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In this paper, stability and attraction for a nonlinear dynamical system with nonsmooth Lyapunov
functions are studied. The previous results on stability and attraction with a max-type Lyapunov
function are extended to the case where Lyapunov function is piecewise smooth. A condition,
under which stability and attraction are guaranteed with a piecewise smooth Lyapunov function,
is proposed. Taking two certain classes of piecewise smooth functions as Lyapunov functions,
related conditions for stability and attraction are developed.
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1. Introduction

Recently, nonsmooth Lyapunov functions are used to study stability and attraction
in a dynamical system widely. They are applied to nonlinear systems, switched lin-
ear systems and hybrid systems. In the theoretical view, rather general nonsmooth
Lyapunov functions are used, by which stability and stabilization are established,
see [4, 9] and references therein. In the practical view, nonsmooth Lyapunov func-
tions with specific structure are much more interesting, thus specific results can
be obtained. Within this topic, most existing nonsmooth Lyapunov functions are
max-type or min-type ones, see for instance [5, 6, 7, 10, 11].

Let us consider a dynamical system:

�x(t) = f(x), (1)

where f : ℜn → ℜn is locally Lipschitzian with f(0) = 0.

Tan and Parkard [10] studied the system (1) with a nonsmnooth Lyapunov function
and proved that the set Ω = {x | V (x) ≤ 1} is invariant and a region of attraction
when Lyapunov function V is a max-type function of the form maxi∈I Vi(x) or a
min-type function of the form mini∈I Vi(x), where each Vi is smooth, I is a finite
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index set. In this paper, we try to use a more broad class of nonsmooth functions,
named piecewise smooth function, as a Lyapunov function to study the nonlinear
system (1). We first extend some results obtained in [10] to the case where Lyapunov
functions are piecewise smooth. Then, we discuss two classes of piecewise smooth
Lyapunov functions.

2. Preliminaries

We start with a brief overview of some notions for nonsmooth analysis and viability
theory.

Definition 2.1 (see [3]). Let f : ℜn → ℜm be locally Lipschitzian and let Df

denote the set where f is differentiable. The subdifferential in the sense of Clarke
of f at x, denoted by ∂f(x), is defined as

∂f(x) = co
{

lim
xn→x

f ′(xn) | xn → x, xn ∈ Df

}

,

where "co" denotes the convex hull.

The Clarke subdifferential is a compact convex set in ℜm×n and is a generalization of
the notion of the classical differential. If f : ℜn → ℜm is continuously differentiable,
its Clarke subdifferential happens to be a singleton, i.e., ∂f(x) = {∇f(x)} when
m = 1 or ∂f(x) = {Jf(x)} when m 6= 1.

Based on the Clarke subdifferential, there are a mean-value property and a chain
rule for a locally Lipschitzian function, which can be found in [1, 3].

Proposition 2.2 (mean-value property). Let f :ℜn → ℜ be locally Lipschitzian.

Then, for any x1, x2 ∈ ℜn there exist x̄ on the line-segment with x1 and x2 as its

end points and ξ ∈ ∂f(x̄) such that

f(x2)− f(x1) = ξT (x2 − x1). (2)

Proposition 2.3 (chain rule). Let both F : ℜn → ℜm and g : ℜm → ℜ be locally

Lipschitzian. Then, the composite function f(x) = g(F (x)) is locally Lipschzian

and its Clarke subdifferential has the following property

∂f(x) ⊂ co{γT ξ | γ ∈ ∂g(z) |z=F (x), ξ ∈ ∂F (x)}. (3)

We next review the concept of piecewise smooth function and some properties, see
[2, 8] for the details.

Definition 2.4. A continuous function f : ℜn → ℜ is said to be piecewise Ck,
where k is a positive integer, if there exist Lebesgue measureable sets Si and open
sets Oi in ℜn with

⋃

i∈I Si = ℜn, clSi ⊂ Oi and Ck functions fi : Oi → ℜ for i ∈ I,
where I is an index set with finitely many numbers, such that f(x) = fi(x) for any
x ∈ Si. When k = 1, the function f is said to be piecewise smooth for short.

Usually, fi and Si, mentioned in Definition 2.4, are called the i-th piece function
and the i-th piece region, respectively.
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The piecewise smooth functions play an important role in nonsmooth analysis,
optimization and control. Many functions are contained in this family, for instance
a maximum of finitely many smooth functions, a smooth compositions of max-
type functions and a minmax-type function. It was shown that a piecewise smooth
function is locally Lipschitzian.

For a piecewise smooth function f given as in Definition 2.4, define two active index
sets of f at x as follows:

If (x) = {i ∈ I | fi(x) = f(x)}

and

Īf (x) =
{

i ∈ I | ∃δ > 0, s.t.meas
(

B(x, δ)
⋂

Oi

)

> 0, fi(x) = f(x)
}

,

where B(x, δ) denotes the ball with x as its center and δ as its radius, respectively,
and "meas" denotes Lebesgue measure. According to [2], the Clarke subdifferential
of f at x is formulated as

∂f(x) ⊂ co{∇fi(x) | i ∈ If (x)} (4)

and
∂f(x) = co{∇fi(x) | i ∈ Īf (x)}. (5)

We next present the notion of viability and region of attraction for a dynamical
system, which can be found in [1, 3, 10]

Definition 2.5. The set K ⊂ ℜn is said to be viable or invariant under the system
(1) if for any initial point x0 ∈ K, the solution x(t) of (1) remains in K for ever, in
other words, x(t) ∈ K,∀t > 0. Moreover, K is said to be a region of attraction if
limt→∞ x(t) = 0.

3. Stability and Attraction

In this section, we proposed a theorem on stability and attraction for the system
(1), which is an extension of the related work in [10]

Theorem 3.1. Let V : ℜn → ℜ be piecewise smooth with piece functions Vi, i ∈ I
and piece regions Si, i ∈ I, where I is a finite index set. If V is positive definite,

i.e., V (x) > 0 for any x 6= 0 and V (0) = 0, the set Ω = {x | V (x) ≤ 1} is bounded

and

∇Vi(x)
Tf(x) < 0, ∀x ∈ Si \ {0}, i ∈ I, (6)

then the set Ω is invariant and a region of attraction for the system (1), namely

for any initial point x(0) ∈ Ω, the solution x(t) of (1) satisfies x(t) ∈ Ω and

limt→∞ x(t) = 0.

Proof. By Proposition 2.3 and the formula (4), we have

∂V (x(t)) ⊂ co{ξT �x(t) | ξ ∈ ∂V (x) |x=x(t)}

⊂ co{∇Vi(x)
Tf(x) | i ∈ IV (x)}.
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According to (6), ∇Vi(x)
Tf(x) < 0,∀i ∈ IV (x). Notice the fact that for an uni-

variate function g, if ξ < 0 for all ξ ∈ ∂g(t), t ≥ 0, then g is decreasing on [0,∞).
Thus, x(0) ∈ Ω implies that V (x(t)) ≤ V (x(0)) ≤ 1, in other words, if x(0) ∈ Ω,
then V (x(t)) ∈ Ω.

Given a number ǫ > 0, denote

Sǫ =

{

x ∈ ℜn |
1

2
ǫ ≤ V (x) ≤ 1

}

.

According to (6) and the definition of the set Sǫ, we have

Sǫ
⋂

Si ⊂ Si \ {0} ⊂ {x ∈ Si | ∇Vi(x)
Tf(x) < 0}, i ∈ I.

Noticing that Sǫ
⋂

Si, i ∈ I are compact as well as f and Vi, i ∈ I are continuous,
there exist numbers δi > 0, i ∈ I such that

∇Vi(x)
Tf(x) < −δi < 0, ∀x ∈ Sǫ

⋂

Si, i ∈ I.

Denoting δ = mini∈I δi, since the index set I is finite, such δ exists, then

∇Vi(x)
Tf(x) < −δ < 0, ∀x ∈ Sǫ

⋂

Si, i ∈ I. (7)

Given an interval [ta, tb], applying Proposition 2.2 to the one-dimensional function
V̄ (t) = V (x(t)) on the interval [ta, tb], there exist t̄ ∈ [ta, tb] and ξ̄ ∈ ∂V̄ (t̄) such
that

V̄ (tb)− V̄ (ta) = V (x(tb))− V (x(ta)) = ξ̄(tb − ta). (8)

By virtue of Proposition 2.3 and the formula (4), we get that

∂V̄ (t) ⊂ co
{

γT �x(t) | γ ∈ ∂V (z), z = x(t)
}

= co
{

∇Vi(x(t))
T �x(t) | i ∈ IV (x(t))

}

= co
{

∇Vi(x(t))
Tf(x(t)) | i ∈ IV (x(t))

}

. (9)

According to (7), (9) and the definition of IV (x), all elements in ∂V̄ (t) for t ∈ [ta, tb]
are less than −δ, thus ξ̄ < −δ. By virtue of (8), we have that

V (x(tb)) < V (x(ta))− δ(tb − ta).

Furthermore, δ > 0 implies that there exists t̄ > 0 such that V (x(t)) ≤ ǫ for all
t > t̄, this means that limt→∞ V (x(t)) = 0 if x(0) ∈ Ω.

Let ǫ > 0 and let
Ωǫ = {x ∈ ℜn | ǫ ≤ ‖x‖, V (x) ≤ 1}.

Evidently, the set Ωǫ is compact with 0 /∈ Ωǫ. Since V is continuous and positive
definite, there exists γ ∈ (0, 1) such that 0 < γ ≤ V (x), x ∈ Ωǫ. On the other hand,
limt→∞ V (x(t)) = 0 ensures that there exists t1 such that V (x(t)) < γ for all t > t1.
This yields that x(t) /∈ Ωǫ, that is ‖x(t)‖ < ǫ, therefore limt→∞ x(t) = 0. We thus
complete the proof of the theorem.
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4. Two Classes of Piecewise Smooth Lyapunov Functions

In this section, we consider two classes of piecewise smooth Lyapunov functions.
One is the sum of a max-type function and a min-type function, the other is minmax-
type function. These two classes of piecewise smooth functions are widely used in
nonsmooth analysis, optimization and control, their piecewise smoothness is well-
known. In what follows we try to find their specific pieces and regions, then develop
conditions of stability and attraction.

4.1. The Sum of Max-Type Function and Min-Type Function

Let us consider the sum of a max-type function and a min-type function of the
form:

V (x) = max
i∈I

Ui(x) + min
j∈J

Wj(x), (10)

where Ui : ℜ
n → ℜ, i ∈ I and Wj : ℜ

n → ℜ, j ∈ J are continuously differentiable,
both I and J are finite index sets. We first try to find specific pieces for the function
V given in (10). Given a pair of indices (s, t) ∈ I × J , define the set Sst as the
following:

Sst = {x ∈ ℜn | Us(x) ≥ Ui(x),∀i ∈ I}
⋂

{x ∈ ℜn | Wt(x) ≤ Wj(x),∀j ∈ J}. (11)

For a fixed x ∈ ℜn, denote the index set

(I × J)(x) = {(s, t) ∈ I × J | Us(x) ≥ Ui(x),∀i ∈ I,Wt(x) ≤ Wj(x),∀j ∈ J}.

Evidently,
⋃

s∈I,t∈J Sst = ℜn and for any x ∈ ℜn, the index set (I × J)(x) is
nonempty. For any x ∈ ℜn, there exist s1 ∈ I, t1 ∈ J such that x ∈ Ss1t1 and
V (x) = Us1(x)+Wt1(x), moreover V (x) = Us(x)+Wt(x) for any (s, t) ∈ (I×J)(x).
Choose Ost = ℜn, s ∈ I, t ∈ J , thus V is piecewise smooth function with Sst as
piece regions and Ss(x) + Vt(x) as piece functions. Evidently, V has no more than
card I × card J pieces, where "card" denotes cardinality. By the definition of Sst

and (I × J)(x), we obtain the following proposition immediately.

Proposition 4.1. Let x ∈ ℜn and (i, j) ∈ I × J . Then, x ∈ Sij given in (11) if

and only if (i, j) ∈ (I × J)(x).

Let us consider the system (1) and corresponding Lyapunov function V given in
(10). Suppose that V is positive definite, the set Ω = {x ∈ ℜn | V (x) ≤ 1} is
bounded and the following condition holds:

(∇Us(x) +∇Wt(x))
Tf(x) < 0, ∀(s, t) ∈ (I × J)(x). (12)

By virtue of Theorem 3.1 and Proposition 4.1, the set Ω is invariant and a region
of attraction for the system (1), namely, initial point x(0) ∈ Ω guarantees that
x(t) ∈ Ω and limt→∞ x(t) = 0.

We can extend the above results to a smooth composition of max-type functions of
the form

V (x) = g(max
j∈J1

V1j(x), . . . ,max
j∈Jm

Vmj(x)), (13)



1014 Y. Gao / Piecewise Smooth Lyapunov Function for a Nonlinear Dynamical ...

where g : ℜm → ℜ and Vij : ℜn → ℜ are continuously differentiable and Jj, j =
1, . . . ,m are finite index sets.

4.2. The Minmax-Type Function

We next consider a minmax-type Lyapunov function of the form:

V (x) = min
i∈I

max
j∈J

Vij(x), (14)

where Vij : ℜ
n → ℜ, i ∈ I, j ∈ J are continuously differentiable, both I and J are

finite index sets.

The minmax-type function (14) is widely used in nonsmooth analysis. It was shown
that under some conditions, a piecewise smooth function can be reformulated as a
minmax-type function, see [8].

Given a pair of indices (s, t) ∈ I × J , define the set

Sst = {x ∈ ℜn | Vst(x) ≥ Vsj(x),∀j ∈ J, Vst(x) ≤ max
j∈J

Vij(x),∀i ∈ I}. (15)

Evidently,
⋃

s∈I,t∈J Sst = ℜn. It can be verified that V (x) = Vst(x),∀x ∈ Sst, we
choose Ost = ℜn, thus V is piecewise smooth with piece functions Vst and piece
regions Sst.

Given a fixed x ∈ ℜn, define index sets as follows:

Js(x) = {j ∈ J | Vsj(x) = max
t∈J

Vst(x)}, s ∈ I

and
I(x) = {i ∈ I | max

t∈Ji(x)
Vit(x) = min

i∈I
max
t∈Ji(x)

Vit(x)}.

By the definition of Js(x) and I(x), we obtain the following proposition immediately.

Proposition 4.2. Let x ∈ ℜn and (i, j) ∈ I × J . Then, x ∈ Sij given in (15) if

and only if there exists s ∈ I such that (i, j) ∈ I(x)× Js(x).

Let us consider the system (1) and Lyapunov function V given in (14). Suppose
that V is positive definite, the set Ω = {x | V (x) ≤ 1} is bounded and

∇Vst(x)
Tf(x) < 0, ∀ s ∈ I(x), t ∈ Js(x). (16)

By virtue of Theorem 3.1 and Proposition 4.2, the set Ω is invariant and a region
of attraction for the system (1), in other words, for any initial point x(0) ∈ Ω, the
solution x(t) of (1) is such that x(t) ∈ Ω and limt→∞ x(t) = 0.

5. Conclusions

In this paper, we first generalize the existing viability condition and attraction re-
gion condition to the case where Lyapunov functions are piecewise smooth. Then,
we discuss two widely used classes of piecewise smooth functions, take them as Lya-
punov functions, viability condition and attraction region condition are proposed.
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