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In this paper, stability and attraction for a nonlinear dynamical system with nonsmooth Lyapunov
functions are studied. The previous results on stability and attraction with a max-type Lyapunov
function are extended to the case where Lyapunov function is piecewise smooth. A condition,
under which stability and attraction are guaranteed with a piecewise smooth Lyapunov function,
is proposed. Taking two certain classes of piecewise smooth functions as Lyapunov functions,
related conditions for stability and attraction are developed.
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1. Introduction

Recently, nonsmooth Lyapunov functions are used to study stability and attraction
in a dynamical system widely. They are applied to nonlinear systems, switched lin-
ear systems and hybrid systems. In the theoretical view, rather general nonsmooth
Lyapunov functions are used, by which stability and stabilization are established,
see [4, 9] and references therein. In the practical view, nonsmooth Lyapunov func-
tions with specific structure are much more interesting, thus specific results can
be obtained. Within this topic, most existing nonsmooth Lyapunov functions are
max-type or min-type ones, see for instance [5, 6, 7, 10, 11].

Let us consider a dynamical system:
#(t) = f(2), (1)

where f: 1" — R” is locally Lipschitzian with f(0) = 0.

Tan and Parkard [10] studied the system (1) with a nonsmnooth Lyapunov function
and proved that the set Q = {z | V(z) < 1} is invariant and a region of attraction
when Lyapunov function V' is a max-type function of the form max;c; Vi(z) or a
min-type function of the form min;e; V;(z), where each V; is smooth, I is a finite
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index set. In this paper, we try to use a more broad class of nonsmooth functions,
named piecewise smooth function, as a Lyapunov function to study the nonlinear
system (1). We first extend some results obtained in [10] to the case where Lyapunov
functions are piecewise smooth. Then, we discuss two classes of piecewise smooth
Lyapunov functions.

2. Preliminaries

We start with a brief overview of some notions for nonsmooth analysis and viability
theory.

Definition 2.1 (see [3]). Let f : ®* — R™ be locally Lipschitzian and let Dy
denote the set where f is differentiable. The subdifferential in the sense of Clarke
of f at x, denoted by 0f(x), is defined as

of (x) = CO{ lim f'(z,) | x, — z, x, € Df},

Tp—T

where "co" denotes the convex hull.

The Clarke subdifferential is a compact convex set in 8" and is a generalization of
the notion of the classical differential. If f : R” — R™ is continuously differentiable,
its Clarke subdifferential happens to be a singleton, i.e., df(x) = {Vf(z)} when
m=1or df(z) ={Jf(x)} when m # 1.

Based on the Clarke subdifferential, there are a mean-value property and a chain
rule for a locally Lipschitzian function, which can be found in [1, 3].

Proposition 2.2 (mean-value property). Let f: R" — R be locally Lipschitzian.
Then, for any x1,xo € R" there exist T on the line-segment with x1 and xy as its
end points and & € 0f(x) such that

flx2) = f(z1) = € (22 — 21). (2)

Proposition 2.3 (chain rule). Let both F': R* — R™ and g : R™ — R be locally
Lipschitzian. Then, the composite function f(x) = g(F(x)) is locally Lipschzian
and its Clarke subdifferential has the following property

Of(x) C cofy"¢ | v € 09(2) |:=r), £ € OF ()} (3)

We next review the concept of piecewise smooth function and some properties, see
2, 8] for the details.

Definition 2.4. A continuous function f : #" — R is said to be piecewise C*,
where k is a positive integer, if there exist Lebesgue measureable sets S; and open
sets O; in R™ with Uiel S; =R".clS; C O; and C* functions f; : O; — R fori € I,
where [ is an index set with finitely many numbers, such that f(x) = f;(z) for any
x € 5;. When k = 1, the function f is said to be piecewise smooth for short.

Usually, f; and S;, mentioned in Definition 2.4, are called the i-th piece function
and the ¢-th piece region, respectively.
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The piecewise smooth functions play an important role in nonsmooth analysis,
optimization and control. Many functions are contained in this family, for instance
a maximum of finitely many smooth functions, a smooth compositions of max-
type functions and a minmax-type function. It was shown that a piecewise smooth
function is locally Lipschitzian.

For a piecewise smooth function f given as in Definition 2.4, define two active index
sets of f at x as follows:

Ip(x) ={i e I| fi(x) = f(x)}

and
I(z) = {z € 1|36 > 0,s.t. meas (B(x,é) ﬂOz) >0, fi(z) = f(x)},

where B(x,d) denotes the ball with x as its center and ¢ as its radius, respectively,
and "meas" denotes Lebesgue measure. According to [2], the Clarke subdifferential
of f at x is formulated as

Of(x) Cco{Vfi(z)| i€ If(x)} (4)

and

Of(x) = co{Vfi(x) | i € I;(x)}. (5)

We next present the notion of viability and region of attraction for a dynamical
system, which can be found in [1, 3, 10]

Definition 2.5. The set K C R" is said to be viable or invariant under the system
(1) if for any initial point zy € K, the solution z(¢) of (1) remains in K for ever, in
other words, z(t) € K,Vt > 0. Moreover, K is said to be a region of attraction if
lim; o z(t) = 0.

3. Stability and Attraction

In this section, we proposed a theorem on stability and attraction for the system
(1), which is an extension of the related work in [10]

Theorem 3.1. Let V : R" — R be piecewise smooth with piece functions V;,i € 1
and piece regions S;,i € I, where I is a finite index set. If V is positive definite,
i.e., V() >0 for any x # 0 and V(0) = 0, the set Q@ = {x | V(z) < 1} is bounded
and

VVi(z)' f(x) <0, Yz e S\{0},i€l, (6)
then the set Q) is invariant and a region of attraction for the system (1), namely
for any initial point x(0) € Q, the solution xz(t) of (1) satisfies x(t) € Q and
lim; . x(t) = 0.

Proof. By Proposition 2.3 and the formula (4), we have

OV (x(t)) C co{€"@(t) | § € OV (2) lomutr)}
C co{VVi(x) f(x) | i € Iv(z)}.
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According to (6), VV;(2)T f(x) < 0,Vi € Iy(z). Notice the fact that for an uni-
variate function g, if £ < 0 for all £ € dg(t),t > 0, then g is decreasing on [0, 00).
Thus, z(0) € Q implies that V' (z(t)) < V(x(0)) < 1, in other words, if z(0) € €2,
then V(z(t)) € 2.

Given a number € > 0, denote
1
Sez{xe%"|§e§1/(a:)§1}.
According to (6) and the definition of the set S¢, we have
S Si € Si\{0} C {w € S| VVi(x)" f(x) <0}, i€l

Noticing that S¢(\.S;, i € I are compact as well as f and V;, ¢ € I are continuous,
there exist numbers §; > 0,7 € I such that

VVi(x)" f(z) < =0; <0, Yo e S (S, iel
Denoting 0 = min;¢y d;, since the index set [ is finite, such 0 exists, then
VVi(z)" f(z) < =6 <0, Yee S (S, iel (7)

Given an interval [t,, 1], applying Proposition 2.2 to the one-dimensional function
V(t) = V(z(t)) on the interval [t,,t,], there exist t € [t,, ] and & € OV (¢) such
that

Vity) = Vta) = V(x(t) = V(x(ta)) = &t — ta)- (8)
By virtue of Proposition 2.3 and the formula (4), we get that
OV (t) Cco{~r"a(t) |y € dV(z), 2 =x(t)}
= co {VVi(x(t)"a(t) | i € Iv(x(t)) }
= co {VVi(z(t)" f(x(t)) | i € Iv(z(t))} . (9)
According to (7), (9) and the definition of Iy (x), all elements in 9V (t) for ¢ € [t t]
are less than —0d, thus £ < —J. By virtue of (8), we have that
V(z(ty)) < V(x(ta)) — 0(tp — ta).
Furthermore, § > 0 implies that there exists ¢ > 0 such that V(z(t)) < e for all
t > t, this means that lim; ., V(x(¢)) = 0 if (0) € Q.

Let € > 0 and let
Qe={xeRN"|e< |z, V(z) < 1}.

Evidently, the set €2, is compact with 0 ¢ €. Since V is continuous and positive
definite, there exists v € (0,1) such that 0 < v < V(z),z € Q.. On the other hand,
lim; o V(2(t)) = 0 ensures that there exists ¢; such that V(z(t)) < v for all t > t;.
This yields that z(t) ¢ €, that is ||z(t)|| < €, therefore lim; ., x(t) = 0. We thus
complete the proof of the theorem. O]
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4. Two Classes of Piecewise Smooth Lyapunov Functions

In this section, we consider two classes of piecewise smooth Lyapunov functions.
One is the sum of a max-type function and a min-type function, the other is minmax-
type function. These two classes of piecewise smooth functions are widely used in
nonsmooth analysis, optimization and control, their piecewise smoothness is well-
known. In what follows we try to find their specific pieces and regions, then develop
conditions of stability and attraction.

4.1. The Sum of Max-Type Function and Min-Type Function

Let us consider the sum of a max-type function and a min-type function of the
form:
Viz) = U; in W(x), 10
() = maas Ui(e) + min W) (10)
where U; : R — R,e € I and W, : 8" — R, j € J are continuously differentiable,
both I and J are finite index sets. We first try to find specific pieces for the function
V given in (10). Given a pair of indices (s,t) € I x J, define the set Sy as the
following:

S ={x €R" | Us(x) > Uy(x),Vi € I} [ [{z € R" | Wi(z) < Wy(x),Vj € J}. (11)
For a fixed z € R", denote the index set
(I x J)(z) ={(s,t) € I x J | Us(x) > U(x),Vi € I, Wy(z) < W;(z),Vj € J}.

Evidently, ,c; ;9% = R" and for any z € R", the index set (I x J)(z) is
nonempty. For any z € R", there exist s; € I,t; € J such that z € S;;, and
V(z) = U, () + Wy, (z), moreover V(z) = Us(x) + Wy (z) for any (s,t) € (I x J)(x).
Choose Oy, = R", s € I,t € J, thus V is piecewise smooth function with Sy; as
piece regions and Sg(z) + Vi(x) as piece functions. Evidently, V' has no more than
card [ x card J pieces, where "card" denotes cardinality. By the definition of S
and (I x J)(z), we obtain the following proposition immediately.

Proposition 4.1. Let x € R" and (i,5) € I x J. Then, x € S;; given in (11) if
and only if (i,7) € (I x J)(z).

Let us consider the system (1) and corresponding Lyapunov function V' given in
(10). Suppose that V is positive definite, the set Q = {x € R | V(z) < 1} is
bounded and the following condition holds:

(VU (z) + VWi(2))T f(z) <0, Y(s,t) e (I x J)(x). (12)

By virtue of Theorem 3.1 and Proposition 4.1, the set {2 is invariant and a region
of attraction for the system (1), namely, initial point x(0) € Q guarantees that
z(t) € Q and lim;_o 2(t) = 0.

We can extend the above results to a smooth composition of max-type functions of
the form

V(z) = g(max Vi;(x), ..., max V,,,(x)), (13)

je1 JjE€EIm
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where g : R — R and Vj; : " — RN are continuously differentiable and J;,j =
1,...,m are finite index sets.

4.2. The Minmax-Type Function

We next consider a minmax-type Lyapunov function of the form:

V(x) = minmax V;;(z), (14)

i€l jeJ
where V;; : R — R,i € I,j € J are continuously differentiable, both I and J are

finite index sets.

The minmax-type function (14) is widely used in nonsmooth analysis. It was shown
that under some conditions, a piecewise smooth function can be reformulated as a
minmax-type function, see [8].

Given a pair of indices (s,t) € I x J, define the set
St ={z € R" | Vy(x) > Vy(2), V) € J, Vy(x) < mg}%j(x),Vi el}. (15)
j

Evidently, ;s st = R". It can be verified that V(z) = Vy(z),Va € Sy, we
choose O, = R, thus V is piecewise smooth with piece functions V;; and piece
regions S;.

Given a fixed x € R", define index sets as follows:

Jo(w) ={j € J | Vyj(a) = max Vi (2)}, s €1

and
(x)={iel] nax, Vie(2) = min nax t(2)}
By the definition of J¢(z) and I(z), we obtain the following proposition immediately.

Proposition 4.2. Let x € R" and (i,5) € I x J. Then, x € S;; given in (15) if
and only if there exists s € I such that (i,7) € I(x) x Js(z).

Let us consider the system (1) and Lyapunov function V' given in (14). Suppose
that V' is positive definite, the set Q2 = {z | V(x) < 1} is bounded and

V() f(z) <0, Vsel(z),te J(x). (16)

By virtue of Theorem 3.1 and Proposition 4.2, the set (2 is invariant and a region
of attraction for the system (1), in other words, for any initial point z(0) € €2, the
solution x(t) of (1) is such that x(t) € Q and lim;_, z(¢) = 0.

5. Conclusions

In this paper, we first generalize the existing viability condition and attraction re-
gion condition to the case where Lyapunov functions are piecewise smooth. Then,
we discuss two widely used classes of piecewise smooth functions, take them as Lya-
punov functions, viability condition and attraction region condition are proposed.
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