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1. Introduction

Let X be a real Banach space with dual X∗ and bidual X∗∗. Whenever necessary
we will identify X with its canonical injection into X∗∗. The norms in X, X∗ and
X∗∗ will be denoted by ‖ · ‖ and the duality product in both X ×X∗ and X∗×X∗∗

will be denoted by 〈·, ·〉:

〈x, x∗〉 = x∗(x), 〈x∗, x∗∗〉 = x∗∗(x∗), ∀x ∈ X, x∗ ∈ X∗, x∗∗ ∈ X∗∗.

A point-to-set operator T : X ⇉ X∗ is a relation on X ×X∗:

T ⊂ X ×X∗

and T (x) = {x∗ ∈ X∗ | (x, x∗) ∈ T}. The domain of T is the set

D(T ) = {x ∈ X |T (x) 6= ∅}.
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An operator T : X ⇉ X∗ is monotone whenever

(x, x∗), (y, y∗) ∈ T ⇒ 〈x− y, x∗ − y∗〉 ≥ 0

and it ismaximal monotone if it is monotone and maximal in the family of monotone
operators from X into X∗, ordered by inclusion of its graphs. Whenever A,B ⊂ X
we denote by A+B the Minkowski sum of A and B.

Given two point-to-set operators T1, T2 : X ⇉ X∗ the (pointwise) sum T1 + T2 :
X ⇉ X∗ is defined as

(T1 + T2)(x) = T1(x) + T2(x), ∀x ∈ X

where, in the right hand side of the above equation we have the Minkovski sum.
It is easy to verify that T1 + T2 is monotone whenever T1 and T2 are monotone.
On the other hand, in general, maximal monotonicity is not preserved by the sum
operation.

Rockafellar proposed a qualification condition (QC) on the domain of the operators
to ensure maximal monotonicity of the sum in reflexive Banach spaces. It has been
proved [14] that if X is reflexive, T1, T2 : X ⇉ X∗ are maximal monotone and

int(D(T1)) ∩D(T2) 6= ∅, (1)

then T1 + T2 is maximal monotone.

In [2] Attouch, Riahi and Théra proved maximal monotonicity of the sum (in re-
flexive spaces) by replacing Rockafellar’s QC (1) by the geometric and more general
condition that

⋃

λ>0

λ (D(T1)−D(T2)) (2)

is a closed linear subspace of X. Condition (2) was first introduced by Attouch and
Brézis [1] in order to generalize Fenchel-Rockafellar’s duality theorem. An account
of several qualification conditions concerning the maximality of the sum in reflexive
Banach spaces is given in [15].

In this work we will address the problem of maximal monotonicity of the sum in
general Banach spaces. This is a topic of intense research and new results in this
area were recently obtained in [17, 12, 16, 3, 7]. Our main tools are the concept
of convex representation of a maximal monotone operator as well as a recent result
on a sufficient condition for a convex function to represent a maximal monotone
operator [10, Theorem 3.1, Corollary 3.2]. Details are given in the next section.
The main results are presented in Section 6. Lemma 3.1 and Lemma 4.3 will be
important results for us and we believe these are interesting results on their own.

Our notation is quite standard. We use conv(A) and aff(A) for the convex hull
and the affine hull of A respectively. By clA we denote the topological closure
(in the strong topology) of A and cl f denotes the lower semicontinuous closure of
f : X → R. The topological interior of A ⊂ X is denoted by int(A). Whenever
A,B ⊂ X we denote by A + B = {a + b | a ∈ A, b ∈ B} the Minkowski sum of A
and B. For any b ∈ B, we use the short notation A + b for A + {b}. For λ ∈ R
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and A ⊂ X we define λA = {λ a | a ∈ A}. We also define A − B = A + (−B)
and A − b = A − {b}, where −B = (−1)B. By B(a, r) = {x ∈ X | ‖x − a‖ < r}
we denote the open ball of center a ∈ X and radius r > 0. For M ⊂ X × X∗ we
denote by PrX(M) and PrX∗(M) the projections of M into X and X∗, respectively.
The indicator function of a set A is defined as δA(x) = 0 if x ∈ A and δA(x) = ∞
if x /∈ A. We will use the short notation δa to denote the indicator function of a
singleton {a}.

2. Basic results

A convex function f : X → R is proper whenever f > −∞ and its effective domain

D(f) := {x ∈ X | f(x) < ∞}

is nonempty. f : X×X∗ → R is l.s.c. (resp. l.s.c. in the s×w∗ topology) whenever
the set

epi(f) = {(z, λ) ∈ (X ×X∗)× R | f(z) ≤ λ}

is closed in the strong (resp. s×w∗) topology of X ×X∗. Here s and w∗ stand for
strong and weak-star topology, respectively.

The Fenchel-Legendre conjugate of f : X → R is f ∗ : X∗ → R defined by

f ∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x). (3)

Fitzpatrick proved [5] that associated to each maximal monotone operator T : X ⇉

X∗ there exists a family FT of convex, proper lower semicontinuos functions which
majorizes the duality product and coincides with it on T :

FT =







h : X ×X∗ → R

∣

∣

∣

∣

∣

∣

h is convex and lower semicontinuous
h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗

(x, x∗) ∈ T ⇒ h(x, x∗) = 〈x, x∗〉







. (4)

Fitzpatrick also gave an explicit formula for the smallest element of FT

ϕT : X ×X∗ → R, ϕT (x, x
∗) = sup

(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉, (5)

and proved that for any h ∈ FT

(x, x∗) ∈ T ⇐⇒ h(x, x∗) = 〈x, x∗〉.

In view of the above equivalence, from now on we will call any h ∈ FT a convex
representation of T .

Since any maximal monotone operator is representable by a convex function, it is
very natural to ask under which conditions a convex function represents a maximal
monotone operator. The first work in this direction was [4], where Burachik and
Svaiter determined necessary and sufficient conditions for a function to represent
a maximal monotonte operator in a reflexive Banach space. This result was par-
tially extended to non-reflexive Banach spaces by the authors in [8] and [10]. In
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the present work we shall use one of these extension, essentially proved in [10, The-
orem 3.1, Corollary 3.2], which replaces the reflexivity assumption by a geometric
condition on the domain of the function.

Theorem 2.1. Let h : X ×X∗ → R be a proper convex function satisfying

h(x, x∗) ≥ 〈x, x∗〉, h∗(x∗, x) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗.

If
⋃

λ>0

λ (PrX(D(h))− x0)

is a closed subspace (for some x0 ∈ X) then

T := {(x, x∗) ∈ X ×X∗ |h∗(x∗, x) = 〈x, x∗〉}

is maximal monotone. Moreover, if h is l.s.c. in the strong×weak-∗ topology of
X ×X∗, then

T := {(x, x∗) ∈ X ×X∗ |h(x, x∗) = 〈x, x∗〉}

is maximal monotone.

Proof. Apply [10, Theorem 3.1, Corollary 3.2] to h̃ : X × X∗ → R, h̃(x, x∗) =
h(x+ x0, x

∗)− 〈x0, x
∗〉.

Next Lemma was proved inside of [12, Lemma 3.5]. For the convenience of the
reader we present a proof.

Lemma 2.2. Let h1, h2 : X ×X∗ → R be proper l.s.c. convex functions. Define

h : X ×X∗ → R

h(x, x∗) = (h1(x, ·)�h2(x, ·)) (x
∗) = inf

y∗∈X∗

h1(x, y
∗) + h2(x, x

∗ − y∗). (6)

If
⋃

λ>0

λ(PrX(D(h1))− PrX(D(h2))) (7)

is a closed subspace then

h∗(x∗, x∗∗) = min
u∗∈X∗

h∗
1(u

∗, x∗∗) + h∗
2(x

∗ − u∗, x∗∗). (8)

Proof. Let (x∗, x∗∗) ∈ X∗ ×X∗∗. Using the definition of h we have

h∗(x∗, x∗∗)

= sup
(z,z∗)∈X×X∗

〈z, x∗〉+ 〈z∗, x∗∗〉 − h(z, z∗)

= sup
(z,z∗,y∗)∈X×X∗×X∗

〈z, x∗〉+ 〈z∗, x∗∗〉 − h1(z, y
∗)− h2(z, z

∗ − y∗)

= sup
(z,y∗,w∗)∈X×X∗×X∗

〈z, x∗〉+ 〈y∗, x∗∗〉+ 〈w∗, x∗∗〉 − h1(z, y
∗)− h2(z, w

∗),
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where we used the substitution z∗ = w∗ + y∗ in the last term. Thus, defining
H1, H2 : X ×X∗ ×X∗ → R,

H1(x, y
∗, z∗) = h1(x, y

∗), H2(x, y
∗, z∗) = h2(x, z

∗) (9)

we have
h∗(x∗, x∗∗) = (H1 +H2)

∗(x∗, x∗∗, x∗∗). (10)

Since

D(H1)−D(H2) = {x ∈ X |x ∈ PrX(D(h1))− PrX(D(h2))} ×X∗ ×X∗,

using (7), the Attouch-Brézis’s extension [1, Theorem 1.1] of Fenchel-Rockafellar
duality theorem and (9) we conclude that the conjugate of the sum at the right
hand side of (10) is the exact inf-convolution of the conjugates. Therefore,

h∗(x∗, x∗∗) = min
(u∗,y∗∗,z∗∗)

H∗
1 (u

∗, y∗∗, z∗∗) +H∗
2 (x

∗ − u∗, x∗∗ − y∗∗, x∗∗ − z∗∗).

Direct use of (9) shows that, for any (x, y∗, z∗) ∈ X ×X∗ ×X∗,

H∗
1 (u

∗, y∗∗, z∗∗) = h∗
1(u

∗, y∗∗) + δ0(z
∗∗), H∗

2 (u
∗, y∗∗, z∗∗) = h∗

2(u
∗, z∗∗) + δ0(y

∗∗)

To end the proof, combine the two above equations.

3. Topological preliminaries

The algebraic interior of A ⊂ X, denoted by ai(A), is the set of points a ∈ X such
that

∀x ∈ X, ∃δ > 0

a+ λx ∈ A ∀λ ∈ [0, δ].

A set A is said to be a Fσ set if A is an enumerable union of closed sets. The next
lemma is concerned with algebraic and topological interiority notions for Fσ sets.

Lemma 3.1. Let X be a general Banach space and A ⊂ X be a Fσ set. If ai(A) is
nonempty, then int(A) is nonempty.

Proof. Take a ∈ ai(A). Since A is a Fσ set, there exists a countable family {Cn}
of closed sets such that

A =
⋃

n∈N

Cn.

We claim that
X =

⋃

n,m∈N

m(Cn − a). (11)

For proving this claim, take x ∈ X. Since a ∈ ai(A), there exists m > 0 such that

y := a+
1

m
x ∈ A.
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Therefore, there exists n such that y ∈ Cn and so

x = m(y − a) ∈ m(Cn − a).

As x is a generic point of X, we proved that

X ⊂
⋃

n,m∈N

m(Cn − a),

which readily implies our claim.

To end the proof of the lemma, use (11) and Baire’s Lemma.

We define the relative algebraic interior of A ⊂ X, denoted by rai(A), as the set of
points a ∈ A such that

∀x ∈ aff(A)− a, ∃δ > 0

a+ λx ∈ A ∀λ ∈ [0, δ].

The relative interior of A, denoted by ri(A), is the interior of A in the relative
topology of cl aff(A), that is, a ∈ ri(A) if a ∈ A and there exists r > 0,

B(a, r) ∩ cl aff(A) ⊂ A.

Note that if aff(A) is not closed, then ri(A) is empty.

Next we generalize Lemma 3.1.

Corollary 3.2. Let X be a general Banach space and A ⊂ X be a Fσ set with
aff(A) closed. If rai(A) is nonempty, then ri(A) is nonempty.

Proof. Take x0 ∈ rai(A) and define

V = aff(A)− x0, A0 = A− x0.

Note that V is a closed subspace. Endowing V with the (restriction of the) norm of
X we get a Banach space. Moreover A0 ⊂ V is a Fσ set in V and has a nonempty
algebraic interior (when regarded as a subset of V ). Therefore, using Lemma 3.1,
we conclude that A0 has a nonempty interior in V , which is equivalent to A having
a nonempty relative interior.

Proposition 3.3. Let X be a general Banach space. If A ⊂ X is convex, then, for
any x ∈ ri(A), y ∈ clA and θ ∈ (0, 1], we have

θx+ (1− θ)y ∈ ri(A).

Proof. It suffices to prove the proposition in the case that aff(A) = X and x ∈
int(A). In this case, there exists r > 0 such that B(x, r) ⊂ A. Take θ ∈ (0, 1] and
let

xθ = θx+ (1− θ)y.
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Since y ∈ clA, there exists y′ ∈ A such that ‖y − y′‖ < θr. Using the convexity of
A we have

θB(x, r) + (1− θ)y′ ⊂ A.

Since
θB(x, r) + (1− θ)y′ = (θx+ (1− θ)y′) +B(0, θr)

and
‖xθ − (θx+ (1− θ)y′) ‖ = (1− θ)‖y − y′‖ < θr

we conclude that xθ ∈ θB(x, r) + (1 − θ)y′ ⊂ A, i.e., xθ ∈ int(A). For the general
case recall that ri(A) 6= ∅ implies aff(A) closed and so that clA ⊂ aff(A).

Corollary 3.4. Let X be a general Banach space and A ⊂ X be a Fσ set with
aff(A) closed. If A is convex then rai(A) = ri(A).

Proof. The inclusion ri(A) ⊂ rai(A) holds trivially. To complete the proof, assume
that rai(A) is nonempty and take z ∈ rai(A). Using Corollary 3.2 we conclude that
ri(A) 6= ∅. Take x ∈ ri(A). Then, in particular, x ∈ A and since z ∈ rai(A), there
exists λ > 0 such that y := z + λ(z − x) ∈ A. Since

z =
1

1 + λ
y +

λ

1 + λ
x,

with y ∈ A and x ∈ ri(A), using Proposition 3.3 we conclude that z ∈ ri(A).

4. On the domain of maximal monotone operators

Recall that the domain of T : X ⇉ X∗ is defined by

D(T ) = {x ∈ X |T (x) 6= ∅}.

In the next proposition we analyze the relationship between the domain of T and
the effective domain of its convex representations.

Proposition 4.1. Let T : X ⇉ X∗ be a maximal monotone operator. Then, for
any h ∈ FT ,

D(T ) ⊂ PrX(D(h)) ⊂ cl convD(T ) .

Proof. Let h ∈ FT . Using (4) we conclude that D(T ) ⊂ PrX(D(h))). To prove the
second inclusion, suppose that x0 /∈ cl convD(T ). Using the geometric version of
Hahn-Banach Lemma, we conclude that there exists x∗

0 ∈ X∗ and β ∈ R such that

〈y, x∗
0〉 < β < 〈x0, x

∗
0〉, ∀y ∈ D(T ).

Take x∗ ∈ X∗. Since x0 /∈ D(T ), for any λ > 0, we have λx∗
0+x∗ /∈ T (x0). Therefore

there exists (y, y∗) ∈ T such that

〈x0 − y, (λx∗
0 + x∗)− y∗〉 < 0.

Using the two above inequalities and defining ε = 〈x0, x
∗
0〉 − β > 0 we have

λε < 〈x0 − y, y∗ − x∗〉 = 〈x0, y
∗〉+ 〈y, x∗〉 − 〈y, y∗〉 − 〈x0, x

∗〉.
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Using the above equation and (5) we conclude that

ϕT (x0, x
∗) ≥ λε+ 〈x0, x

∗〉.

As λ > 0 is arbitrary and ϕT ≤ h we have h(x0, x
∗) = ∞. Since x∗ is an arbitrary

element of X∗, we conclude that x0 /∈ PrX(D(h)).

Corollary 4.2. Let T : X ⇉ X∗ be maximal monotone. If aff(D(T )) is closed,
then, for any h ∈ FT ,

aff(PrX(D(h))) = aff(D(T )) ,

rai(D(T )) ⊂ rai(PrX(D(h))) ,

ri(D(T )) ⊂ ri(PrX(D(h))).

Proof. Using Proposition 4.1 and the fact that aff(D(T )) is closed we have

PrX(D(h)) ⊂ cl convD(T ) ⊂ cl aff(D(T )) = aff(D(T )).

Therefore aff(PrX(D(h))) ⊂ aff(D(T )). By Proposition 4.1 D(T ) ⊂ PrX(D(h)) and
so the reverse inclusion also holds true. The two inclusions follow directly from the
equality just proved and the assumption of aff(D(T )) being closed.

To further elucidate the structure of the domain of maximal monotone operators
which domain have a closed affine hull we need an auxiliary result, proved by
Rockafellar in the demonstration of [13, Theorem 1]. For the sake of completeness,
we will provide a proof of this result.

Lemma 4.3. The domain of a maximal monotone operator in a real Banach space
is a Fσ set, that is, the union of a countable family of closed sets.

Proof. Let X be a real Banach space and T : X ⇉ X∗ be a maximal monotone
operator. Define, for λ ≥ 0

Cλ = {x ∈ X | ∃x∗ ∈ T (x), ‖x∗‖ ≤ λ}.

We claim that Cλ is closed for any λ < ∞. For proving this claim, suppose that

xn ∈ Cλ, n = 1, 2, . . . , xn → x as n → ∞.

For each n there exists x∗
n ∈ T (xn), ‖x

∗
n‖ ≤ λ. Using Banach-Alaoglu Theorem we

conclude that the sequence {x∗
n} has a weak-∗ cluster point x∗ such that ‖x∗‖ ≤ λ.

To prove that x∗ ∈ T (x) take an arbitrary (y, y∗) ∈ T . For any ε > 0 there exists
n such that

‖x− xn‖ < ε, | 〈x− y, x∗
n − x∗〉 | < ε.

Hence, using the above inequalities, the monotonicity of T and the inclusions x∗
n ∈

T (xn), y
∗ ∈ T (y) we have

〈x− y, x∗ − y∗〉 = 〈x− y, x∗ − x∗
n〉+ 〈x− y, x∗

n − y∗〉

≥ − ε+ 〈x− y, x∗
n − y∗〉

≥ − ε+ 〈x− xn, x
∗
n − y∗〉+ 〈xn − y, x∗

n − y∗〉

≥ − ε− ε‖x∗
n − y∗‖

≥ − ε(1 + λ+ ‖y∗‖).
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Since the above inequality holds for any ε > 0, we have 〈x− y, x∗ − y∗〉 ≥ 0, which,
combined with the maximal monotonicity of T yields x∗ ∈ T (x). As ‖x∗‖ ≤ λ we
conclude that x ∈ Cλ.

To end the proof of the lemma, note that D(T ) =
⋃

n∈N Cn.

In the next theorem we use previous results to analyze algebraic and topological
properties of the domain of maximal monotone operators.

Theorem 4.4. Let T : X ⇉ X∗ be maximal monotone with aff(D(T )) closed.
Then

ai(D(T )) = int(D(T )), (12)

and both sets in (12) are convex. Moreover, if the sets in (12) are nonempty, then

clD(T ) = cl int(D(T )) = cl ai(D(T )).

Proof. Trivially int(D(T )) ⊂ ai(D(T )). Thus, if ai(D(T )) is an empty set, all
statements of the theorem hold.

Suppose that

ai(D(T )) 6= ∅. (13)

Using Lemma 4.3 and Lemma 3.1 we conclude that int(D(T )) is nonempty. There-
fore, using [13, Theorem 1] we conclude that int(D(T )) is convex and

clD(T ) = cl int(D(T )). (14)

In particular, clD(T ) is a closed convex set. Moreover, assumption (13) also implies
that

aff(cl(D(T ))) = aff(D(T )) = X.

Hence, applying Corollary 3.4 to A = cl(D(T )) we have

ai(clD(T )) = int(clD(T )).

Therefore, using the above identity and (14) we obtain,

ai(D(T )) ⊂ ai(clD(T )) = int(clD(T )) = int(cl int(D(T ))) = int(D(T ))

where the last identity follows from the fact that int(D(T )) is open, nonempty
and convex. It proves the first statement of the theorem. The second one follows
from (14) and (12).

Corollary 4.5. Let T : X ⇉ X∗ be maximal monotone with aff(D(T )) closed.
Then

rai(D(T )) = ri(D(T )), (15)

and both sets in (15) are convex. Moreover, if the sets in (15) are nonempty, then

clD(T ) = cl ri(D(T )) = cl rai(D(T )).
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Proof. First assume that
0 ∈ D(T )

and let
V := aff(D(T )).

Then V is a closed subspace. We will consider V as a linear space endowed with
the natural norm, that is, the norm obtained by the restriction of the norm of X
to V . Then V is a Banach space. Define

T̃ : V ⇉ V ∗, T̃ (v) = {x∗|V | x∗ ∈ T (v)}.

Monotonicity of T̃ follows trivially from the monotonicity of T . To prove that T̃ is
maximal monotone, suppose that {(v0, v

∗
0)} ∪ T̃ is monotone. Using Hahn-Banach

Lemma we conclude that there exists x∗
0 ∈ X∗ such that x∗

0|V = v∗0. Take an
arbitrary (x, x∗) ∈ T . Then x ∈ V , (x, x∗|V ) ∈ T̃ and

〈x− v0, x
∗ − x∗

0〉 = 〈x− v0, x
∗|V − x∗

0|V 〉V

= 〈x− v0, x
∗|V − v∗0〉V ≥ 0,

where 〈·, ·〉V stands for the duality product in V × V ∗. Hence, using the maximal
monotonicity of T we conclude that (v0, x

∗
0) ∈ T and so that

(v0, x
∗
0|V ) = (v0, v

∗
0) ∈ T̃ .

Trivially, D(T ) = D(T̃ ), ri(D(T )) = int(D(T̃ )) and rai(D(T )) = ai(D(T̃ )). There-
fore, applying Theorem 4.4, we conclude that the conclusion of the corollary holds
if 0 ∈ D(T ).

For proving the general case, take x′ ∈ D(T ), define T ′(x) = T (x+ x′) and use the
above result for T ′.

5. On the qualification conditions

In this section we discuss the relation between Attouch-Riahi-Thera’s QC (2) and
the QC (7) of Lemma 2.2.

Proposition 5.1. Let T1, T2 : X ⇉ X∗ be maximal monotone operators, h1 ∈ FT1
,

h2 ∈ FT2
and

V :=
⋃

λ>0

λ (D(T1)−D(T2)) .

If V is a closed subspace, then

V =
⋃

λ>0

λ (PrX(D(h1))− PrX(D(h2))) .

In particular, if V is a closed subspace, then

⋃

λ>0

λ (PrX(D(h1))− PrX(D(h2)))

is a closed subspace.
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Proof. Since V is a subspace which contains D(T1)−D(T2), we have

conv(D(T1))− conv(D(T2)) ⊂ V.

Using the assumption of V being closed and Proposition 4.1 we conclude that

PrX(D(h1))− PrX(D(h2)) ⊂ V.

Therefore (since V is a linear subspace)

V =
⋃

λ>0

λ (D(T1)−D(T2)) ⊂
⋃

λ>0

λ (PrX(D(h1))− PrX(D(h2))) ⊂ V,

where the first inclusion follows from the inclusions D(Ti) ⊂ PrX(D(hi)), i =
1, 2.

Corollary 5.2. Let T1, T2 : X ⇉ X∗ be maximal monotone. If

aff(D(T1)), aff(D(T2)) and aff(D(T1)−D(T2))

are closed sets and (additionally)

rai(D(T1)) 6= ∅, rai(D(T2)) 6= ∅ and 0 ∈ rai(D(T1)−D(T2))

then ri(D(T1) ∩ D(T2)) 6= ∅ and aff(D(T1) ∩ D(T2)) is closed. Moreover, for any
h1 ∈ FT1

, h2 ∈ FT2
,

ri(PrX(D(h1)) ∩ ri(PrX(D(h2)) 6= ∅

and hence
aff(PrX(D(h1)) ∩ PrX(D(h2)))

is closed.

Proof. Since 0 ∈ rai(D(T1)−D(T2)) we have that

aff(D(T1)−D(T2)) = span(D(T1)−D(T2)) =
⋃

λ>0

λ (D(T1)−D(T2)) (16)

and there exists z ∈ X such that

z ∈ D(T1) ∩D(T2). (17)

Using Corollary 4.5 we conclude that ri(D(T1)) and ri(D(T2)) are nonempty convex
sets and

riD(T1) = raiD(T1), clD(T1) = cl riD(T1), (18)

riD(T2) = raiD(T2), clD(T2) = cl riD(T2). (19)

In particular, clD(T1), clD(T2) are convex. Take

x1 ∈ ri(D(T1)), x2 ∈ ri(D(T2)). (20)
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By (17) z − x1 and x2 − z belong to span(D(T1)−D(T2)). Therefore, using (16) it
follows that there exist z1, y1 ∈ D(T1), z2, y2 ∈ D(T2), λ, µ > 0 such that

λ(z − x1) = z1 − z2, µ(x2 − z) = y1 − y2.

Dividing the above equalities by 1+λ and 1+µ, respectively, we obtain, after direct
algebraic manipulations.

λ

1 + λ
x1 +

1

1 + λ
z1 =

λ

1 + λ
z +

1

1 + λ
z2, (21)

µ

1 + µ
x2 +

1

1 + µ
y2 =

µ

1 + µ
z +

1

1 + µ
y1. (22)

Using the first inclusion in (20), (17), the second equality in (18) and Proposition 3.3
for the convex set riD(T1) we obtain

p :=
λ

1 + λ
x1 +

1

1 + λ
z1 ∈ riD(T1).

On the other hand, since clD(T2) is convex, and z, z2 ∈ D(T2) ⊂ clD(T2), using
(21) we have that

p ∈ clD(T2).

Thus, using the two last inclusions, we have

p ∈ ri(D(T1)) ∩ clD(T2). (23)

By the same reasoning

q :=
µ

1 + µ
x2 +

1

1 + µ
y2 ∈ ri(D(T2)) ∩ clD(T1). (24)

Using Propositon 3.3 again, the fact that clD(Ti) = cl ri(D(Ti)), i = 1, 2, and the
inclusions in (23) and (24) we have

1

2
(p+ q) ∈ ri(D(T1)) ∩ ri(D(T2)) 6= ∅. (25)

Hence aff(D(T1) ∩D(T2)) = (affD(T1)) ∩ (affD(T2)) is closed and

(riD(T1)) ∩ (riD(T2)) ⊂ ri(D(T1) ∩D(T2)) 6= ∅.

Using Corollary 4.2 we have ri(D(Ti)) ⊂ ri(PrX(D(hi))), i = 1, 2. Combining this
fact with (25) we obtain ri(PrX(D(h1))) ∩ ri(PrX(D(h2))) 6= ∅. It follows then by
the same reasoning that aff (PrX(D(h1)) ∩ PrX(D(h2))) is closed, which ends the
proof.
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6. Sum results in general Banach spaces

Next is our main result. It combines qualification conditions of Theorem 2.1 and
Lemma 2.2 to obtain a sum theorem in general Banach spaces.

Theorem 6.1. Let T1, T2 : X ⇉ X∗ be maximal monotone operators, h1 ∈ FT1
,

h2 ∈ FT2
and h := h1(x, ·)�h2(x, ·) defined as in (6). If

⋃

λ>0

λ (PrX(D(h1))− PrX(D(h2))) , (26)

⋃

λ>0

λ ((PrX(D(h1)) ∩ PrX(D(h2)))− {x0}) (27)

are closed subspaces (for some x0), then T := T1 + T2 is maximal monotone,

T = {(x, x∗) ∈ X ×X∗ |h(x, x∗) = 〈x, x∗〉}

and g(x, x∗) := h∗(x∗, x) and clh are convex representations of T , i.e., g, clh ∈ FT .

Proof. First note that since h1 ∈ FT1
and h2 ∈ FT2

we have

h1(x, x
∗ − y∗) ≥ 〈x, x∗ − y∗〉, h2(x, y

∗) ≥ 〈x, y∗〉 (28)

and
h∗
1(u

∗, x) ≥ 〈x, u∗〉, h∗
2(x

∗ − u∗, x) ≥ 〈x, x∗ − u∗〉. (29)

Using the above inequalities, the definition of h and Lemma 2.2 we obtain

h(x, x∗) ≥ 〈x, x∗〉, h∗(x∗, x) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗.

Since
PrX(D(h)) = PrX(D(h1)) ∩ PrX(D(h2)),

using Theorem 2.1 we conclude that

S := {(x, x∗) ∈ X ×X∗ |h∗(x∗, x) = 〈x, x∗〉}

is maximal monotone. Since g is convex and l.s.c. we have g ∈ FT . Now we will
prove that S = T . To this end, take first (x, x∗) ∈ S. In this case, h∗(x∗, x) = 〈x, x∗〉
and using (8) we conclude that there exists u∗ ∈ X∗ such that

h∗
1(u

∗, x) + h∗
2(x

∗ − u∗, x) = 〈x, x∗〉.

Using (29) we have h∗
1(u

∗, x) = 〈x, u∗〉 and h∗
2(x

∗ − u∗, x) = 〈x, x∗ − u∗〉, i.e., u∗ ∈
T1(x) and x∗ − u∗ ∈ T2(x) which proves that (x, x∗) ∈ T .

Thus S ⊂ T and since T is monotone and S is maximal monotone we have S = T .

Note also that h(x, x∗) ≤ 〈x, x∗〉 whenever (x, x∗) ∈ T . Since h(x, x∗) ≥ 〈x, x∗〉 for
any (x, x∗) ∈ X ×X∗ we have

T ⊂ {(x, x∗) |h(x, x∗) = 〈x, x∗〉} ⊂ {(x, x∗) | clh(x, x∗) ≤ 〈x, x∗〉}.

Since the duality product is continuous in X ×X∗ we have clh(x, x∗) ≥ 〈x, x∗〉 for
any (x, x∗) ∈ X ×X∗. Hence, using the above inclusion we conclude that clh ∈ FT

which implies that the above inclusion holds as an equality.
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Direct use of Theorem 6.1 and Proposition 5.1 yields the next result.

Lemma 6.2. Let T1, T2 : X ⇉ X∗ be maximal monotone operators, h1 ∈ FT1
,

h2 ∈ FT2
and h := h1(x, ·)�h2(x, ·) defined as in (6). If

⋃

λ>0

λ (D(T1)−D(T2)) , (30)

⋃

λ>0

λ ((PrX(D(h1)) ∩ PrX(D(h2)))− {x0}) (31)

are closed subspaces (for some x0), then T := T1 + T2 is maximal monotone,

T = {(x, x∗) ∈ X ×X∗ |h(x, x∗) = 〈x, x∗〉}

and g(x, x∗) := h∗(x∗, x) and clh are convex representations of T , i.e., g, clh ∈ FT .

Note that Lemma 6.2 combined with Corollary 5.2 provides an alternative proof of
Corollary 4 in [16].
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