
Journal of Convex Analysis

Volume 19 (2012), No. 1, 281–294

A General Lower Bound for the Relaxation

of an Optimal Design Problem with a

General Quadratic Cost Functional,

and a General Linear State Equation∗

U. Fidalgo Prieto†

Departamento de Matemática,
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Recently, several particular problems in optimal design have been analyzed by using tools from
non-convex, variational problems. As many of those have similarities, but also different features,
we pretend to look at a full family of problems that includes most of those particular situations.
Specifically, we examine an optimal design problem where anisotropy and/or non-ellipticity is
permitted both in the state law, and the cost functional, which is quadratic in the gradient. In
this generality, we are able to provide a general lower bound for the relaxed integrand (effective
behavior) which is valid in all of these situations. Our philosophy, which has been introduced
and implemented in simpler situations, leads to an elementary semi-definite mathematical pro-
gramming problem for matrices depending on various parameters, that are precisely the variables
for the relaxed problem. We also explore when this lower bound may turn out to be exact, and
formulate a conjecture for the underlying relaxed problem.
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1. Introduction

Let us consider a material confined into a bounded domain Ω ⊂ R
N , N > 1. The

medium is obtained by mixing two constituents with different electric permitivity
and conductivity. Let Q0 and Q1 denote the two N × N symmetric matrices of
electric permitivity corresponding to each phase. For each phase, we also denote
by Lj, j = 0, 1, the (anisotropic) N × N symmetric matrix of conductivity. Set
0 ≤ t1 ≤ 1 the proportion of the constituent 1 into the mixture. This material
occupies a space in the physical domain Ω which we denote by E ⊂ Ω. Regarding
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the set E as our design variable, we introduce its characteristic function XE:

XE(x) =

{
1 if x ∈ E,

0 if x 6∈ E.
(1)

Hence the matrix of conductivity corresponding to the material as a whole is L =
XEL1 + (1−XE)L0 where

∫

E

dx =

∫

Ω

XE(x)dx = t1

∫

Ω

dx = t1|Ω|.

We will also put X with no reference to the set E for simplicity.

Let us suppose that the amount of electric charge that goes into Ω is equal to what
comes from it, which means that inside the material there is no source or sink of
current. Such requirement determines a stable state, which may be expressed in
terms of the electrostatic potential function, u : Ω → R, as follows

div [L∇u(x)] ≡ div {[X (x)L1 + (1−X (x))L0]∇u(x)} = 0 in Ω, (2)

where ∇u is the gradient of u. In addition, u is assumed to satisfy appropriate
boundary conditions on ∂Ω in the form u = u0.

Having fixed the electrostatic state through its equation of state (2), our purpose
consists in finding a suitable distribution of the constituents into the domain Ω that
minimizes the electrostatic energy

I(X ) =

∫

Ω

[
X (∇u)⊤Q1∇u+ (1−X )(∇u)⊤Q0∇u

]
(x)dx. (3)

Altogether, we seek to solve the following optimal design problem

(P)





Minimize in X : I(X ) =

∫

Ω

[
X (∇u)⊤Q1∇u+ (1−X )(∇u)⊤Q0∇u

]
(x)dx

subject to div [XL1∇u+ (1−X )L0∇u](x) = 0 in Ω,

u0 = u on ∂Ω,

∫

Ω

XE(x)dx = t1|Ω|.

As it is well-known (see for instance the textbook [1] or [8]), this sort of prob-
lems typically lacks optimal solutions which means that the infimum may only be
achieved by a sequence of more and more intricate subsets Ej of Ω. Under such
circumstances, relaxation should be performed. It consists in looking for another
minimization problem (R) for which there does exist an optimal solution, this mini-
mum has the same value as the infimum of (P), and, more importantly, the optimal
solution of the relaxed problem encodes the information about (some) minimizing
sequences for the original problem. Unfortunately, in many situations of interest,
exact descriptions for (R) are not available, and only bounds can be made explicit
([1]). The main result in this note consists in finding a lower bound of the infi-
mum corresponding to (P), or equivalently, the minimum of its relaxed problem
(R). See also [6] for a comprehensive analysis of these problems from the point of
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view of homogenization and mechanics, as well as an updated lists of references and
contributions to this field.

For some particular choices of the matrices Qj and Lj, this kind of optimal design
problems have been recently addressed ([2], [3], [5]) covering several circumstances.
In most of these, restrictions are placed on the simplicity, properties, and/or rela-
tionship between the matrices in the cost and the matrices in the state law, as well
as restrictions on dimension. Sometimes, a cost not depending explicitly on ∇u is
only considered. In this contribution, we would like to remove all those constraints,
and examine a general problem as (P) under minimal assumptions on the structure
of the matrices Qj and Lj. To counterbalance our generality, we are not able to
prove a full explicit relaxation result, but only a partial relaxation statement in the
form of a general lower bound (Theorem 1.1 below).

Following the procedure described in [2] and [7], we can obtain a relaxed problem
(R), by using Young measures generated by sequences of pairs {(v1,k, v2,k)} for
which we have the additional differential information that the divergence of the first
component vanishes, while the second component is a gradient. Such class of Young
measures, the so-called div-curl Young measures, has been formally introduced in
[7].

As a way to place our goal in this contribution in context, suppose that the cost
functional in (3) were linear in ∇u

I(X ) =

∫

Ω

G(x) · ∇u(x) dx

for a certain given field G ∈ L2(Ω;RN). In such a situation, being the cost func-
tional weak continuous in H1(Ω), a full relaxation of problem (P) above (with such
a linear cost functional) would amount to relaxing the differential constraint ex-
pressed in the state law. As a consequence of the main results in [2], one has that
a full relaxation would be





Minimize in (t,∇u, V ) :

∫

Ω

G(x) · ∇u(x) dx

subject to Pt(∇u(x), V (x)) ≤ 0 a.e. x ∈ Ω,

div V = 0 in Ω, u0 = u on ∂Ω,

∫

Ω

t(x)dx = t1|Ω|,

where Pt is a second-degree, homogeneous polynomial of its arguments that is com-
pletely explicit (see [2]). When the cost functional is quadratic in∇u, it is no longer
weakly continuous, and relaxation must account for the interaction between such
cost functional and the state law. Trying to understand this new scenario from this
perspective, and asses to what extent one can succeed in finding a relaxation, is our
main objective here.

In our situation for problem (P), we denote by ν = {νx}x∈Ω the div-curl Young
measure associated with the sequence {v1,k, v2,k} where

v1,k(x) = [Xk(x)L1 + (1−Xk(x))L0]∇uk(x) and v2,k(x) = ∇uk(x).
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Since v1,k comes from the state equation then for each x ∈ Ω the support of νx
satisfies

supp(νx) ⊂ Λ1 ∪ Λ0, where Λj =
{
(λ, ρ) ∈ R

N × R
N : ρ = Ljλ

}
, j = 0, 1.

Observe that we can write

νx = t(x)νx,1 + (1− t(x))νx,0, t ∈ [0, 1], supp(νx,j) ⊂ Λj, j = 0, 1.

In order to state our main theorem, let us introduce some additional notation
{
λ(x) = t(x)λ1(x) + (1− t)λ0(x),

ρ(x) = tL1λ1(x) + (1− t)L0λ0(x),
where λj(x) =

∫

Λj

y dν
(1)
x,j (y), j = 0, 1, (4)

with ν
(1)
x being the projection of νx onto the first copy of RN of the product RN×R

N .

We caution the reader not to confuse ν
(1)
x with νx,1. The set of measures {ν

(1)
x =

tν
(1)
x,1 +(1− t)ν

(1)
x,0}x∈Ω refers to the first copies of the components of {νx}x∈Ω, and it

is the Young measure corresponding to the sequence {v1,k}, while for each x ∈ Ω,
νx,1 is the contribution in the convex combination νx = tνx,1 + (1 − t)νx,0 whose
support is contained in the first manifold Λ1.

Notice that the quantities λ0 and λ1 depend on the variables λ and ρ through the
solution of the linear system in (4) as follows

λ1(x) =
1

t
(L1 − L0)

−1 (ρ(x)− L0λ(x)) and

λ0(x) =
1

1− t
(L0 − L1)

−1 (ρ(x)− L1λ(x)) .

For each real σ, we define the set

Aσ = {γ ∈ R : there is j ∈ {0, 1} with Lj having an eigenvalue

of the same sign as σ and det (Qj − γLj) = 0}.

For σ = λ⊤ρ− tλ⊤
1 L1λ1 − (1− t)λ⊤

0 L0λ0, put γ = γ(t, ρ, λ) so that

γσ = min
γ

{γσ : γ ∈ Aσ} .

Consider the problem

(S)





Minimize in (t, ρ = V, λ = ∇u) :

∫

Ω

(
γσ + tλ⊤

1 Q1λ1 + (1− t)λ⊤
0 Q0λ0

)
dx,

subject to: 0 ≤ t(x) ≤ 1,

∫

Ω

t(x)dx = t1|Ω|,

divV (x) = 0 in Ω, u = u0 on ∂Ω.

Note that γ, σ, λ1, and λ0 depend upon t(x), V (x), and ∇u(x).

Theorem 1.1. Suppose that the four matrices Lj, Qj are symmetric, and L1 − L0

is a non-singular matrix. Then the variational problem (S) is a sub-relaxation of
(P) in the sense that
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• it admits optimal solutions;

• the minimum is a lower bound for the infimum of (P).

The proof of this result is based on a certain explicit semi-definite programming
problem for matrices ([9]), after a suitable reformulation of the problem. The
insistence on making the relaxed formulation as explicit as possible, and not only
described in abstract terms, leads us to enlarge the class of competing measures in a
more manageable way, at the expense of being contented with a partial relaxation,
which still, we believe, keeps the clue to optimal solutions of the problem (see the
final section). As a matter of fact, in some particular cases one can show that this
lower bound is exact. In such situations, numerical approximations can some times
be implemented based on this analysis. For example, this is so in the elliptic case
when Lj = αj identity, αj > 0 ([3]). Also in a hyperbolic setting where the matrices
Lj have eigenvalues of different signs ([5]).

The paper is organized as follows. In Section 2, we recall the relevant facts about
div-curl Young measures. These are mainly taken from [7]. Section 3 pushes the
computation of the relaxation until it leads to a suitable semi-definite programming
problem in the appropriate variables. The analysis of the constraint set for such
mathematical programming problems is the content of Section 4. The main part of
the paper is Section 5, where we prove our lower bound (Theorem 1.1). In Section
6, we include some remarks on when this lower bound may become exact, and some
final remarks are written in Section 7.

2. Reformulation in terms of Young Measures

In this section, we adopt the notation of [7]. For a domain Ω in R
N , we take

a sequence of functions {vk} ⊂ L∞(Ω), vk : Ω ⊂ R
N → R

m, which converges

weakly ∗ to a function v ∈ L∞(Ω) (vk
∗
⇀ v). The fundamental theorem for Young

measures ensures that there exists a family of probability measures ν = {νx}x∈Ω
associated with the sequence of functions {vk} where supp(νx) ⊂ R

m, such that for
any continuous function φ : Rm → R, the mesurable function

φ̄(x) =

∫

Rm

φ(λ)dνx(λ) = 〈φ, νx〉,

is the weak ∗ limit in L∞(Ω) of the sequence {φ(vk)}. This means that for all
g ∈ L1(Ω), we have that

lim
k→∞

∫

Ω

φ(uk(x))g(x)dx =

∫

Ω

φ̄(v(x))g(x)dx =

∫

Ω

g(x)

∫

Rm

φ(λ)dνx(λ).

The family of measures ν = {νx}x∈Ω is called the parametrized measure or Young
measure associated with the sequence {vk}.

In the present paper, we care about a class of parametrized measures whose elements
are known as div-curl Young measures. In order to justify the main property of this
class of measures, we need to recall the classical div-curl lemma ([1]).



286 U. Fidalgo Prieto, P. Pedregal / A General Lower Bound for the Relaxation ...

Lemma 2.1 (Div-curl Lemma). Let ({v1,k}, {v2,k}) be a pair of sequences of
functions in L2(Ω). Each one of the two sequences converges weakly in L2(Ω) to
a function vj and {div v1,k}, {∇v2,k} converge in H−1(Ω) to div v1 and ∇v2, respec-
tively. Then the product v1,jv2,j ⇀ v1v2 in the sense of distributions.

We define div-curl Young measures as follows.

Definition 2.2. A parametrized measure ν = {νx}x∈Ω, supported in R
m×N ×

R
m×N , is called a (L2-) div-curl Young measure, if it can be generated by a se-

quence
{(v1,j,∇v2,j)}, v1,j : Ω → R

m×N , v2,j : Ω → R
m

with div v1,j = 0 for all j.

Notice that the div-curl lemma (Lemma 2.1) applies to sequences generating div-
curl Young measures.

The following results appeared in [7]. Lemma 2.3 is an immediate consequence
of Lemma 2.1, which is the fundamental commutation property. Lemma 2.4 says
that for a.e. a ∈ Ω, each measure νa, an individual member of a div-curl measure
ν = {νx}x∈Ω, is, in its own right, a homogeneous (not dependent on x ∈ Ω) div-curl
Young measure, and Lemma 2.5 brings a way to recognize a certain class of div-curl
Young measures. Finally, Proposition 2.6 is the main result which may serve to
reformulate the relaxation of the original problem (P) in terms of div-curl Young
measures.

Lemma 2.3. Let ν = {νx}x∈Ω be a div-curl Young measure, then for a.e. x ∈ Ω

∫

Rm×N×Rm×N

τ⊤ξ dνx(τ, ξ) =

(∫

Rm×N

τ dν(1)
x (τ)

)⊤ ∫

Rm×N

ξ dν(2)
x (ξ), (5)

where ν
(i)
x , i = 1, 2, are the marginals on the two components, respectively.

Lemma 2.4. A parameterized measure ν = {νx}x∈Ω is a div-curl Young measure
if and only if:

• For a.e. x ∈ Ω, each individual νx is a homogeneous, div-curl Young measure
itself.

• There exists a divergence-free vector field v1 in L2(Ω;Rm×N) and v2 ∈
H1(Ω;Rm), such that

div

(∫

Rm×N

τ dν(1)
x (τ)

)
= 0, ∇v2(x) =

∫

Rm×N

ξd ν(2)
x (ξ).

Lemma 2.5. Suppose that ρi, λi, i = 1, 0, are four N-vectors such that

(ρ⊤0 − ρ⊤1 )(λ0 − λ1) = 0. (6)

Then the probability measure

µ = tδ(ρ1,λ1) + (1− t)δ(ρ0,λ0)
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is a div-curl Young measure for all t ∈ [0, 1]. If ν1 and ν0 are two div-curl Young
measures with barycenters (ρ1, λ1) and (ρ0, λ0), respectively, such that (6) holds,
then

µ = tν1 + (1− t)ν0

is a div-curl Young measure too for each t ∈ [0, 1].

Proposition 2.6. A family of probability measures ν = {νx}x∈Ω can be generated
by a sequence of pairs

{([Xk(x)Q1 + (1−Xk(x))Q0)]∇uk(x),∇uk(x))} , (7)

with
div (([Xk(x)Q1 + (1−Xk(x))Q0)]∇uk(x)) = 0 in Ω,

if and only if

• Each measure νx is a div-curl Young measure, which is homogeneous and
supported on the set

Λ = Λ1 ∪ Λ0, νx = t(x)νx,1 + (1− t(x))νx,0,

where each νx,j, j = 1, 0, is supported on Λj.

• There exists a divergence-free vector field v1 in L2(Ω;Rm×N), and a field v2 ∈
H1(Ω;Rm) such that

v1(x) =

∫

Rm×N

ρdν(1)
x (ρ), ∇v2(x) =

∫

Rm×N

λdν(2)
x (λ).

3. Reformulation in Terms of Div-Curl Young Measures. A semidefinite
programming problem.

In order to reformulate the relaxation of the problem (P) in terms of Young mea-
sures, we proceed as in [7]. The method is justified by Proposition 2.6. The relax-
ation of the original optimal design problem (P) in terms of the family of div-curl
Young measures may be written

(R) Minimize in ν :

∫

Ω

[
tQ1 :

∫

RN

ξξ⊤dν
(1)
x,1(ξ) + (1− t)Q0 :

∫

RN

ξξ⊤dν
(1)
x,0(ξ)

]
dx

subject to

ν = {νx}x∈Ω, νx = t(x)νx,1 + (1− t(x))νx,0 is a div-curl Young measure.

supp νx,j ⊂ Λj, j = 1, 0,

∫

Ω

t(x)dx = t1|Ω|.

div

∫

RN×N

τdνx(ξ, τ) = 0, weakly in Ω,

∇u(x) =

∫

RN×N

ξdνx(ξ, τ), u = u0 on ∂Ω.
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Notice that
Qi : ξξ

⊤ = ξ⊤Qiξ ∈ R,

and that we have a unique component m = 1. To simplify the notation, we will
drop the dependence on x ∈ Ω. For example, we are going to write ν, ρ, λ, instead
of

νx,

∫

RN

τdνx(ξ, τ), ∇u(x),

respectively.

Let us take ν, a div-curl Young measure, supported in the set

Λ = Λ1 ∪ Λ0,

where
Λj = {(ξ, τ) ∈ R

N × R
N : τ = Ljξ}, j = 1, 0.

Hence we may decompose ν = tν1 + (1 − t)ν0, where νj is a probability measure
(most likely not a div-curl Young measure itself) supported in Λj.

If we put

λj =

∫

RN

ξdν
(1)
j (ξ), j = 1, 0,

then
λ = tλ1 + (1− t)λ0, ρ = tL1λ1 + (1− t)L0λ0.

From these two identities, we can express λj in terms of λ and ρ. Namely,

λ1 =
1

t
(L0 − L1)

−1(ρ− L1λ), λ0 =
1

1− t
(L0 − L1)

−1(L0λ− ρ). (8)

We have assumed above that L0 − L1 is not a singular matrix. The commutation
property with the inner product on div-curl Young measures (5) yields

∫

Λ

ξ⊤τdν(ξ, τ) = λ⊤ρ.

But the integral on the left-hand side can be recast in the form

t

∫

RN

ξ⊤L1ξdν
(1)
1 (ξ) + (1− t)

∫

RN

ξ⊤L0ξdν
(1)
0 (ξ)

= tL1 :

∫

RN

ξξ⊤dν
(1)
1 (ξ) + (1− t)L0 :

∫

RN

ξξ⊤dν
(1)
0 (ξ).

To find a lower bound we are going to retain just the relevant property expressed
in the commutation just indicated, so that we regard feasible measures ν as Young
measures which satisfy this commutation property, but are not necessarily a div-curl
Young measure.

Let us introduce at this stage some further notation. Let us denote

Xj =

∫

RN

ξξ⊤dν
(1)
j (ξ), j = 1, 0.
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a convex combination of symmetric rank-one matrices. It is well known that

Xj ≥ λjλ
⊤
j , j = 1, 0

in the usual sense of symmetric matrices.

On the other hand, the cost can clearly be written as

t tr(Q1X1) + (1− t) tr(Q0X0),

where tr is the usual trace operator for matrices.

Therefore, in seeking a lower bound, we are led to consider the mathematical pro-

gramming problem, which we are going to designate by (R̃),

Minimize in (X1, X0) : t tr(Q1X1) + (1− t) tr(Q0X0)

subject to λ⊤ρ = t tr(L1X1) + (1− t) tr(L0X0),

Xj − λjλ
⊤
j ≥ 0, j = 1, 0.

After the changes of variables Xj = Xj − λjλ
⊤
j , j = 1, 0, we become interested in

exploring

(R̃)

Minimize in (X1, X0) : t tr(Q1X1) + (1− t) tr(Q0X0) + tλ⊤
1 Q1λ1

+(1− t)λ⊤
0 Q0λ0

subject to σ = t tr(L1X1) + (1− t) tr(L0X0), Xj ≥ 0, j = 0, 1,

with σ = λ⊤ρ− tλ⊤
1 L1λ1 − (1− t)λ⊤

0 L0λ0, independent of (X0, X1).

4. Analysis of the constraint set for (R)

A first important issue is to check the non-emptiness of the constraint set for our
mathematical programming problem

σ = t tr(L1X1) + (1− t) tr(L0X0), Xj ≥ 0, j = 0, 1. (9)

What are the constraints that the triplet (t, λ, ρ) should verify so that a pair of
matrices X1 and X0 can be found so that (9) is verified with

σ = λ⊤ρ− tλ⊤
1 L1λ1 − (1− t)λ⊤

0 L0λ0 (10)

and λj given in (8)?

Since for each j = 0, 1, Lj is a symmetric matrix, we can always find a diagonal
matrix Dj such that Lj = P⊤

j DjPj, where Pj is an orthogonal matrix. Substituting
this into the above identity (9), we obtain that

σ = t tr(D1P1X1P
⊤
1 ) + (1− t) tr(D0P0X0P

⊤
0 ). (11)

Let us analyze three different cases:

1. L0, L1 ≥ 0;
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2. L0, L1 ≤ 0;

3. one of the two matrices has positive and negative eigenvalues, or the sign of
the eigenvalues for the two of them is different.

In the first one, notice that saying L0, L1 ≥ 0 is equivalent to ensuring thatD0, D1 ≥
0. Hence if we take into account that Xj ≥ 0, j = 0, 1, the diagonal components
of each PjXjP

⊤
j , j = 0, 1, are non-negative. That implies that the right-hand side

on the equality must be non-negative, hence a necessary condition to find matrices
Xj, j = 0, 1 which satisfy (11) is that

σ = λ⊤ρ− tλ⊤
1 L1λ1 − (1− t)λ⊤

0 L0λ0 ≥ 0.

Furthermore this is a sufficient condition. Since L1 − L0 is not a singular matrix,
one of the two matrices L1 and L0 is not the zero matrix. Without loss of generality,
we can assume that L1 6= 0. Let us choose a positive element ds > 0, of the diagonal
matrix D1, whose diagonal positition is 1 ≤ s ≤ N. Fixing σ ≥ 0, the relation (11)
always holds for the matrices

X0 = 0 and X1 =
σ

tds
ese

⊤
s , (12)

where es is the s−th column of the identity matrix of size N.

In a similar way, case (2) can be treated so that (9) represents a non-empty set of
matrices if and only if (t, λ, ρ) are such that σ ≤ 0.

In the third case, we can always find matrices Xj, j = 1, 0, for which the constraints
(9) and (11) are satisfied without any condition on σ. Suppose that σ > 0. We
do not lose generality if we assume, as above, that ds > 0. Hence, it is easy to see
that the matrices X1 and X0 as in (12) satisfy (11). When σ < 0, we proceed in a
similar way, but choosing ds < 0.

5. Lower Bound for Solutions of (R).

Let us start by obtaining a lower bound through the solution of (R̃). We introduce
some new notation. For Xj, j = 1, 0, we put

Xj =
N∑

ℓ=1

vj,ℓv
⊤
j,ℓ, j = 0, 1, (13)

where for each j = 0, 1, and ℓ = 1, . . . , N vj,ℓ ∈ R
N . Hence, problem (R̃) can be

reformulated in the following terms

Minimize in (v1,1, . . . , v1,N , v0,1, . . . , v0,N) :

t
N∑

ℓ=1

v⊤1,ℓQ1v1,ℓ + (1− t)
N∑

ℓ=1

v⊤0,ℓQ0v0,ℓ + tλ⊤
1 Q1λ1 + (1− t)λ⊤

0 Q0λ0

subject to

σ = t
N∑

ℓ=1

v⊤1,ℓL1v1,ℓ + (1− t)
N∑

ℓ=1

v⊤0,ℓL0v0,ℓ.
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According to the Lagrange’s multiplier method, we define the augmented function
by setting

Ψ(v1,1, . . . , v1,N , v0,1, . . . , v0,N , γ)

= t
N∑

ℓ=1

v⊤1,ℓQ1v1,ℓ + (1− t)
N∑

ℓ=1

v⊤0,ℓQ0v0,ℓ + tλ⊤
1 Q1λ1 + (1− t)λ⊤

0 Q0λ0

− γ

(
t

N∑

ℓ=1

v⊤1,ℓL1v1,ℓ + (1− t)
N∑

ℓ=1

v⊤0,ℓL0v0,ℓ − σ

)
.

We therefore arrive at the following requirements

∂Ψ

∂vi,ℓ
= 2hj(Qj − γLj)vj,ℓ = 0, j = 0, 1, ℓ = 1, . . . , N. (14)

where h1 = t and h0 = 1− t. We also need that

∂Ψ

∂γ
= t

N∑

ℓ=1

v⊤1,ℓL1v1,ℓ + (1− t)
N∑

ℓ=1

v⊤0,ℓL0v0,ℓ − σ = 0. (15)

Combining (14) with (15), we obtain that

t
N∑

ℓ=1

v⊤1,ℓQ1v1,ℓ + (1− t)
N∑

ℓ=1

v⊤0,ℓQ0v0,ℓ = γσ. (16)

Solving the initial problem is equivalent to obtaining the least value which γ is
able to attain. From (14), and taking into account that the vectors vj,ℓ, j = 0, 1,
ℓ = 1, . . . , N, cannot all be zero, we conclude that such value of γ coincides with
the least value of γσ in which one of the two matrix equalities

(Qj − γLj)vj,ℓ = 0, j = 0, 1, (17)

holds. When L1 and L0 are non-singular matrices, γ is the eigenvalue of the two
matrices QjL

−1
j , j = 0, 1, for which γσ is minimum. In this way, we have obtained

a lower bound for the solutions of (R), which turns out to be

LB = γσ + tλ⊤
1 Q1λ1 + (1− t)λ⊤

0 Q0λ0.

The end of the proof of Theorem 1.1 amounts to just putting back the dependence
on x, and noting that the commutation property used in finding the lower bound,
ensures that the integrand in problem (S) is (div-curl)-quasiconvex (see [4]). The
situation is equivalent to finding the polyconvexification as a lower bound for the
quasiconvexification in the pure curl case.

6. When the lower bound becomes exact

We do not know if the solutions of (R) and (R̃) are the same, because the com-
mutation property does not always imply that ν is a div-curl Young measure, or at
least we do not know if it does. Only when σ = 0, i.e.

λ⊤ρ− tλ⊤
1 L1λ1 − (1− t)λ⊤

0 L0λ0 = 0,
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can we be sure that the underlying measure is truly a div-curl Young measure, and
hence the lower bound just obtained is an exact value. This is a direct consequence
of Lemma 2.5.

Lemma 6.1. Suppose that (t, λ, ρ) is such that σ = 0. Then the exact value of the
relaxation (at this point) is

tλ⊤
1 Q1λ1 + (1− t)λ⊤

0 Q0λ0,

and corresponds to the div-curl Young measure

tδ(λ1,L1λ1) + (1− t)δ(λ0,L0λ0).

The proof of this fact is straightforward. Notice that when σ = 0, the optimal
pair of matrices (X1, X0) in our semi-definite programming problem can be taken
to vanish. This corresponds to the situation where

Xj =

∫

RN

ξξ⊤dν
(1)
j (ξ), j = 0, 1,

is actually equal, after the change of variables indicated at the end of Section 3, to
λiλ

⊤
i . By strict convexity of the trace operator, this can only happen if

ν
(1)
j = δλj

.

There is a number of situations where first-order laminate are always optimal. See
[1] and [6] for further specific bibliography on this from the point of view of homog-
enization.

It is interesting to examine when this lower bound might become an exact value
beyond first-order laminates. According to the computations above, and because σ
does not have to vanish necessarily, we should look for a measure ν supported (at
least) on three mass-points

ν = (1− t)δ(λ0,L0λ0)+ t
(
sδ(u,L1u) + (1− s)δ(w,L1w)

)
, su+(1− s)w = λ1, u−w = v,

(18)
where s ∈ (0, 1) and v is the solution in (17) with the least eigenvalue γσ (without
loss of generality, we may assume that γ corresponds to the pair (L1, Q1)). Notice
how the optimal vector v furnishes the direction of lamination rather than the
actual mass points. This is due to the way in which we have set up the auxiliary
semi-definite programming problem. By solving for u and w in terms of v and λ1,
we can write the three-point probability measure as

ν = (1− t)δ(λ0,L0λ0) + t
(
sδ(λ1+(1−s)v,L1λ1+(1−s)L1v) + (1− s)δ(λ1−sv,L1λ1−sL1v)

)
. (19)

If we would like this measure to be a second-order laminate,when the pairs (λ0,L0λ0)
and (λ1, L1λ1) are not compatible, then, in agreement with Lemma 2.3, the vector
v must be a solution of the following system of equations:

{
i) 0 = (Q1 − γL1)v,

ii) σ = tv⊤L1v,
(20)
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and, in addition, we should have the compatibility conditions for a second-order
laminate with three mass points





iii) (λ1 − λ0 − sv)⊤(L1λ1 − L0λ0 − sL1v) = 0,

iv)

(
1−t

1−t+t(1−s)
λ0 +

t(1−s)
1−t+t(1−s)

(λ1 − sv)− λ1 + (1− s)v
)⊤

·
(

1−t
1−t+t(1−s)

L0λ0 +
t(1−s)

1−t+t(1−s)
(L1λ1 − sL1v)− L1λ1 + (1− s)L1v

)
=0.

(21)

This is an impressive system of equations for the vector v, and the parameter s.
In general, we suspect it is an incompatible system of equations. For example, if
the vector space which contains all solutions of the equation 0 = (Q1 − γL1)v has
dimension 1, the second equality σ = tv⊤L1v determines only two vectors v for
which it would be impossible to find s so that the other two equations hold. This
implies that in general the measure (19) will not be a div-curl Young measure.

In the particular situation when Q1 = γ̄L1, then the first equality in (20) is satisfied
by any vector v, so that it becomes no constraint at all, and the system of equations
is not incompatible. This is an indication that in this case, we might be able to show
that the lower bound is in fact the exact value. Indeed, matrices Qj do not play any
role in this situation, and conditions so that (19) is a second-order laminate depend
only on the matrices Lj. Notice that when one takes s = 1/(2−t), the condition iv)
in (21) for the vector v is reduced to iii). Hence, finding v is equivalent to solving
the following system of quadratic equations

{
ii) σ = tv⊤L1v,

iii) (λ1 − λ0 − sv)⊤(L1λ1 − L0λ0 − sL1v) = 0.

To treat in general this system of quadratic equations for v and s (even without
the first equation in (20)) seems too complicated to perform explicitly. But at least
we know that in some more particular situations these second order laminates have
been found: when the matrices Lj are positive multiples of the identity ([3]), and
in a hyperbolic situation when the matrices Lj reproduce a wave equation for two
materials ([5]). In these works, those laminates were found directly by hand.

7. Final remarks

Our analysis in this contribution has focused on the optimal design problem

Minimize in X : I(X ) =

∫

Ω

[
X (∇u)⊤Q1∇u+ (1−X )(∇u)⊤Q0∇u

]
(x)dx

subject to

div{[X (x)L1 + (1−X (x))L0]∇u(x)} = 0, in Ω,

u = u0 on ∂Ω, and ∫

Ω

X (x) dx = t1|Ω|.
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X is a characteristic function indicating the location of the L1-material. By means
of an appropriate reformulation, a relaxation of this problem can be recast in the
form

Minimize in (t, V,∇u) :

∫

Ω

W (t(x), V (x),∇u(x)) dx

subject to

u = u0 on ∂Ω, divV = 0 in Ω, 0 ≤ t(x) ≤ 1,

∫

Ω

t(x) dx = t1|Ω|,

where a lower bound for W in the form LB : R × RN × RN → R ∪ {+∞} is
given explicitly. Under some additional hypotheses on the structure of the different
matrices, this lower bound becomes exact.

What is interesting is that the relaxed integrand W and the lower bound LB coin-
cide (regardless of additional assumptions) in a certain subset ofR×RN×RN . This
is the set of pairs that correspond to first-order laminates as indicated in Section
6. Based on previous experience in more specific situations, we conjecture that in
fact the support of optimal solutions for the relaxed problem is actually contained
in this special set. If this turns out to be true, then the numerical approximation of
microstructures becomes much more manageable. This has already been explored
in some particular instances ([3]).
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