26. Let x∗ ∈ X∗, z∗ ∈ C−. The function SM

(x∗,z∗) : X → QM given by

SM

(x∗,z∗) (x) = {z ∈ Z : x∗ (x) + z∗ (z) ≤ 0}

for x ∈ X is called an lower conlinear function.

Obviously, SO

(x∗,z∗) (x) = −SM

(x∗,z∗) (x) for x ∈ X is the corresponding upper conlinear
function to be used in the concave case. For each z∗ 6= 0, the functions SM

(x∗,z∗),

SO

(x∗,z∗) are "finite-valued" in the sense that they attain neither the value Z nor ∅.

It is easy to find situations in which SM

(x∗,z∗) is C-proper, but its scalarization with z∗0
is improper (in which case z∗0 is not collinear with z∗). Of course, the scalarization
with z∗ is linear if z∗ 6= 0. If z∗ = 0, then the scalarization of a lower conlinear
function is x∗.

For each z∗ ∈ Z∗\ {0}, there is a one-to-one correspondence between functions
x∗ ∈ X∗ and SM

(x∗,z∗) : X → QM. The situation is different for z∗ = 0, see Remark
5.28 below.

In the same way as we extended the definition of affine functions from real-valued
to extended real-valued ones we extend the definition of conlinear functions.

Definition 5.27. Let ξ ∈ XM and r ∈ IR. We define the functions SM

(ξ,r,z∗) : X →
QM by

SM

(ξ,r,z∗)(x) = {z ∈ Z : ξr(x) ≤ −z∗(z)}

for x ∈ X. Each such function is called a (closed) conaffine function. If r = 0 it is
called a (closed) conlinear function.

Of course, a QM-valued conaffine function is proper if and only if z∗ 6= 0 and ξ ∈ X∗.

Remark 5.28. Let z∗ ∈ Z∗, ξ = x∗ ∈ X∗ and r ∈ IR. Then

∀x ∈ X : SM

(x∗,r,z∗)(x) = {z ∈ Z : x∗
r(x) ≤ −z∗(z)}

=

{

Z : x∗
r (x) ≤ 0 (⇔ x ∈ dom x∗

r)

∅ : x∗
r (x) > 0 (⇔ x 6∈ dom x∗

r)
= SM

(x∗,r,0)(x).
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This means, one can replace x∗ by x∗ and z∗ by 0 ∈ Z∗, and in this way the case
z∗ = 0 "includes" all improper cases. In particular,

∀x ∈ X : SM

(x∗,0) (x) = {z ∈ Z : x∗ (x) ≤ 0}

=

{

Z : x∗ (x) ≤ 0 (⇔ x ∈ dom x∗)

∅ : x∗ (x) > 0 (⇔ x 6∈ dom x∗)

Consequently, we obtain a one-to-one correspondence between the set of improper
affine scalar functions x∗

r : X → IRM and the set of conaffine functions SM

(x∗,r,0) : X →
QM. Note that many of those scalar and set-valued functions coincide since x∗ ≡ tx∗

for t > 0.

Finally, we turn to scalarizations of proper and improper conaffine functions.

Proposition 5.29. Let z∗, z∗0 ∈ Z∗\ {0}, x∗ ∈ X∗, r ∈ IR. Then

ϕM

(SM

(x∗,r,z∗0)
,z∗) (x) =

{

−∞ : ∀t > 0: z∗ 6= tz∗0
tx∗ (x− x0) : z∗ = tz∗0 , t > 0

(38)

ϕM

SM

(x∗,r,0)
,z∗ (x) = ϕM

SM

(x∗,r,0)
,z∗ (x) = x∗

r (x) . (39)

Proof. Obvious from the definition in (33).

5.3.4. Legendre–Fenchel conjugates of set-valued functions

Let ξ ∈ XM, r ∈ IR, z∗ ∈ C−\ {0}. The function SM

(ξ,r,z∗) : X → QM is a closed
conaffine minorant of g : X → QM if and only if

∀x ∈ X : SM

(ξ,r,z∗) (x) ⊇ g (x) . (40)

The following result runs parallel to Theorem 5.6. It should be clear how to formu-
late the counterpart for concave functions.

Theorem 5.30. Let g : X → QM be improper closed convex. Then g is the point-

wise supremum of its improper closed conaffine minorants, that is

∀x ∈ X :

g (x) =
⋂

{

SM

(x∗,r,z∗) (x) : (x
∗, r, z∗)∈ X∗× IR×C−\ {0} : (40) is satisfied

}

.
(41)

In particular, if g 6≡ Z, then there are x∗ ∈ X∗\ {0}, z∗ ∈ C−\ {0} and r ∈ IR such

that

∀x ∈ X : SM

(x∗,r,z∗) (x) ⊇ g (x) . (42)

Proof. The theorem is trivial if g ≡ Z and g ≡ ∅. Let us assume that g is different
from these two functions. In this case, dom g 6= ∅ is a closed convex set and g = Z on
dom g (see Proposition 5 in [8]). Hence dom g is the intersection of non-trivial closed
half spaces including it. Each such half space is generated by some x∗ ∈ X∗\ {0},
r ∈ IR, and it is easily seen with the help of Remark 5.28 that the corresponding
SM

(x∗,r,z∗) satisfies (42) with an arbitrary z∗ ∈ C−\ {0}.
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The "proper/C-proper" version of this Theorem is Theorem 1 in [8]: g : X → QM

is closed, convex and proper, or identically Z or ∅, if and only if g is the pointwise
supremum of its proper conaffine minorants (that is, with z∗ ∈ C−\ {0}). Therefore,
a closed convex function with values inQM is the pointwise supremum of its conaffine
closed minorants. The next result is the set-valued counterpart of Theorem 5.7.

Theorem 5.31. Let g : X → QM and ξ ∈ XM, z∗ ∈ C−\ {0}. The following

statements are equivalent:

(a) ∀x ∈ X: SM

(ξ,r,z∗) (x) ⊇ g (x), i.e. SM

(ξ,r,z∗) is a closed conaffine minorant of g,

(b) ∀x ∈ X: ξr (x) ≤ ϕM

g,z∗ (x), i.e. ξr is an affine minorant of ϕM

g,z∗,

(c)
(

ϕM

g,z∗

)∗
(ξ, r) ≤ 0,

(d) sup
{

SM

(ξ,r,z∗) (x)−
� g (x) : x ∈ X

}

⊇ H (z∗).

Moreover, if ξ = x∗ with x∗ ∈ X∗, then (a) through (d) are equivalent to

(e) dom x∗
r ⊇ dom g,

and the supremum in (d) is Z.

Proof. (a) ⇒ (b): By assumption,

∀x ∈ X : ϕM

SM

(ξ,r,z∗)
,z∗ (x) ≤ ϕM

g,z∗ (x) . (43)

If z∗ 6= 0 then, by definition of SM

(ξ,r,z∗),

ϕM

SM

(ξ,r,z∗)
,z∗ (x) = inf {−z∗ (z) : ξr (x) ≤ −z∗ (z)} = ξr (x)

for each x ∈ X. Now, (b) follows from (43). If z∗ = 0 then ϕM

g,0 (x) = Idom g (x) and

ϕM

SM

(ξ,r,0)
,0 (x) =

{

+∞ : ξr (x) > 0

0 : ξr (x) ≤ 0

With this, (b) is immediate from (43).

(b) ⇒ (c): We have
(

ϕM

g,z∗

)∗
(ξ, r) = sup

x∈X

{

ξr (x)−
�ϕM

g,z∗ (x)
}

≤ sup
x∈X

{ξr (x)−
� ξr (x)} ≤ 0

where the first inequality follows with the help of Proposition 3.6(b), second formula,
and the second inequality with the help of Proposition 3.6(a).

(c) ⇒ (d): If z∗ 6= 0 we obtain from Proposition 5.20(a) with A = SM

(ξ,r,z∗) (x),

σM

A (z∗) = ξr (x) and B = g (x)

SM

(ξ,r,z∗) (x)−
� g (x) =

{

z ∈ Z : ξr (x)−
�ϕM

g,z∗ (x) ≤ −z∗ (z)
}

.

Consequently,

⋂

x∈X

[

SM

(ξ,r,z∗) (x)−
� g (x)

]

=

{

z ∈ Z : sup
x∈X

[

ξr (x)−
�ϕM

g,z∗ (x)
]

≤ −z∗ (z)

}

=
{

z ∈ Z :
(

ϕM

g,z∗

)∗
(ξ, r) ≤ −z∗ (z)

}

.
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The desired implication follows since H (z∗) = {z ∈ Z : 0 ≤ −z∗ (z)}.

(d) ⇒ (a): By assumption, H (z∗) ⊆
{

z ∈ Z : g (x) + {z} ⊆ SM

(ξ,r,z∗) (x)
}

for all

x ∈ X. Since 0 ∈ H (z∗), this implies g (x) ⊆ SM

(ξ,r,z∗) (x) for all x ∈ X which is (a).

Finally, if ξ = x∗, the equivalence of (a) and (e) follows from Remark 5.28.

The previous theorem motivates the following definition of set-valued conjugates
for functions g : X → QM. In contrast to [8], we define QM-valued conjugates via a
supremum instead negative conjugates via an infimum. The definition below is also
slightly different from the one given in [22], but uses the same basic idea, namely
the set difference.

Definition 5.32. The Legendre-Fenchel conjugate g∗ : XM × IR × C− → QM of a
function g : X → QM is the function g∗ : XM × IR× C− → QM defined by

g∗ (ξ, r, z∗) =
⋂

x∈X

(

SM

(ξ,r,z∗)(x)−
� g(x)

)

.

By Remark 5.28 it holds

∀(x∗, r, z∗) ∈ X∗ × IR× C− : g∗(x∗, r, z∗) = g∗(x∗, r, 0∗). (44)

The definition of the conjugate together with Theorem 5.31 produces the following
scalarization formula for conjugates

g∗(ξ, r, z∗) =
{

z ∈ Z :
(

ϕM

g,z∗

)∗
(ξ, r) ≤ −z∗(z)

}

(45)

for all ξ ∈ XM, r ∈ IR, z∗ ∈ C−.

Most rules for manipulating conjugates carry over from the scalar case. In partic-
ular, if r = 0, ξ = x∗ ∈ X∗ and z∗ ∈ C−\ {0}, then all classic duality results from
the scalar theory can be proven for the set-valued case as well, compare [8], [22],
[9].

We will close this section illustrating the previous statement using the biconjugation
theorem as an example. If g : X → QM is a function, its biconjugate is defined to
be

∀x ∈ X : g∗∗(x) =
⋂

ξ∈XM, r∈IR, z∗∈C−

(

SM

(ξ,r,z∗) (x)−
� g∗ (ξ, r, z∗)

)

. (46)

The function g∗∗ : X → QM maps indeed into QM and is closed and convex. By
equation (44), it holds

∀x ∈ X : g∗∗(x) =
⋂

(ξ,r)∈XM×IR,

z∗∈C−\{0}

(

SM

(ξ,r,z∗) (x)−
� g∗ (ξ, r, z∗)

)

. (47)

Theorem 5.33. Let g : X → QM be closed and convex. Then g∗∗ = g.
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Proof. According to Proposition 5.24 we have

∀x ∈ X : g (x) =
⋂

z∗∈C−\{0}

{

z ∈ Z :
(

clϕM

g,z∗

)

(x) ≤ −z∗ (z)
}

,

and ϕM

g,z∗ is convex for all z∗ ∈ C−\ {0}. Applying Theorem 5.14 to clϕM

g,z∗ we
obtain

∀x ∈ X : g (x) =
⋂

z∗∈C−\{0}

{

z ∈ Z :
(

ϕM

g,z∗

)∗∗
(x) ≤ −z∗ (z)

}

=
⋂

(ξ,r)∈XM×IR
z∗∈C−\{0}

{

z ∈ Z :
(

ξr(x)−
�
(

ϕM

g,z∗

)∗
(ξ, r)

)

≤ −z∗ (z)
}

.

On the other hand, by formula (45) for all x ∈ X and (ξ, r, z∗) ∈ XM× IR×C− \{0}
it holds

SM

(ξ,r,z∗)(x)−
� g∗(ξ, r) =

{

z ∈ Z : SM

(ξ,r,z∗)(x) ⊇ g∗(ξ, r) + z
}

=
{

z ∈ Z : ξr(x) ≤
(

ϕM

g,z∗

)∗
(ξ, r)+� (−z∗(z))

}

.

Thus, in view of formula (47) the statement is proven.

Remark 5.34. Defining the closed convex hull cl co g of an arbitrary function
g : X → QM by gr (cl co g) = cl co (gr g) we can draw the same conclusion as in
the scalar case since, as in the scalar case, the conjugate of g coincides with the one
of cl co g (see e.g. (45)), namely g∗∗ = cl co g.

6. Appendix

6.1. Power sets of linear spaces

Let Z be a linear space and P (Z) the set of all subsets of Z including the empty
set. The usual Minkowski addition of two sets A,B ⊆ Z

A+B = {a+ b : a ∈ A, b ∈ B}

is extended to P (Z) by setting A+ B = ∅ if A = ∅ or B = ∅, or both. If B = {z}
is a singleton, we abbreviate A+B = A+ {z} = A+ z.

The point-wise multiplication of a set A ⊆ Z by a non-negative t ∈ IR

t · A = {ta : a ∈ A}

is extended to P (Z) by setting t · ∅ = ∅ for all t > 0, and finally 0 · ∅ = {0} where
the first 0 is in IR, the second in Z. Finally, we write A−B for A+ (−B).
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6.2. Conlinear spaces

The following definition is taken from [7] where references and more material about
structural properties of conlinear spaces can be found.

Definition 6.1. A nonempty setW together with two algebraic operations +: W×
W → W and · : IR+ ×W → W is called a conlinear space provided that

(C1) (W,+) is a commutative monoid with neutral element θ,

(C2) (i) ∀w1, w2 ∈ W , ∀r ∈ IR+: r · (w1 + w2) = r · w1 + r · w2,
(ii) ∀w ∈ W , ∀r, s ∈ IR+: s · (r · w) = (rs) · w,
(iii) ∀w ∈ W : 1 · w = w,
(iv) 0 · θ = θ.

An element w ∈ W is called a convex element of the conlinear space W if

∀s, t ≥ 0: (s+ t) · w = s · w + t · w.

A conlinear space (W,+, ·) together with a partial order � on W (a reflexive,
antisymmetric, transitive relation) is called ordered conlinear space provided that

(iv) w,w1, w2 ∈ W , w1 � w2 imply w1 + w � w2 + w,
(v) w1, w2 ∈ W , w1 � w2, r ∈ IR+ imply r · w1 � r · w2.
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